Telephone Services:

Science, Engineering, Management and Teaching

1st International Symposium

Service Engineering & Management

Fraunhofer, Nov. 26, 2002

e.mail: avim@tx.technion.ac.il

Course: http://ie.technion.ac.il/serveng

Tool: http://4CallCenters.com (register & use)

Supporting Material (in Web-Site)

Gans, Koole, and M.: "Telephone Call Centers: A Tutorial and Literature Review." Invited review to MSOM, 2002.

M., Sakov, and Zeltyn: "Empirical Analysis of a Call Center." Technical report, Technical, 2000.

Brown, Gans, Haipeng, M., Sakov, Zeltyn, Zhao: "Statistical Analysis of a Call Center: a **Queueing Science** Perspective." Submitted to *JASA*, 2002.

Borst, M. and Reiman: "Dimensioning Large Telephone Call Centers." Accepted to *OR*, 2002.

Garnett, M. and Reiman: "Designing a Telephone Call-Center with Impatient Customers." *MSOM*, **4**, <u>208-227</u>, <u>2002</u>.

Jennings, M., Massey and Whitt: "Server staffing to meet timevarying demand." *Mgt. Sc.* 42, 1383–1394, 1966.

Atar, M. and Reiman: "Scheduling a Multi-Class Queue with Many Exponential Servers: Asymptotic Optimality in Heavy-Traffic." Submitted to <u>Annals Appl Prob</u>, 2002.

M. and Stolyar: "Scheduling Flexible Servers with Convex Delay Costs: Heavy-Traffic Optimality of the Generalized $c\mu$ -Rule." Under revision to OR, 2002.

Contents

- 1. Service Engineering Subjective View.
- 2. Focus: Serveng Call/Contact Centers
- 3. Design, Control: Skills-Based Routing
- 4. Focus: Workforce Management (Staffing)
- 5. Example: a staffing tool (4CallCenteres.com)
- 4. Operational Regimes: Quality-Driven, Efficiency-Driven
 The QED Regime (Quality and Efficiency Driven):
- 5. Example: Rule of Thumb (Square-Root Safety Staffing)
- 6. Relevance: Service Engineering in Management
- 7. Laws of Congestion: Patience, Abandonment
- 8. Beyond Conventional Queueing Theory: QED Models
 Time-Varying Queues, Networks, Human Factors
- 9. Teaching: Syllabus for Data-Based Service Engineering
- 10. Future: Research, Teaching, Practice

Service Engineering – a Subjective View

Contrast with the traditional and prevalent

Service Management (Business Schools; U.S.A.)

Industrial Engineering (Engineering Schools; Europe)

• Goal: Develop scientifically-based design principles (rules-of-thumb) and tools (software), that support the balance of service quality and efficiency, from the (often conflicting) views of customers, servers and managers.

• Theoretical Framework: Queueing Networks

• Applications focus: Call (Contact) Centers

Example: Skills-Based Routing in multi-media centers e.g. Support + Sales via Telephone + IVR + e.mail + Chat, for VIP and others.

Example: Staffing the modern Call Center

e.g. How many agents to balance service- and efficiency-levels.

Significant: scientific, economic, social, psychological.

Multi-Disciplinary: typically OR/OM, Marketing, HRM. MIS.

Service Networks = Queueing Networks

- People, waiting for service: teller, repairman, ATM
- Telephone-calls, to be answered: busy, music, info.
- Forms, to be sent, processed, printed; for a partner
- Projects, to be developed, approved, implemented
- Justice, to be made: pre-trial, hearing, retrial
- Ships, for a pilot, berth, unloading crew
- Patients, for an ambulance, emergency room, operation
- Cars, in highway rush hour, for green light
- Checks, waiting to be processed, cashed

Queues

- Operational Causes: Scarce Resources, Synchronization Gaps
- Prevalent, Significant (Economically, Psychologically)
- Costly, yet Here to Stay (e.g. 1-800 costs)
- Visible levers: proxy to the invisible (Means, rather than goals)

Tele-Nets: Call/Contact Centers

Scope	Examples
Information	#411, Tele-pay, Help Desks
Business	Tele-Banks, #800-Retail
Emergency	Police #911
Mixed Info + Emerg. Info + Bus.	Utility Companies, City Halls Airlines

Scale

- 10s to 1000s of agents in a "single (virtual)" Call Center
- -3% of U.S. work force (millions), more than in agriculture
- 70% of total business transactions
- 20% growth rate of the call center industry
- Leading-edge technology, but 70% costs for "people"

Trends: THE interface with customers

- Beyond the classical quality vs. efficiency paradigm (Scale)
- Contact Centers (E-Commerce/Multimedia), outsourcing,...
- The Retails outlets of 21-Century
- but also The Sweat-shops of the21-Century

BONUS SUPPLEMENT: E-TAILING'S FUTURE GEN

www.businessweek.com

usiness

OCTOBER 23, 2000

A PUBLICATION OF THE McGRAW-HILL COMPANIES

Mutual Funds

How to avoid

a big tax bill

Wall Street

Will tech's slide keep spreading?

Dot-coms

The search for

new business models

Managed Care

Employers seek a new solution

YSER

Companies know just how good a customer you are—and unless you're

a high roller, they would rather lose you than fix your

problem

#BXBBGDD****CAR-RT SORT**B083 #06032865631763#J010201 018489 0830 52/INDUSTRIAL 103 ENGINEERING LIBRARY

PO BOX 830657

BIRMINGHAM AL

Common Performance

BCMS SKILL REPORT Switch Name: FDC/HAMPDEN Date: 7:00 pm WED MAR 10, 1999 Skill: 37 Skill Name: !BA AUTH1 Acceptable Service Level: 30 AVG AVG AVG TOTAL TOTAL % IN ACD SPEED ABAND ABAND TALK AFTER FLOW FLOW AUX/ AVG SERV DAY CALLS ANS CALLS TIME TIME CALL IN OUT OTHER STAFF LEVL 3/04/99 637 0:19 219 0:26 1:57 92:05 0 4310:06 8.7 0 66 3/05/99 849 0:06 135 0:06 1:35 179:58 0 0 4299:43 11.3 85 1330 0:11 3/06/99 363 0:13 1:42 280:22 0 0 5592:29 13.2 73 3/07/99 1213 0:12 358 0:18 1:46 226:20 0 0 4830:15 11.5 72 3/08/99 631 0:26 382 0:33 0 3743:04 1:57 150:50 7.9 49 570 0:40 3/09/99 487 0:43 1:52 148:41 0 0 3979:04 6.7 38 292 0:28 1:41 243:06 512 0:29 3/10/99 0 3046:00 0 7.9 50 ____ SUMMARY 5742 0:18 2236 0:26 1:46 1321:22 0 0 ****:** 9.6 63

