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3.1 Introduction

The goal in this part is to establish strong approximations for a family
of open queueing networks. We cover, in particular, nonparametric Jack-
son networks. These are the classical open Jackson queueing networks, but
without the parametric assumnptions of exponential interarrival and service
times (Section 2.5.2 of Part I). The basic results are Functional Strong
Approximations {FSAT, Theorem 3.4.1) and a Functional Law of [terated
Logarithm (FLIL, Theorem 3.4.2}). These readily imply fiuid approxima-
tions, fermalized by a Functional Strong Law of Large Numbers {(FSLLN,
Corollary 3.4.3}, and diffusion approximations, formalized by a Functional
Central Limit Theorem (FCLT, Corollary 3.4.4}.

Our approach entails representing performance measures of interest, for
example queue-length, as transformations of primitives, for example in-
terarrival and service times. These transformations furn cut to be Lips-
chitz continuous, Thus linzit theorems and approximations of the primi-
tives, specifically PSAT s, FSLLN’s and FCLT"s, carry over to the desired
performance measures, and with the same order of error.

In the literature, the prevalent justifications for fluid and diffusion ap-
proximations have been FSLLN’s and FCLT s. Strong approximations pro-
vide a framework which is conceptually different and, whenever applicable,
it is in our opinion also superior: the framework is simple and direct - one
first derives strong approximations, without any explicit rescaling; it uni-
fies the classical FSLLN’s, FLIL’s and FCLT’s - and these theorems, which
are magnifying by-products of the approximations, reveal further insight;
the framework also enables quantification of errors, in a way that is visibly
monotone in the assumptions on the primitives - as moments of higher order
are agsumed finite, the better the approximation; finally, the mathemati-
cal toll for making strong approximations rigorous is more-than-minimal
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moment-conditions on the primitives - but as far as current applications
are concerned, this toll seems negligible.

3.2 The Model

3.2.1 Primitives and Dynamics

Our queueing network consists of K service stations, indexed by k£ =
1,.-+, K. Each station k constitutes a server, calied server k, and a queue,
called queue k. Server k is dedicated to serving customers waiting in gueue
k. After being served, customers either leave the network or rejoin one of
its queunes in anticipation of additional service.

The network’s dynamics are described in terms of the following vector
primitives, the coordinates of which are all integer-valued: & K-dimensional
nonnegative vector Z (00}, and a sequence of K-dimensional RCLL vector
processes F* = {F*(t),t = 0}, k == 0,1,..., K. The kih coordinate of
Z{0y, 2,0}, represents the number of jobs initially at station k. The kth
coordinate of FY(t), FP(t), indicates the accumulated number of exogenous
arrivals to station k up to time t. For j, k = 1,..., K, with j 5 k, the jth
coordinate of F*(s), Ff(s), models the number of service completions at
station k, which switch directly to station j during its first s units of busy-
time; the negative of the kth coordinate, —FF{s), k = 1, K, stands
for the total number of departures (service completions minus immediate
feedbacks) from station k during its first s units of busy time.

The sample paths of the flow processes FY, FF, j # k, and ~FF are
assumed to be nondecreasing, all with F¥{0) =0,k =0,..., K. Adding the
assumption that —F) has only unit jumps suffices to guarantee existence
of the gqueue length process Z == {Z(t},t > 0} and the busy lirme process
B = {B(#),t = 0}. They are implicitly defined as the unique solutions to
the flow-balance relation

K
Z(t) = Z(0) + FO(t) + > FHBi(t)], (3.1)
Jpmal

subject to the work-conserving constraints
:
B (t) = / 1{Zk{s) > 0]ds, k=1..,K (3.2)
o

{Note that Z(¢) > 0 must hold at all ¢ > 0.)

8.2.2 Underlying Assumptions and Parameters

The primitives Z(0) and F* k=10,..., K, are defined on a common prob-
ability space and, strictly for convenience, they are taken to be mutually
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independent. For k = 0, ..., K, we assume that there exist K-dimensional
nonnegative vectors of, K % K covariance matrices I'*| K-dimensional mu-
tually independent standard Wiener processes W* = {W*{1),¢t > 0} such
that

FSAT: sup [FM) —oft — (T2 W) = o(T7), as T 1 00,(3.3)

0<t<T
for some scalar r > 2. It is further assumed that the K x K matrix
lal, ..., af] has the form

[l ...,a®] = [P" ~ INdiag(u), (3.4)

where F is a K x K substochastic matrix with spectral radius less than
unity, and p is a positive K-dimensional vector.

