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Patient Flow in Emergency Department (ED)
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Fig 8. Activities-Resources flow chart in the ED

A similar effort was devoted in the past to model a call center as a queue-
ing system. A successful approach for call centers is to divide the day into
15-30 minutes intervals, and assume that the system has a fixed arrival rate,
service rate and number of servers during each interval. Moreover, conver-
gence to steady-state is relatively fast, and therefore the assumption that
the system works in steady-state within each interval has been widely ac-
cepted. This approach works well for call centers because changes in system
parameters occur at a longer time scale than an individual customer LOS.
In the ED, things are different. As we shall see, it is typical for patients to
spend several hours in the ED. Hence, the effect of each individual arrival is
not local, but lingers for that length of time. Moreover, during a patient’s
stay in the ED, many operational factors may change such as the arrival
rate, staffing level, equipment availability, etc. Therefore, it is necessary for
a queueing model to capture the system dynamics throughout an entire day,
rather than decomposing the day into shorter time intervals.

(Armony M., et al. (2011): Patient Flows in Hospitals: A Data-Based

Queueing-Science Perspective.)



Emergency Department (ED)

I Feedback (Yom-Tov and Mandelbaum (2012)):

Physician Type Patient Type Average number of visits

1 1, 7 3.9698

2 2, 5 2.9904

3 3, 6 2.9700

4 4 2.9904

I Clinical (quality) vs. Operational (efficiency):

- Quality: Deadlines on time-till-first-treatment;

- Efficiency: Congestion costs.



Model Structure
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Model Description

I S physicians (small and fixed);

I J classes of triage patients, j(∈ J )-triage patients:

- arrival rate λ0j ;

- mean service requirement m0
j , MJ = (m0

j );

- after service, transfer to k-IP patient with probability Pjk;

PJK = [Pjk]; (triage-to-IP transition matrix)

- have deadline dj :

- denote by τj(t) the age of the head-of-the-line patient, then

τj(t) ≤ dj ;

I K classes of in-process (IP) patients, k(∈ K)-IP patients:

- no exogenous arrivals;

- mean service requirement mk, M = (mk);

- after service, transfer to l-IP patient with probability Pkl;

P = [Pkl]; (IP-to-IP transition matrix)

- incur queueing cost at rate Ck(Qk(t)) (or Ck(Wk));



Problem Formulation:

I Cumulative cost till t:
∫ t

0

∑
k∈K Ck(Qk(s))ds;

I Deadline constraints: τj(t) ≤ dj , j ∈ J ;

I Constraint optimization problem: for any T > 0,

min
Π

∫ T

0

∑
k∈K

Ck(Qk(s))ds

s.t. τj(t) ≤ dj , ∀j ∈ J and 0 ≤ t ≤ T.

I Does this problem have feasible solution?

- τj , j ∈ J random, dj deterministic;

- - relax the ‘feasibility’ – ‘asymptotically feasible’;

- relax the ‘optimality’ – ‘asymptotically optimal’.



Effective Mean Service Time

I M e
J = (me

j) – effective mean service time of Triage

patients:

M e
J = MJ + PJK[I − P ]−1M ;

me
j is the expected total service time required by j-triage

patients throughout their ED stay.

I Traffic intensity:

ρ =
1

S

∑
j∈J

λ0
jm

e
j ,

assume ρ ≈ 1 (heavy-traffic);

I M e = (me
k) – effective mean service time of IP patients:

M e = [I − P ]−1M ;

me
k is the expected total service time required by k-IP

patients throughout their ED stay.



Proposed Policy

Choose any one of the triage classes (conceivably the least dj ,

say d1). Then a physician that becomes idle at time t adopts

the following guidelines:

I Serve triage patients if τ1(t) ≥ d1 − ε, where ε is small

relative to d1 (e.g. d1 = 30 minutes while ε = 3 minutes);

I Given that a triage patient is to be served, choose the

head-of-the-line patient from the class with index

j ∈ argmax
j∈J

τj(t)

dj
;

I Given that an IP patient is to be served, choose the

head-of-the-line patient from the class with index

k ∈ argmax
k∈K

C ′k(Qk(t))

me
k

.



Literature Review

Only those closely related:

I Generalized cµ (Gcµ) policy:

- van Mieghem (1995);

- Mandelbaum and Stolyar (2004);

I Due-date:

- van Mieghem (2003);

- Plambeck, Kumar and Harrison (2001);

I Feedback:

- Reiman (1988) and Dai and Kurtz (1995);

- Klimov’s model.



Asymptotic Framework

I A sequence of systems, indexed by r ↑ ∞ :

I Triage patients:

- Arrival rate λrj ;

- Service requirement mj ;

- Markovian routing, PJK = (Pjk)J×K ;

I IP patients:

- Internal arrival;

- Service requirement mk;

- Markovian routing, P = (Pkl)K×K ;

I Independence assumption;

I Traffic intensity: ρr =
∑

j∈J λ
r
jm

e
j ;



Asymptotic Framework (Cont.)

I (Conventional) heavy traffic condition: as r →∞,

r(ρr − 1)→ β,

λrj → λj , j ∈ J ,

for some β ∈ R and λj > 0.