Arrivals

Abandons 40 %

Switch Name: FDC/HAMPDEN Date: 7:00 pm WED MAR 10, 1999 Skill: 46

Skill Name	: !BA .	AUTHOR	IZATIO	N		A	ccepta	able :	Service :	Level ·	30
		AVG		AVG	AVG	TOTAL	泰		TOTAL		% IN
	ACD	SPEED	ABAND	ABAND	TALK	AFTER	FLOW	FLOW	AUX/	AVG	SERV
DAY	CALLS	ANS	CALLS	TIME	TIME	CALL	IN	OUT	OTHER	(E) (E) (E) (E) (E)	LEVL
3/04/99	1185	0:22	479	0:31	2:08	190:16	0	0	4213:22	8.4	61
3/05/99	1805	0:05	.308	0:04	1:38	337:20	0	0	4299:43	11.3	84
3/06/99	2437	0:12	642	0:12	1:51	444:03	0	0	5592:29	13.2	73
3/07/99	2260	0:13	558	0:14	1:46	326:33	0	0	4830:14	11.5	74
3/08/99	1260	0:35	676	0:28	2:06	308:19	0	0	3743:04	7.9	48
3/09/99	1126	0:40	653	0:34	2:10	250:40	0	0	3979:04	6.7	44
3/10/99	890	0:30	472	0:32	2:16	162:13	0	0	3046:00	7.9	51
					-						
SUMMARY	10963	0:19	3788	0:22	1:55	2019:24	0	0	****:**	9.6	65

30%

BCMS SKILL REPORT

Switch Name: FDC/HAMPDEN Date: 7:01 pm WED MAR 10, 1999
Skill: 33

Skill Name	e: GA A	uthori	zation			A	ccepta	able :	Service 1	Level:	3.0
		AVG		AVG	AVG	TOTAL	161		TOTAL	7.7	% IN
	ACD	SPEED	ABAND	ABAND	TALK	AFTER	FLOW	FLOW	AUX/	AVG	SERV
DAY	CALLS	ans	CALLS	TIME	TIME	CALL	IN	OUT	OTHER		LEVI.
3/04/99	1248	0:27	61	0:42	1:57	330:04	0	0	4390:04	9.5	72
3/05/99	1521	0:14	37	0:20	1:58	353:48	0	0	6035:35	13.0	85
3/06/99	2388	0:20	130	0:34	2:10	550:16	0	0	6369:58	14.4	76
3/07/99	1748	0:14	66	0:30	2:08	432:16	O	Ö	4616:11	11.7	82
3/08/99	925	0:18	50	1:00	1:53	191:06	Ō		3835:19	8.4	81
3/09/99	856	0:26	57	0:53	1:54	125:16	Ō		4388:02	8.1	73
3/10/99	959	1:15	125	1:55	1:48	186:44	Ö		4198:39	8.9	53
										0.9	33
SUMMARY	9645	0:25	526	0:57	2:02	2169:30	0	0	****:**	10.6	76

6%

BCMS SKILL REPORT

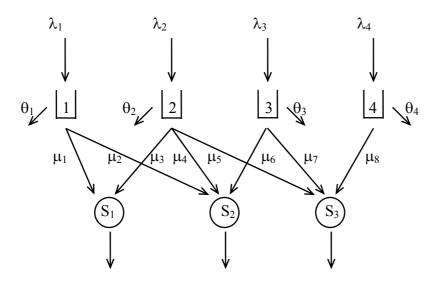
Switch Name: FDC/HAMPDEN Date: 7:02 pm WED MAR 10, 1999

An Introduction to Skills-Based Routing and its Operational Complexities

By Ofer Garnett and Avishai Mandelbaum Technion, ISRAEL

(Full Version)

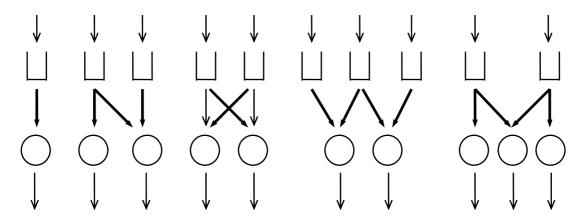
Contents:


- 1. Introduction
- 2. N-design with single servers
- 3. X-design with multi-server pools and impatient customers
- 4. Technical Appendix: Simulations the comutational effort

Acknowledgement:

This teaching-note was written with the financial support of the Fraunhofer IAO Institute in Stuttgart, Germany. The authors are grateful to Dr. Thomas Meiren and Prof. Klaus-Peter Fähnrich of the IAO for their assistance and encouragement.

Introduction


Consider the following multi-queue parallel-server system (animated, for example, by a **telephone call-center**):

Here the λ 's designate arrival rates, the μ 's service rates, the θ 's abandonment rates, and the S's are the number of servers in each server-pool.

Such a design is frequently referred to as a Skills-Based Design since each queue represents "customers" requiring a specific type of "service", and each server-pool has certain "skills" defining the services it can perform.

In the diagram above, the arrows leading into a given server-pool define its skills. (For example, a server from pool 2 can serve customers of type 3 at the of rate μ_6 customers per unit of time) . Some canonical designs are: I (I^k), N, X, W, M (V).

Major Decisions when implementing skills-based systems:

- 1. Who are the customers defining customer types (design, Marketing)
- 2. Who are the servers their skills and numbers (design, HRM, Op Mgt)
- 3. How are customers **routed** to servers (control, **Op Mgt, OR**)

A prerequisite for the above is a supporting

MIS / IT

Truly a multi-disciplinary challenge.

System's design (engineering) consists of

classifying the customers and determining the servers' required skills.