One interprets ag, the kth coordinate of o, as the long-run average rate
of exogenous arrivals to station k; p, the kth coordinate of u, as the long-
Tun average potential rate of service completions from station k; out of
these completions, a long-run average fraction pjx, the (4, k)th component
of P, switch directly to station k. We refer to ° and p as the arrival and
service rates, and to P as the fransition matrix.

For later use we record that Strassen’s FLIL for the Brownian motion
(prior to (1.7} in Part I), applied to W* in (3.3}, vields

FLIL: sup |F*t) - o*t| = O(\/TloglogT), ssT oo, (3.5)
o<t<T

fork=0,.., K.

3.2.5 Nonparametric Jackson Networks

Our framework, in particular FSAT (3.3} and FLIL (3.5), covers nonpara-
metric open Jackson queueing networks (Section 2.5.2 in Part I). Here the
flows are constructed from lower-level primitives, which constitute the fol-
lowing mutually independent K-dimensional entities: an arrival process A,
a service process S and a routing sequence £ = {£8{(£).f = 1,2,..-}.
The kth component of A, 4p = {Ai(t},t = 0}, is a renewal process
that models exogenous arrivals to station k. The kth component of §,
Sk = {Sk(u),u > 0}, is a renewal process that models service completions
from station k: Si(u) represents the number of service completions by server
k during its first u units of busy-time. Finally, £% = {¢5(£),¢ = 1,2, -- -3
models the routing mechanism enforced at station k: its jth component
£7{£) is the indicator of the event that the fth customer served at station
k, upon completion of its service, is routed directly to quene 7,7 =1, - -, K.
{(Formally, £ ;“ (£) equals 1 when the event that it indicates occurs and 0 when
it does not.) To ease the notation introduce
n
Ry =318 — €], n=0,1,2,..., (3.6)

£=1
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for k= 1,..., K, and denote its coordinates by R;?(t), k=1, K, e* ig
the K-dimenstonal kth unit vector, k = 1,..., K. The connection with the
model in Section 3.2.1 is revealed through

FO(ty = A(), (3.7}
FEty = RF[S ()], k=1,.. K, (3.8)

at all ¢ > 0.
Consider station k, k = 1, ..., K. We assumne that the renewal processes

Ay and S; are constructed from L.i.d. intervals with finite moments of order
r, for some r > 2. Then FSAT’s can be proved, that establish a probability
space, supporting independent standard Wiener processes W%, kb =, ..., K,
for which (3.3) holds. The parameters o and I'* emerge from elementary
calculations that we now outline.

Let the mean service time at station k be 1/u4, and denocte its squared
coefficient of variation by ¢f; the corresponding parameters for the exoge-
nous interarrival times are 1/a% and ¢ff. A FSAT for the renewal process
Aj; then takes the form

sup |A;(t) — aft — aJcf W) = o(TY™), asT 1 oo,
0T

and the independence of 4;, 7 = 1,..., K, yields (3.3) for £ = 0, with
means of = (af) and covariance matrix

I% =afefb, j4=1,... K (3.9)

Similar FSAT’s apply to each S, with asymptotic mean p; and variance
picy . They are cornbined with FSAT’s for sums of i.i.d. vectors, as in (3.6),
to FSAT’s for compound renewal processes, as in (3.8}. The asymptotic
means and covariances are calculated as follows.

Let r5(£), 1 = 1,2,..., denote the summands of R* in (3.6). By Wald's
identities,

EFF@)] = BS«(0] B,
CovlF* ()] = E[Sk(t)] Covlr®(1)] + Var[S(t)] Elr* (DI E[F*(1)]'.
Based on the multinomial distribution of the £%(¢)'s,

Efri(1)] = prj— bk
Covlrk(1), vk(1)] Covigh(1), £5(1)] = pry (852 — Pre) -

Finally, the asymptotic covariance of FF, T = [F?ﬂ, comes out $o be

U% = pepi; (650 = pre) + ek (Drg — x5} {pre — 8re) ) §,€=1,... K(3.10)
fork=1,...K.
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3.3 Preliminaries