I Deadlines for triage patients, drj , j ∈ J , satisfy

drj
r
→ d̂j , as r →∞, for all j ∈ J ,

where d̂j > 0, j ∈ J .



Asymptotic Framework (Cont.)

I Control policies πr = {T rj , T rk };
I Diffusion-scaled age processes:

τ̂ rj (t) = r−1τ rj (r2t), j ∈ J .

I Diffusion scaled queue length processes:

Q̂rk(t) = r−1Qrk(r
2t), k ∈ K.

I Cumulative queueing cost:

Ur(t) :=

∫ t

0

∑
k∈K

Ck

(
Q̂rk(s)

)
ds.



Asymptotic Compliance

Definition

A family of control policies is said to be asymptotically

compliant if, for any fixed T > 0, as r →∞,

sup
0≤t≤T

[
τ̂ rj (t)− d̂j

]+
⇒ 0, j ∈ J .



Asymptotic Optimality

Definition

A family of control policies {πr∗} is said to be asymptotically

optimal if

I it is asymptotically compliant and

I for every t > 0 and every x > 0,

lim sup
r→∞

P {Ur∗ (t) > x} ≤ lim inf
r→∞

P {Ur(t) > x} ,

{Ur∗}: corresponding to {πr∗};
{Ur}: corresponding to any asymptotically compliant

policies.



The Proposed Policies

Choose any one of the triage classes, say 1 ∈ J . In the rth

system, a physician that becomes idle at time t adopts the

following guidelines:

I Serve triage patients if Qr1(t) ≥ λr1dr1;

I Given that a triage patient is to be served, choose the

head-of-the-line patient from the class with index

j ∈ argmax
j∈J

τ rj (t)

drj
;

I Given that an IP patient is to be served, the physician uses

a policy ensuring (for any T > 0)

max
l,k∈K

sup
0≤t≤T

∣∣∣∣∣C ′l(Q̂rl (t))me
l

−
C ′k(Q̂

r
k(t))

me
k

∣∣∣∣∣⇒ 0.



Alternative Policies for Triage

I Shortest-Deadline-First policy: when the triage classes are

chosen to be served at time t, the physician chooses the

head-of-the-line patient from the class with index

j ∈ argmin
j∈J

(
drj − τ rj (t)

)
;



Examples of Policies for IP

I G: a K ×K irreducible matrix:

- all components of GMe being non-zero;

I H: the K-dimensional vector, Hk = 1/(GM e)k;

I When the IP classes are chosen to be served at time t, the

physician chooses the head-of-the-line patient from class

k ∈ argmax
k∈K

Hk

(
GC ′

(
Q̂r(t)

))
k
.

I Two special cases:

- If G = I, k ∈ argmaxk∈K
C′

k(Q̂r
k(t))

me
k

– (modified) Gcµ ;

- If G = I − P , the policy conjectured in Mandelbaum and

Stolyar (2004);



Main Results

Theorem

Our proposed family of control policies is asymptotically optimal.



Intuition and Proofs

I A(t): total potential workload brought into the ED;

I T (t): amount of workload served;

I W (t) = A(t)− T (t): total potential workload left:

- minimized by work-conserving policy;

- invariant to any work-conserving policy;

- conditional on the queue length processes,

W (t) ≈
∑
j∈J

me
j ×Qj(t) +

∑
k∈K

me
k ×Qk(t).

I Making
∑

j∈J m
e
j ×Qj(t) ≈

∑
j∈J λjm

e
jτj(t) close to the

upper bound
∑

j∈J λjm
e
jdj ;

I Making Qk minimize the cost rate.



The Functions of The Proposed Policies

I Triage patients – making triage classes well-behaved:

- One class embodies enough information for all classes;

- when one class is close to the deadline, all other classes are

also close to the deadlines;

I Threshold policy: Making τ r1 (t) closest to dr1 for all t;

- Then all classes are close to their deadlines;

I IP patients: Q̂rk(t), k ∈ K, asymptotically solve:

min
∑
k∈K

Ck(Q̂
r
k(t))

s.t.
∑
k∈K

me
kQ̂

r
k(t) = (Ŵ r(t)−

∑
j∈J

λjm
e
j d̂j)

+.

Verify via KKT condition1.
1KKT (Karush - Kuhn - Tucker) condition is used to help solving

non-linear programming problems.



State Space Collapse

Theorem

Under the proposed policy, Q̂r ⇒ Q̂, where Q̂ satisfy

I
Q̂j(t)

λj d̂j
=

Q̂j′ (t)

λj′ d̂j′
, j, j′ ∈ J ;

I
∑

j∈J m
e
jQ̂j(t) = min(Q̂w(t), ω̂);

- ω̂ =
∑
j∈J λjm

e
j d̂j;

- Q̂w(t) is a reflected Brownian motion;

I Q̂k(t), k ∈ K, satisfy

C ′k(Q̂k(t))

me
k

=
C ′k′(Q̂k′(t))

me
k′

, k, k′ ∈ K;∑
k∈K

me
kQ̂k(t) = (Q̂w(t)− ω̂)+.