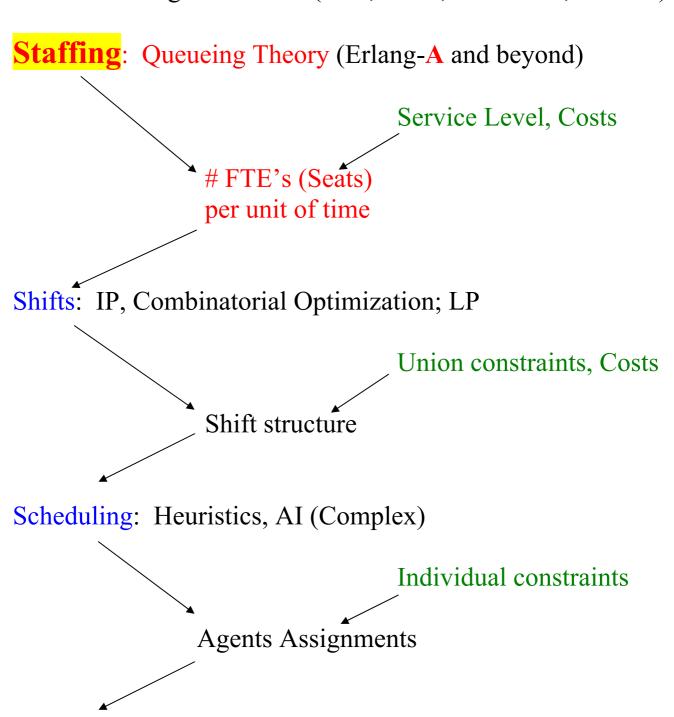
A particular design can have alternative interpretations, for example:

- Different customer types can represent customers requiring different services (e.g. **technical support vs. billing**) or customer priorities (**VIP vs. Members**).
- Separate server-pools can be due to servers' level of capability / training / experience (e.g. Hebrew/Arabic speaker vs.

Hebrew/Russian/English speaker, generalist vs. specialist, expert vs. novice).

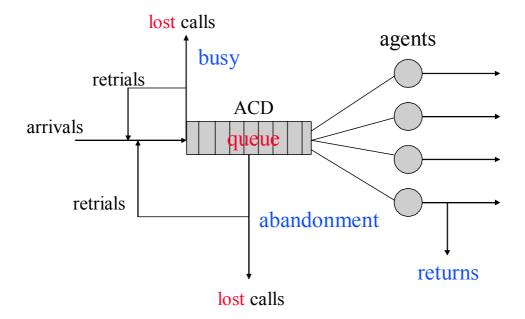
Skills-Based Routing:protocol for online routing of customers.

SBR: State of the art (Stolyar; Atar, Reiman)

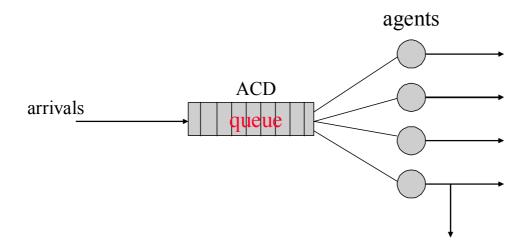

Complete (surprising) success for Efficiency-Driven services (e.g. email call centers): upon service completion, the server chooses the queue with the largest marginal waiting-cost per unit of service-time.

But well-managed telephone services are **not** (at least should not be) Efficiency-Driven: for these, SBR is truly challenging – an active research area.

Workforce Management = Staffing: Hierarchical Operational View


Forecasting Customers: Statistics, Time-Series

Agents: HRM (Hire, Train; Incentives, Careers)



Online Skills-based Routing: Stochastic Control (ongoing)

The Basic Call Center

Erlang-C = M/M/N

Tool: ErlangA @ 4CallCenters.com

Call Center	r iProfile	er™					
Performance P	rofiler	Staffing Profiler		<u>Settings</u>	Edit Acc	<u>ount</u>	Send Feedback
Performance Pro	ofiler Tool - Fi	nd out the Perfo	rmance Level	of your Call Cent	er.		
		/s you to determi s parameters beli	•	the Performance L	evel of your Call	Center.	
Number of Age	nts in your call	center	10 Ag	ents. <u>Features:</u> <u>Basic Inte</u>	None Selei <u>rval</u> : 30 Minutes		
Average Time to Handle one call (mm:ss) 1 <u>Target Time</u> : Not Defined.							
Number of Calls	s per 30 minute	ıs	100 Ca	ılls.			
Add To Table	Comp	oute					
Basic Interval	Number of Agents	Average Handling Time	Calls per Interval	Agent's Occupancy	Average Speed of Answer	Average Queue Length	ו
127	壁	¥	12	24	2	<u>u</u>	
- Current Resu	lt 🔲 - Sett	ings - Call	Center Parame	ters - Perfor	mance Indicators		
Copyright © 2000 4CallC	enters.com. All rig	hts reserved.					

What can be adrieved

Copy of Summary Interval . Order PK

Date: 7/7/97 SplivSkill: Order PK

	/ X X		7	3		#Aban	-	Calls	Staff	10 M				ď
Totals	:00:05	:00:28	10456	:03:47	:00:25	9*	63	8	2	149		80		-
12:00 AM*	:00:00	00:00:	26	:04:31	20:00	-	76	20	_	*	51	0	9	
12:30 AM*	:00:03	:04:10	7	:07:27	:00:33	-	88	S	٠s	က	48	,	26	83
Š.	00:00		ÇTO	04:54	:11:29	٥	<u>a</u>	6	-	۲	8	0	28	83
.₹			۵			o	0		0	0		S	0	O
.₹	00:00		7	103:21	90:49	0	2	5	~	N	Š	G	N	18
Z	00:00		27	:02:51	00:50	0	33	\$	4	0	8	, KO	(1)	82
*	00:00:		Ø	:03:34	:00:15	0	8	5	2	Ø	8	6	4	34
¥	00:00		83	:03:11	:00:34	0	8	5	8	ო	5	_	4	32
ż	90:00:		120	:03:37	:00:40	0	8	5	47	e	9	70	Ð	33
Z	9000		193	40.50	:00:14	o	44	5	.	m	5	2	~	3
<u>'</u>	10:00:		293	303.25	:00:25	0	Š	6	75	4	18	O	~	47
ż	:00:05	90:00:	381	:03:45	:00:25	CV	8	87	5	4	63	۵0	₩.	23
₹	:00:05	:00:01	418	:03:48	00:28	-	63	87	귏	Ą	98	vo	6 0	55
Ş	90:00		348	:03:35	00:33	þ	8	8	86	4	86	φ	60	¥
.₹	90.00		352	:03:60	:00:27	D	ξ	\$	102	m	\$	7	80	45
¥.	99		348	:03:44	:00:18	9	4	\$	20	4	8	ထ	W	₹
Š	10:00:		354	:03:69	:00:18	0	52	8	8	*	98	6 0	ND.	47
ž	00:00:		336	:03:38	:00:21	0	3	68	70	ო	8	O	E)	46
₹	00:00		8	:03:59	:00:32	0	2	2	88	4	8	Ξ	0	4
¥.	90,00		388	:03:52	41:00:	ø	20	8	8	4	8	=	~	S
Ž.	:00:01		893	:03:55	700:17	0	5	5	5	4	8	2	40	46
Z	90:00 00:00 00:00		403	03:58	:00:13	0	Į,	5	112	4	5	유	4	&
Ž.	00:00:	30:04	2	:04:02	:00:18	_	2	8	5	4	96	Φ	ιO	5
PM.	00:00		347	:03:28	100:14	0	8	5	5	CT)	50	۲	Ц	4
¥	00:00:		382	:03:48	:01:37	0	40	5	28	4	100	60	_	4
P.	00:00:		378	:03:41	00:19	0	82	8	æ	4	88	8	пD	3
Ž	00:00		411	:03:53	61:00	٥	Z	5	109	W	8	G	VO.	8
ž	9. 9.		387	:03:58	91:00:	0	20	8	8	4	66	5	ø	51
6:00 PM	00:01	:00:21	371	:03:28	:00:25	-	S	8	<u>.</u>	4	88	0	0	47
ż	00:00		8	:03:26	:00:13	O	4	5	8	(T)	<u>6</u>	₩.	4	6
.₹	9 6 6 6 7 8		289	:03:24	:00:	0	3	\$	8	60	8	ÇD.	ю	88