We briefly recall some concepts and results {(from Part I), which are used
in the sequel

5.8.1  Traffic Equations and Bottlenecks

The effective arrival rate vector X is the unique solution to the (nonlinear)
traffic equations

A=a + PUAA L) (3.11)

Its kth coordinate, Ay, represents the long-run average arrival rate to sta-
tion & {see Section 2.4 of Part I}. The quantity pp = Ap/ps is called the
traffic intensity at station j. Station k is a nonbottleneck if py, < 1, bai-
anced bottleneck if pp = 1, and strict bottleneck if p; > 1. Denote by
a={k:pp <1}, b=1{k:py =1}, and ¢ = {k : pp > 1}, the set of
nonbottlenecks, ballanced bottlenecks and strict bottlenecks respectively.

3.3.2 The Oblique Reflection Mapping

Let D be the set of K-dimensional RCLL (right-continuous and with
left limits) functions, and let D = {z € DX : z(0) > 0}. Let P be a
K x K nomnegative matrix with spectral radius sirictly less than unity.
The oblique reflection mapping (Section 2.2 of Part 1) is characterized in
terms of

Theorem 3.3.1 For any X € DI there exists a unique pair of (Y, Z)
DEX satisfying at all ¢ = 0

Z(t) = X(8) + [T - PY() > 0, (3.12)

dY(t) >0, Y(0)=0, and (3.13)

fwzk(t)m(t):o, k=1, K (3.14)
]

Introduce the mappings ¥ = ¥p(X) and Z = ®p(X). Then ¥p and $p
are both Lipschitz continuous on DE {with respect to the uniform norm on
compact subsets of [0, oc)). Furthermore, ¥ = ¥p(X) is the least among
the ¥Y’s that satisfy (3.12) and (3.13).

Remarks:

(1) Y = ¥p{X) also has a fixed-point characterization. It uniquely satisfies

Y{t)= sup [P'Y{s)~ X(s)]", t=>0.

0<e<t

{See Harrison and Reiman (1081).)
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" (2) When the dependence on P is obvious, we write ¥ and ® instead of
\PP and (I’P.

3.5.8 Reflected Brownian Motion on the Orthant

Let X be a K-dimensional Brownian motion, starting at x = X(0) > 0,
with drift vector # and covariance matrix I". The process Z = {Z(t),t = 0},
whose sample paths are determined by Z = $p(X), is known as a Reflected
Brownian motion on the nonnegative K-dimensional orthant. It will be
denoted by Z = RBM.,{0,T'}). The process Y = {Y(#),4 > 0}, with sample
paths ¥ = ¥p(X}, is called the regulator of RBM,{8,T).

The process RBM_{6.T), = > 0, is a diffusion process {strong Markov
process with continuous sample paths). The kth coroponent Yy of its reg-
ulator Y is its local time on the orthant's face {z > 0: 2 = 0}
Remarks:

(1) We believe that RBM is Harris recurrent if and only if [I — P/]=16 < G.
It has been proved that RBM is positive recurrent if and only if the inequal-
ities are all strict, in which case RBM enjoys a unique stationary/limiting
distribution with a density.

(2} Suppose that [I — P1719 < 0 and that Pi, = 0, k = 1, ..., K. Under
the structural constraints

0Tk = —(PiTii + PieTy5)  for  j#k, (3.15)

the stationary density has the product-form
K
Flz) = H nre” e 7w {2z, .., 21) >0, (3.16)
k=]

where n == () is given by
n = —diag(I)~ 1[I — P19 (3.17)

Thus, at stationarity or in the limit, Z with {3.15) has independent coor-
dinates, the kth one being exponential with mean 1/m. (The constraints
{3.15) are necessary and sufficient for the product form (3.16).)