Sample-Path Little’s Law

I FCFS among each class;

I ωrk: virtual waiting time, ω̂rk(t) = r−1ωrk(t);

I τ rk : age, τ̂ rk (t) = r−1τ rk (t);

Proposition

λrkω̂
r
k − Q̂rk ⇒ 0, k ∈ K,

λrkτ̂
r
k − Q̂rk ⇒ 0, k ∈ K.

I Qrk(t+ ωrk(t)) = Erk(t+ ωrk(t))− Erk(t) ≈ λrkωrk(t),
Qrk(t) = Erk(t)− Erk(t− τ rk (t)) ≈ λrkτ rk (t);

I Snapshot principle: Qrk(t+ ωrk(t)) ≈ Qrk(t);



Sojourn Time

I FCFS among each IP-class;
I h ∈ ZK+ : visit vector:

- hk: time of visits to k-IP class before leaving the system;

- j-feasible;

I W r
jh(t): sojourn times of the next j-triage patient arriving

after t with visit vector h,

Ŵ r
jh(t) = r−1W r

jh(r2t).

I Snapshot principle: Ŵ r
jh(t) ≈ ω̂rj (t) +

∑
k∈K hkω̂

r
k(t);

Proposition

Ŵ r
jh −

Q̂rj
λrj
−
∑
k∈K

hk
λrk
Q̂rk ⇒ 0,

Ŵ r
jh − τ̂ rj −

∑
k∈K

hkτ̂
r
k ⇒ 0.



Waiting-Time Costs

I FCFS among each IP-class;

I Cumulative waiting costs:

Ũr(t) :=
∑
k∈K

∫ t

0
Ck (ω̂rk(s)) d

¯̄Erk(s);

I Threshold policy between triage and IP does not change;

I The policy determining priorities among triage does not

change;

I If the IP classes are chosen to be served at time t, the

physician uses a policy ensuring that, for any T ≥ 0,

max
l,k∈K

sup
0≤t≤T

∣∣∣∣∣∣∣∣
C ′l

(
Q̂r

l (t)
λrl

)
me
l

−
C ′k

(
Q̂r

k(t)
λrk

)
me
k

∣∣∣∣∣∣∣∣ ⇒ 0.



Sojourn-Time Costs

I Routing matrix P (IP-to-IP transition matrix) is

upper-triangular (WLOG, assume each patient has a

deterministic routing vector);

I Denote by C0 the starting classes of any route;

I Denote by Ck all classes on a route starting with k ∈ C0;

I Classes in
⋃
k∈C0 Ck\{k} are subsequent classes;

I Congestion cost:

S̃r(t) :=
∑
k∈C0

∫ t

0
Ck

∑
k′∈Ck

ω̂rk′(s)

 d ¯̄Erk(s);



Sojourn-Time Costs: Asymptotically Optimal Policy

I Threshold policy between triage and IP does not change;

I The policy determining priorities among triage does not

change;

I If the IP classes are chosen to be served at time t, the

physician

- Gives higher priority to subsequent classes;

- For the starting classes, ensuring that, for any T ≥ 0,

max
l,k∈C0

sup
0≤t≤T

∣∣∣∣∣∣
C ′l

(
Q̂r

l (t)
λr
l

)
me
l

−
C ′k

(
Q̂r

k(t)
λr
k

)
me
k

∣∣∣∣∣∣ ⇒ 0.



An ED case study

I Data is from an Israeli ED; cost is on sojourn times;

Number of IP visits 1 2 3 4 5

Proportion 0.28 0.30 0.28 0.11 0.03

A& D Status Admitted Discharged

Proportion/Cost function 0.40, t2 0.60, 2t2

I No information: The nurses can NOT estimate the

number of IP visits or the A&D status;

I Partial information: The nurses can estimate the

number of IP visits (costs can be reduced by 18.01%);

I Complete information: The nurses can estimate both

the number of visits and the A&D status (costs can be

reduced by 26.8%);

I Good news: A good trained nurse can estimate both kinds

of information very accurately!
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Future Directions
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Fig 8. Activities-Resources flow chart in the ED

A similar effort was devoted in the past to model a call center as a queue-
ing system. A successful approach for call centers is to divide the day into
15-30 minutes intervals, and assume that the system has a fixed arrival rate,
service rate and number of servers during each interval. Moreover, conver-
gence to steady-state is relatively fast, and therefore the assumption that
the system works in steady-state within each interval has been widely ac-
cepted. This approach works well for call centers because changes in system
parameters occur at a longer time scale than an individual customer LOS.
In the ED, things are different. As we shall see, it is typical for patients to
spend several hours in the ED. Hence, the effect of each individual arrival is
not local, but lingers for that length of time. Moreover, during a patient’s
stay in the ED, many operational factors may change such as the arrival
rate, staffing level, equipment availability, etc. Therefore, it is necessary for
a queueing model to capture the system dynamics throughout an entire day,
rather than decomposing the day into shorter time intervals.

I Adding delays between transfers;

I Time varying arrival rate;

I Adding global constraint on sojourn times;

I Adding abandonment (LWBS, LAMA).