Rough Performance Analysis

Peak
$$10:00 - 10:30$$
 a.m., with 100 agents

400 calls

3:45 minutes average service time

2 seconds ASA = Average Speed of Answer

$$R = \lambda \times E(S)$$

= 400 × 3:45 = 1500 min./30 min.
= 50 Erlangs

Occupancy
$$\rho = R/N$$

$$\rho = R/N$$

$$= 50/100 = 50\%$$

- ⇒ Quality-Driven Operation (Light-Traffic)
- \Rightarrow Classical Queueing Theory (M/G/N)

Quality-driven: 100 agents, 50% utilization

⇒ Can increase offered load - but by how much?

Erlang-C	N=100	E(S) = 3:45 mi	n.
$\underline{\lambda}$ /hr	$\underline{ ho}$	$E(W_q) = ASA$	% Wait > 0
800	50%	0	100%
1000	62.5%	0	100%
1200	75%	0	99.7%
1400	87.5%	0:02 min.	88%
1500	93.8%	0:15 min.	60%
1550	96.9%	0:48 min.	35%
1580	98.8%	2:34 min.	15%

Efficiency-driven Operation (Heavy Traffic)

Intuition: at 100% utilization, N servers = 1 fast server.

99.1% 3:34 min.

$$W_{q} \approx W_{q} \mid W_{q} > 0 = \frac{1}{N} \cdot \frac{\rho_{N}}{1 - \rho_{N}} \cdot E(S) \rightarrow E(S) / \gamma$$

$$N(1 - \rho_{N}) \sim \gamma \qquad (\rho_{N} \rightarrow 1)$$

12%

1585

Changing N (Staffing)

]	E(S) = 3:45	
λ /hr	$\underline{\mathbf{N}}$	OCC	ASA	% Wait > 0
1585	100	99.1%	3:34	12%
1599	100	99.9%	59:33	0%
1599	100+1	98.9%	3:06	13%
1599	102	98.0%	1:24	24%
1599	105	95.2%	0:23	50%

=> New operational regime

Heavy traffic, in the sense that OCC > 95%;

Light traffic, 50% answered immediately.

Rationalized Operation: high service + efficiency levels

QED Regime = Quality- and Efficiency-Driven Regime

Enabler: Economies of Scale in a

Frictionless Environment (e.g. Call Center)

Rules of Thumb: Operational Regimes

$$\mathbf{R} = \lambda \times \mathbf{E}(\mathbf{S})$$
 units of work per unit of time (load)

$$(\%{\text{Wait}} > 0) \rightarrow 100\%)$$

$$N = \lceil R + \gamma \rceil,$$

$$\gamma > 0$$
 service grade

Quality-driven

$$(\%{\text{Wait}} > 0) \to 0)$$

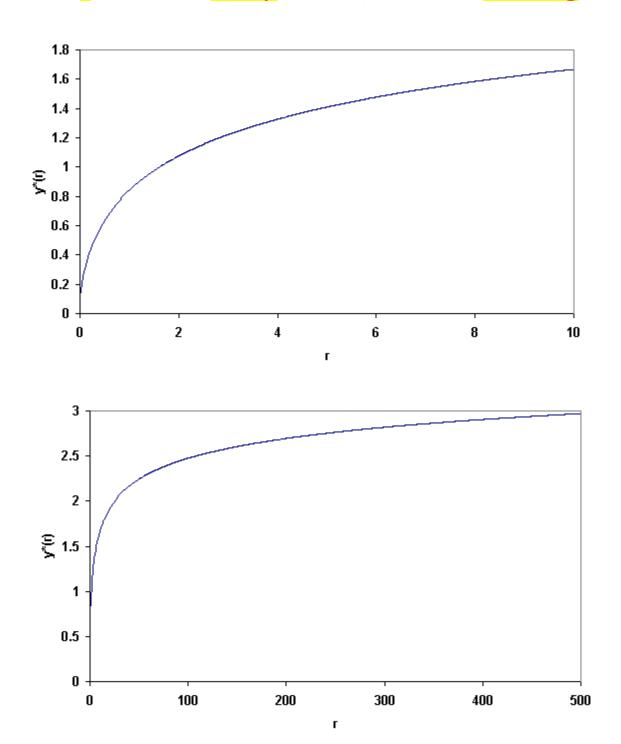
$$\mathbf{N} = \left\lceil \mathbf{R} + \delta \, \mathbf{R} \, \right\rceil,$$

$$\delta > 0$$

QED Regime

$$(\%{\text{Wait}} > 0) \rightarrow \alpha, \ 0 < \alpha < 1)$$

$$\mathbf{N} = \left\lceil \mathbf{R} + \beta \sqrt{\mathbf{R}} \right\rceil$$


$$N = \lceil R + \beta \sqrt{R} \rceil$$
, $\beta > 0$ $\sqrt{\cdot}$ Safety-Staffing

Determine Regimes (Strategy), Parameters (Economics)

