Empirical Adventures in Hospitals

Galit Yom-Tov

Joint work with: Mor Armony, Avishai Mandelbaum, Yariv N. Marmor, Yulia Tseytlin

Columbia, NYU, Technion, Mayo, IBM

November 2010

Motivation

Why empirical?

- Can the data uncover interesting phenomena of hospital operation?
- Identify special characteristics of hospital environment.
- What are the operational implications of those phenomena?
- Explore impact of various operational schemes.
- Uncover interesting research questions.

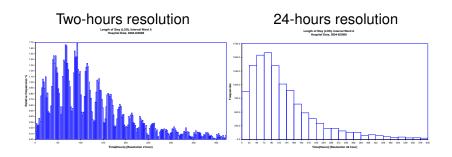
Empirical vs. Statistical approach.

Literature

Queueing models for hospitals:

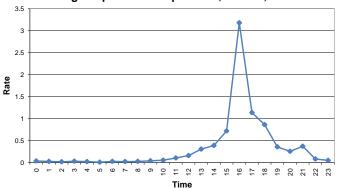
- Capacity Planning: Green (2002); de Bruin, Bekker, van Zanten, and Koole (2009); Yom-Tov and Mandelbaum (2010).
- Patients' Routing: Mandelbaum, Momcilovic, and Tseytlin (2009)

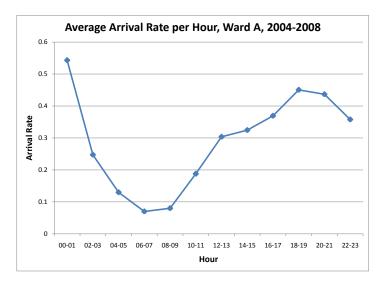
• Empirically based research:


 Chen, Harrison, Mandelbaum, van Ackere, and Wein (1988);

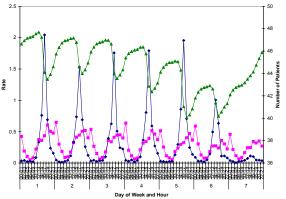
Adler, Mandelbaum, Nguyen, and Schwerer (1995); Brown, Gans, Mandelbaum, Sakov, Shen, Zeltyn, and Zhao (2005);

Gurvich, Liberman and Mandelbaum (2010);


LOS Distribution

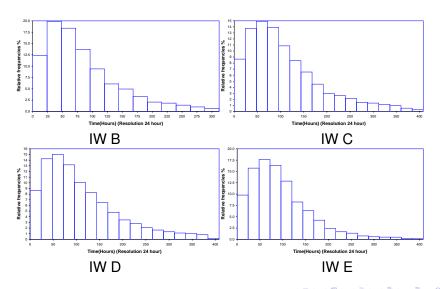

LOS is a mixture of Normally distributed Random variables.

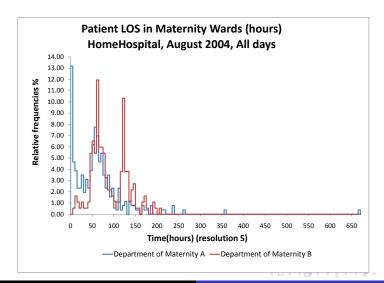
IW Departure Rate



IW Arrival Rate

Patients, Arrival- and Departure-Rate

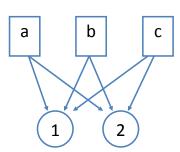

Arrival Rate, Departure Rate, and Number of Patients by Day and Hour, Ward A, 2004-2008


Number of patients changes dramatically over the day.

Operational effect: The effect of flux in time-varying queues.

LOS Distribution of IW B-E

LOS Distribution of Maternity Ward



Routing Schemes in Different Wards

Maternity Ward

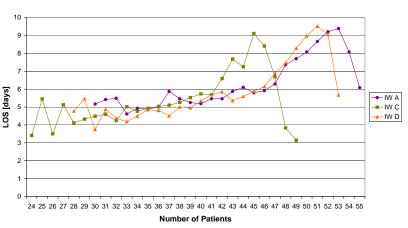
a b c

Internal Ward

Returns in IW and Oncology

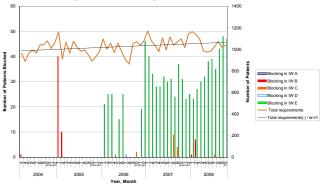
Returns to hospital

Ward	No. of returns per	Time between	Probability of return
	patient (in 4 years)	returns (days)	within 3 month
Internal	1.76	208	22%
Oncology	5.76	29	76%


Queueing theory provides tools to model Healthcare operations, and the data analysis provides the means to:

- Implement models.
- Characterize environments where the models are applicable.
- Identify where these models are bound to fail and need adjustments.
- Better understand the system and discover new phenomena.

Thank You


LOS and Load

LOS as a function of Load

Blocking

Total Blocking Incidents per Year and Month, all IWs

Trend in arrival rate explains part of the blocking.

Beds capacity was reduced from 202 beds to 185.

During 2006 War no blocking.

Change in blocking policy.