Strategy: Managers, Agents (Unions), Customers

Economics: Minimize agent salaries + waiting cost

Square-Root Safety Staffing: $N = R + y^*(r)\sqrt{R}$ $r = \cos t \text{ of } \frac{\text{delay}}{\text{delay}} (1-800) / \cos t \text{ of } \frac{\text{staffing}}{\text{staffing}} (\text{salary})$

√ Safety-Staffing (QED): Overview

Simple Rule-of-thumb:
$$\mathbf{N}^* \approx \mathbf{R} + \mathbf{y}^* \left(\frac{d}{c}\right) \sqrt{\mathbf{R}}$$

Robust: covers also efficiency- and quality-driven

Accurate: to within 1 agent (from few to many 100's)

Relevant: Large call centers are QED

Instructive: In large call centers, extremely high resource utilization and service levels could **coexist**, which is enabled by **economies of scale** that dominate stochastic variability

Example: 100 calls per minute, at 4 min. per call

$$\Rightarrow$$
 R = 400, least number of agents

$$\frac{\Delta}{R} \approx \frac{y^*(r)}{\sqrt{R}} = \frac{y^*}{20}$$
, with $y^*: 0.5-1.5$;

Safety staffing: 2.5%-7.5% of Min R!

<u>Performance</u> :	N*	% wait > 20 sec.	Utilization
2.5%	400 + 11	20%	97%
7.5%	400 + 29	1%	93%

⇒ Forecsting R (workload) is the "real" problem

Relevance: QED Operation

6/13/00 - Tue

Time	Recvd	Answ	Abn	ASA	AHT	Occ %	On	On	Sch	3/00 - Tue Sch
			<mark>%</mark>				Prod%	Prod	Open	Avail
								FTE	FTE	%
Total	20,577	19,860	~3.0%	<mark>30</mark>	307	95.1%	85.4%	222.7	234.6	95.0%
8:00	332	308	7.2%	27	302	87.1%	79.5%	59.3	66.9	88.5%
8:30	653	615	5.8%	58	293	96.1%	81.1%	104.1	111.7	93.2%
9:00	866	796	8.1%	63	308	97.1%	84.7%	140.4	145.3	96.6%
9:30	1,152	1,138	1.2%	218	303	90.8%	81.6%	211.1	221.3	95.4%
10:00	1,330	1.286	3.3%	22	307	98.4%	84.3%	223.1	229.0	97.4%
10:30	1,364	1,338	1.9%	33	296	99.0%	84.1%	222.5	227.9	97.6%
11:00	1,380	1,280	7.2%	34	306	98.2%	84.0%	222.0	223.9	99.2%
11:30	1,272	1,247	2.0%	44	298	94.6%	82.8%	218.0	233.2	93.5%
12:00	1,179	1,177	0.2%	1	306	91.6%	88.6%	218.3	222.5	98.1%
12:30	1,174	1,160	1.2%	10	302	95.5%	93.6%	203.8	209.8	97.1%
13:00	1,018	999	1.9%	9	314	95.4%	91.2%	182.9	187.0	97.8%
13:30	1,061	961	9.4%	67	306	100.0%	88.9%	163.4	182.5	89.5%
14:00	1,173	1,082	7.8%	78	313	99.5%	85.7%	188.9	213.0	88.7%
14:30	1,212	1,179	2.7%	23	304	96.6%	86.0%	206.1	220.9	93.3%
15:00	1,137	1,122	1.3%	15	320	96.9%	83.5%	205.8	222.1	92.7%
15:30	1,169	1,137	2.7%	17	311	97.1%	84.6%	202.2	207.0	97.7%
16:00	1,107	1,059	4.3%	46	315	99.2%	79.4%	187.1	192.9	97.0%
16:30	914	892	2.4%	22	307	95.2%	81.8%	160.0	172.3	92.8%
17:00	615	615	0.0%	2	328	83.0%	93.6%	135.0	146.2	92.3%
17:30	420	420	0.0%	0	328	73.8%	95.4%	103.5	116.1	89.2%
18:00	49	49	0.0%	14	180	84.2%	89.1%	5.8	1.4	416.2%

Operational Aspects of Impatience

The "fittest" survive and wait less — much less!

Recall earlier Q, E and QED Scenarios (E(S) = 3:45):

$\underline{\lambda}$ /hr	$\underline{\mathbf{N}}$	OCC	ASA	$\%$ Wait ≤ 2 sec
1599	100	99.9%	59:33	1%
1599	105	95.2%	0:23	51%
1600	100	100%	<u>infinity</u>	0%
		BUT	with	Impatience
				%Abandonment
1600	100	97.3%	0:23	2.7 %
1600	<mark>95</mark>	98.4%	0:23	6.5%
1800	105	97.7%	0:23	3.4%

QED with **Impatient** Customers:

Erlang-A: Theoretical performance analysis

Free Internet implementation (4CallCenters.com)

Theorem (Halfin-Whitt '81; Garnett, M. and Reiman '02):

Consider a queue attended by N servers, N "large".

Then the following **points of view** are equivalent:

$$%{\text{Wait}} > 0 \approx \alpha$$

$$0 < \alpha < 1$$
;

• Customers
$$\%$$
{Abandon} $\approx \frac{\gamma}{\sqrt{N}}$,

$$0 < \gamma$$
;

$$OCC \approx 1 - \frac{\beta}{\sqrt{N}}$$

$$-\infty < \beta < \infty;$$

$$N \approx R + \beta \sqrt{R}$$

• **Managers**
$$N \approx R + \beta \sqrt{R}$$
, $R = \lambda \times E(S)$ not small;

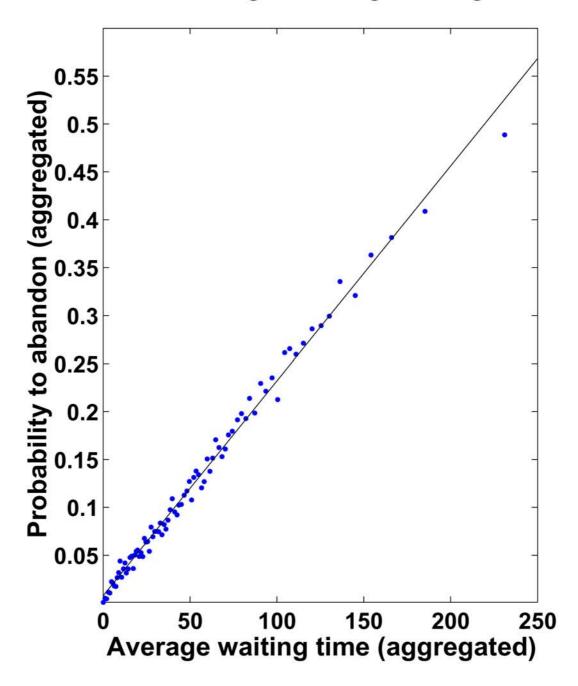
QED performance (ASA, ...) is very easily computable, all in terms of β (the square-root safety staffing level).

Covers also the Extremes:

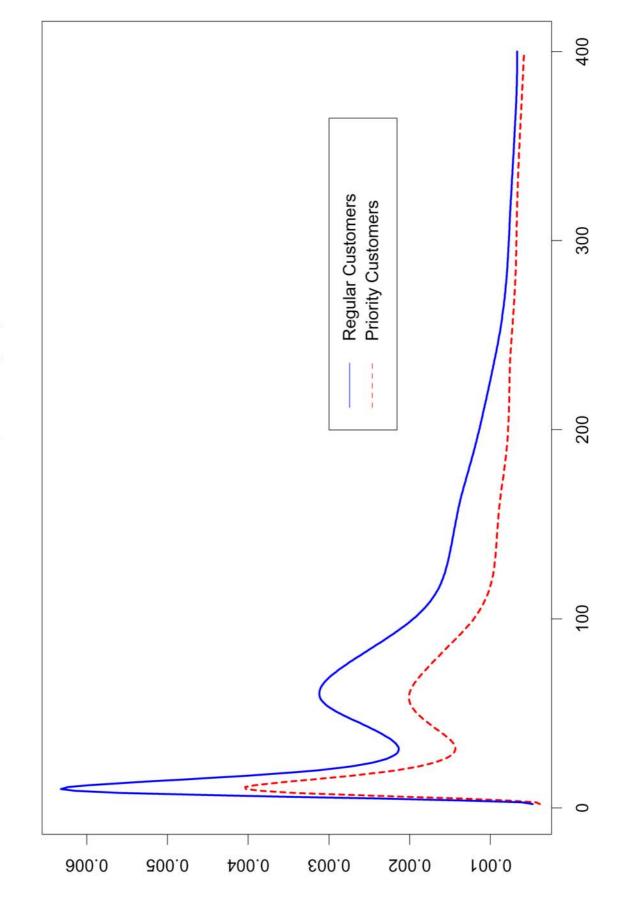
$$\alpha = 1$$
 : $N = R - \gamma R$

Efficiency-driven

$$\alpha = 0$$
 : $N = R + \gamma R$


Quality-driven

Laws of Congestion: Patience


Censored Sampling, or equivalently (under exp)

%(Abandon) = E(Wait) / E(Patience)

Fraction Abandoning vs. Average Waiting Time

Hazard Rate: Empirical (Im)Patience

Abandonment Important

- Lost business (now)
- Poor service level (future losses)
- 1-800 costs decrease (out-of-pocket vs. alternative)
- Self-selection: the "fittest" survive and wait less
- Must account for (carefully) in models and measures
 - Otherwise wrong picture of reality
 - Misleading performance measures
 - Unstable models (vs. Robustness)

But Abandonment also Interesting & Challenging

- Queueing Science (Paradigm: experiment, measure, model, validate)
- Research: OR + Psychology + Marketing
 (Modelling: steady-state, transient, equilibrium)
- Scope of Applications
 - VRU/IVR: opt-out-rates
 - Internet: business-drivers (60% and more)
 - Call Centers: customer-centric performance measures

Staffing the "Modern" Basic Call Center

Erlang-C $N \approx R + y\sqrt{R}, \quad y > 0$

Erlang-A Abandonment, with $-\infty < y < \infty$

Time-Varying y(t) varies with time, over Finite Horizon

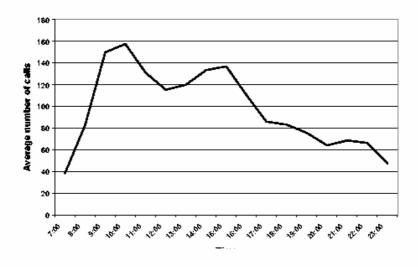
General Service Time

And Beyond (conventional Q-Theory):

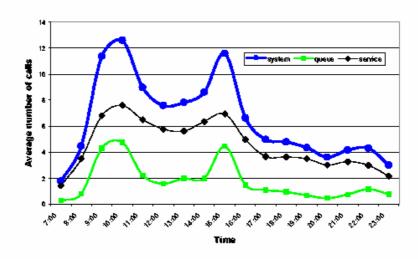
Skills-Based Routing

Networked (Virtual) call centers

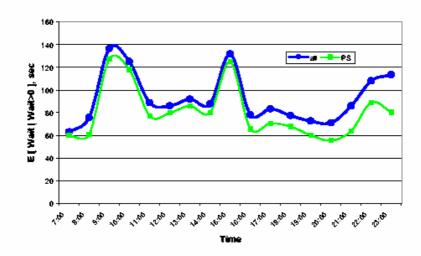
Human Factors (e.g. Information, Learning)

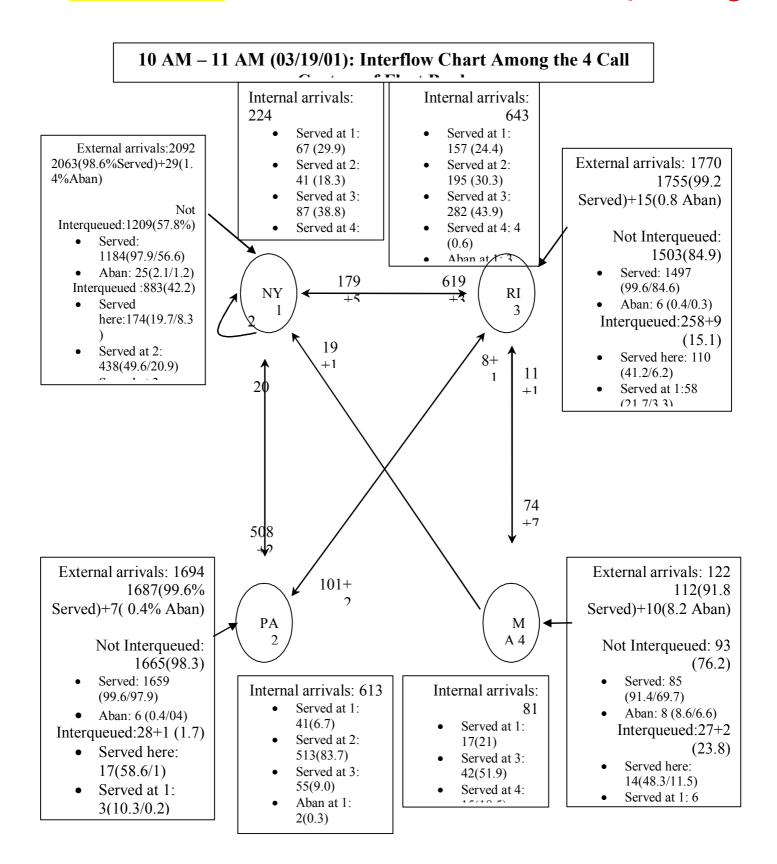

Forecasting

Economics


Paradigm: Theory + Real Data + Experiments =
 Multi-Disciplinary Queueing Science, in
 Support of Service Engineering

Finite-Horizon Queues: Predictable Variability


Arrivals


Queues

Waiting

Distributed Call Center: Simultaneous Queueing

Service Engineering (and Management) – A Tentative Syllabus

(November 2002; Previous versions: http://ie.technion.ac.il/serveng)

1. Introduction: Services (vs. Manufacturing), Service Engineering (vs. Science, Management)

- Service Nets = Queueing Nets.

HW: Read "Production Line Approach to Services", by T. Levitt, HBR, 1972.

HW: Read selected sections of the Review on Call Centers, by Gans, Koole and M, 2002.

HW: Read on the Service Economy, and on Services in General.

Rec: Rules of the game (e.g. Group work); Logistics (e.g. computer accounts).

2. The First Prerequisite: Measurements

- Measures of Performance;
- Transaction-based Data: Call Center, Bank Branch, Internet Site;
- Modeling a Service Station over a Finite Horizon: Empirical (Fluid) Models.

Rec: Bank KeyCorp Video (SEMS = Service Excellence Measurement Systems).

HW: Capacity Utilization, Inventory Buildups, Bottleneck Analysis, Little's Law

HW: Read, Prepare "Improving the N.Y. Arrest to Arraignment System", by R. Larson, 1993.

HW: Read, Prepare "Modeling Court Delays", by S. Flanders, Law and Policy, 1980.

3. The Second Prerequisite: Models

- The Processing Network Paradigm (BPR): Dynamic Stochastic DS/PERT Networks; Project Management; Product and Service Development;
- The Operational Sources of Congestion: Scarce Resources, Synchronization Gaps.

Rec: Forecasting demand (workloads).

HW: Forecasting workload for a call center.

HW: Read on New Service Design and Development

4. Deterministic (Fluid) Process Models of a Service Station, Part 2: Networks

- Lindley's and Skorohod 's representations;
- Transient Analysis: rush hour; Fluid Approximations (e.g. a call center);
- Bottlenecks in steady state the Traffic Equations;

Rec: Descriptive models of a face-to-face service in a bank.

HW: Descriptive models of a telephone call center

5. Demand: Dynamic Randomness (The Poisson Process)

- Scaling and centering of data: the framework of Levy Processes; (the Brownian Motion).
- Poisson Processes: Predictable and stochastic variability; PASTA, Biased Sampling.

Rec: Statistical analysis of arrivals to a bank (face-to-face) service

HW: The cost of Stochastic Variability – Biased Sampling

6. Service Durations and Customer Patience

- Job Design (IE, HRM); The effect of service-durations on performance.
- Human Factors (Psychology): The effect of abandonment on performance.
- Review: Markov Jump-Processes (mainly Absorbing);
- Hazard Rates: a dynamic characterization of a distribution.

Rec: AT&T CAPS Video of support tools for call centers. Review and Preview of HW.

HW: Statistical analysis of a bank call center (Arrivals, Services, Abandonment).

HW: Read "The Psychology of Waiting Times", D. Maister, 1985.

7. A Service Station in Steady State: Markovian Models

- Modeling a Service Station in Steady-State: Stochastic (Birth & Death) Models
- Multi-server queues (Erlang-B, C, A; Ample Servers)
- Human Factors: Impatience, Slow Servers; Ancillary Activities

Rec: Review Markov Jump-Processes (mainly Ergodic)

HW: Theoretical Analysis of (Markov Jump-Process Models for) Service Operations

8. A Service Station in Steady State (Continued): G/G/. Queues

Laws of Congestion

- The Cost of Variability continued (M/M/. vs. M/D/; Appointments/Reservations)
- Congestion/Accessibility Curves trading-off (operational) service-quality vs. efficiency
- The first Laws of Congestion

Rec: Solution of Theoretical Analysis

HW: GazolCo' Call Center

9. Workforce Management: Staffing

- Regimes of Operations: Quality-Driven, Efficiency-Driven, QED
- Economies of Scale
- Ample-Server Heuristics: Stationary, Time-Varying
- Dimensioning Medium to Large Service Operations

Rec: The Queueing Inference Engine (QIE) - Larson, and Network Extensions

HW: Staffing a Call Center: Small (Israel), Medium (Italy), Large (U.S.A.)

HW: Read sections in Call Center Review Paper

10. Service Networks

- Design, Control (Jackson Nets; QNA = Non-Parametric Jackson Nets)
- Process and Organization Design: Pooling (Specialization vs. Flexibility)
- Priorities: exact and approximate analysis

Rec.: Compromises in modeling: Pronto (Anonymous) Pizza.

HW: Hand <u>out</u> FINAL PROJET = Simulation + Analysis of a Q-NET

HW: Introduction to Skills-based Routing and its Operational Complexities

HW: Prepare Nations-Bank Case

HW: Read sections in Call Center Review Paper

11. Customer Relations Management; Skills-Based Routing

- Skills-based routing: teaching note
- Skills-based routing: efficiency-driven and QED
- CRM: Marketing and/or MIS perspective, or

(See Chapter 6 in Hope and Muhlemann, for a chapter on the interface with Marketing, in the context of Service Design).

Rec.: QDF, and other tools from Marketing Engineering

WH: Nations Bank Analysis

12. Revenue Management; Pricing

- Life-time value of customers; guarantees
- Field support, Technical support

13. Design and Development of New Service (Processes)

14. Quality Management; HRM; Designing the User Interface

- Design of the Intangibles (Emotions, Culture,...) The Psychological Cost of Delay Or Selection, Training, Incentives
- Introduction to Human Resource Management/Engineering (See Chapter 3 of Voss, Armistead, ... for a Chapter on HRM in the context of Operations) HW: AT&T Universal Card (HBS Case, on Over-Measurements and Incentives)

15. Service Technology and Automation: at the User Interface and Within

- The "New-Age" Industrial Engineer, as manifested in Banking
- E-Commerce; Tele-Marketing;
- Multi-media (Contact) Centers

16. Supply-Chain Management; The Service Value-Chain

17. Specialized Service Sectors:

- Banking, Insurance, Healthcare, Public

18. Functional Interfaces:

- Human Resources Management (Incentives, Hiring, Training)
- Consumer Psychology (Psychology, Marketing)
- Marketing Interface: CRM, New Products and Processes, Techniques (QFD,...)
- MIS (Self-Service)
- Industrial Engineering: Ergonomics, Service Efficiency (DEA),...

The Future: Research, Teaching, Practice

Research

Multi-Disciplinary
IE/OR/OM, Marketing, HRM, MIS

Teaching

Advanced courses, leading ultimately to Core

Data-Based ("Data = The Language of Nature")

Syllabus for an "Introduction to Service Engineering"?

Research- and Case-Based

Practice

Increased professionalism (Outsourcing)

A profession: Service Engineering

Who, Where: Engineering vs. Business Schools

END OF LECTURE

QED: √ Safety-Staffing

$$N = R + \beta \sqrt{R}$$
 β = "service-grade" > 0
= $R + \Delta$ $\sqrt{\cdot}$ safety-staffing

$$R = \lambda \times E(S)$$
 Offered load (Erlangs)

Expected Performance (trivial to calculate):

% Delayed
$$\approx P(\beta) = \left[1 + \frac{\beta \phi(\beta)}{\varphi(\beta)}\right]^{-1}, \quad \beta > 0 \approx \text{Erlang-C}$$

Customer's Wait
$$= E\left[\frac{\text{Wait}}{\text{E(S)}}\middle| \text{Wait} > 0\right] = \frac{1}{\Delta}$$
 ASA

$$% \left\{ \frac{\text{Wait}}{\text{E(S)}} > T \mid \text{Wait} > 0 \right\} = e^{-T\Delta}$$
 TSF

Agent's Utilization =
$$\frac{R}{N} \approx 1 - \frac{\beta}{\sqrt{N}}$$
 Occupancy

Strategy: Sustain Regime through Pooling

Base case: M/M/N with parameters λ , μ , N

Economies of Scale

Scenario: $\lambda \to m\lambda \ (R \to mR)$

	Base Case	Efficiency-driven	Quality-driven	Rationalized
Offered load	$R=rac{\lambda}{\mu}$	mR	mR	mR
Safety staffing	٥	◁	Δm	$\sqrt{m} \sqrt{m}$
Number of agents	$N = R + \Delta$	$mR + \Delta$	$mR + m\Delta$	$mR + \sqrt{m}\Delta$
Service grade	$eta = rac{\Delta}{\sqrt{R}}$	$\frac{eta}{\sqrt{m}}$	$eta\sqrt{m}$	$[\beta]$
$Erlang-C = P\{Wait>0\}$	P(eta)	$P\left(\frac{\beta}{\sqrt{m}}\right) \uparrow 1$	$P(\beta\sqrt{m})\downarrow 0$	B(eta)
Occupancy	$\rho = \frac{R}{R + \Delta}$	$\frac{R}{R+\frac{\Delta}{m}} \uparrow 1$	$\rho = \frac{R}{R + \Delta}$	$\frac{R}{R+\frac{\Delta}{\sqrt{m}}}\uparrow 1$
$ASA = E\left[\frac{Wait}{E(S)} \middle Wait > 0\right]$	$\frac{1}{\Delta}$	$\left[rac{1}{\Delta} = ext{ASA} ight]$	$\frac{1}{m\Delta} = \frac{\mathrm{ASA}}{m}$	$rac{1}{\sqrt{m\Delta}}=rac{ ext{ASA}}{\sqrt{m}}$
$TSF = P\left\{\frac{Wait}{E(S)} > T \mid Wait > 0\right\}$	$e^{-T\Delta}$	$e^{-T\Delta} = TSF$	$e^{-mT\Delta} = (\mathrm{TSF})^m$	$e^{-\sqrt{m}T\Delta} = (\text{TSF})^{\sqrt{m}}$

PATIENCE INDEX

• How to Define? Measure? Manage? (Israeli Data Base)

<u>Statistics</u>	Time Till	<u>Interpretation</u>
360K served (80%)	2 min.	? must = expect
90K abandon (20%)	1 min.	? willing to wait

"Time willing to wait" of served is **censored** by their "wait".

"Uncensoring" (simplified)

Willing to wait
$$1 + 2 \times \frac{360 \text{K}}{90 \text{K}} = 1 + 2 \times 4 = 9 \text{ min.}$$

Expect to wait
$$2 + 1 \times \frac{90 \text{K}}{360 \text{K}} = 2 + 1 \times \frac{1}{4} = 2.25 \text{ min.}$$

Patience Index =
$$\frac{\text{time willing}}{\text{time expect}} = 4 = \frac{\text{# served/wait} > 0}{\text{# abandon/wait} > 0}$$

$$\uparrow \qquad \qquad \uparrow \qquad \qquad \uparrow$$
definition measure

• Supported by ongoing research (with Brown, Haipeng, Zhao).

Designing Call/Contact Centerswith Impatient Customers:

10 Years History, or A Modeling Panorama

- 1. Kella, Meilijson: Practice ⇒ Abandonment important
- 2. Shimkin, Zohar: No data ⇒ Rational patience in Equilibrium
- 6. Carmon, Zakay: Cost of waiting \Rightarrow Psychological models
- 7. Garnett, Reiman: Palm/Erlang-A to replace Erlang-C/B as the standard Steady-state model
- 8. Massey, Reiman, Rider, Stolyar: Predictable variability ⇒

 Fluid models, Diffusion refinements
- 9. Ritov, Sakov, Zeltyn: Finally Data \Rightarrow Empirical models
- 10. Brown, Gans, Haipeng, Zhao: Statistics ⇒ Queueing Science
- 11. Garnett, Atar, Reiman: Skills-based routing ⇒ Control models
- 12. Nakibly, Meilijson, Pollatchek: Prediction of waiting ⇒

 Online Models and Real Time Simulation
- 13. Garnett: Practice \Rightarrow 4CallCenters.com