3.4 The Main Results

We start with FSAT in Section 3.4.1 and FLIL in Section 3.4.2. These
imply fluid approximations in Section 3.4.3 and diffusion approximations
Section 3.4.4.
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3.4.1 Functional Strong Approzrimations
Theorem 3.4.1 Suppose that the primitives satisfy the FSAT (3.3} with
r > 2. Then

sup |Z(t) - Z(t)| = o(T""), asT 1 o0, (3.18)
0<e<T

where Z is the queue length process in (3.1)-(3.2), Z = RBMz0y(6,T)
given by

Z=X+[I-PY, (3.19)
X(t)=Z{0)+60t+TY2 W(t), t=0, (3.20)
8 =o'+ [P~ Iy, (3.21)

K
=T%+% (px A1JT*, (3.22)

k==l
V=&p(X), . (3.23)

and W is a K-dimensional standard Wiener process. In {3.18} we can choose
r=rifr <4and any v < 4 when r > 4.

Remarks:

(1) For r > 4, the bound of the FSAT (3.18) can be improved as follows:

sup {Z(t) ~ Z(1)] = O((Tloglog**(logT)*/?) as T 1 oo.
0<t<T

[This can be justified by taking g{T"} = 5{logT)*/? in (3.54) and (3.55),
in the proof of the theorem.] A stronger result would be that {3.18) holds

with 7' = r, r > 2, (regardless of whether r < 4 or r > 4). We are not sure,
however, whether such a result actually holds.

(2} Let I{t) = et — B(t) represent curnulative idle time, where e is a vector
of ones. Then

sup |I(t) — diag(p) 'Y ()| = o(T/™).
0<t<T

{(3) The theorem is specialized in Section 3.5 to nonparametric Jackson
networks, with I" expressed in terms of arrival and service rates, transition
probabilities and various coefficients of variations.

(4} Consider a queueing network without bottlenecks, namely b = ¢ = §.
This is equivalent to p < e, in which case

p = diag(u) 7 — P/ a’
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Now p < e if and only if [I — P/]7*¢ < 0, for 8 in (3.21). Thus, Z has a
unique stationary /limit density. Under (3.15), this density has the product
form {3.6) with

L 2u(1 — pi)

. k=1, K.
Trk

(5} We believe that, in general, Z.is positive recurrent, 2y, is null recurrent
and Z, is transient.

8.4.2  Functional Lows of the Iterated Logarithm
Theoren: 8.4.2 Suppose that FLIL {3.5) is satisfied. Then, as T' T o

Oiug Z(t) — Z(t)} = O(y/TloglogT, (3.24)
Diltlp [B(t) - {p Aejtl = O(\/TloglogT), (3.25)

where Z and B are, respectively, the quene and busy $ime processes in (3.1)
and (3.2},

Z=X+[-PY, {3.26)
Xty = Z{0) + 61, {3.27)
Vo= @(X), (3.28)

and @ is as in {3.21).

Remarks:

(1) The deterministic processes Zx, k = 1,..., K, represent buffer contents

of the linear fluid network (o, P, 1), with initial inventory level Z(0), as
introduced in Section 2.4 of Part I, and described in Theorem 2.4.4 there.

(2} The approximations (3.24}-(3.25) still prevail with Z being buffer con-
tents of the same linear fluld network (o, P, u), but with Z(0) = 0. [cf.
Lemma 2.4.5] Then Z(t) = [A — u]*t, where X is the effective arrival rate
{see Remark 2 that follows Theorem 2.4.4 in Part I).

3.4.8 FSLLN’s and Fluid Approzimations
Recall the “bar” notation

Z”(t):%Z(nt) and B"(t}:%ﬁ(nt)

The following FSLLN is an immediate consequence of Theorem 3.4.2,

S

3. Stochastic Networks, Part II; Strong Approximations 115

Corollary 3.4.3 (FSLLN) Under the assumptions of Theorem 3.4.2,
(Z%,B™) — (Z,B), woc., asn— o, | (3.29)
where
Bity=(prert, and
Z(t) = [\ -t

Remark:  This corollary is, in fact, a consequence of Theorem 2.5.2 from
Part I, specialized to a sequence of networks that does not vary with n.
Consequently, the characterization of the fluid model in Section 3.4.2 of
Part I applies here as well.

3.4.4 FCLT’s and Diffusion Approzimations

Recall that a, b and ¢ represent nonbottleneck, balanced and strict bottle-
neck stations, respectively. Introduce the “hat” notation

Zn(t) = 7 [2Z(nt) — (A - p)Fat],
Br(t) = /i [(p A )t — 2B(nt)].
The following FCLT is a consequence of Theorem 3.4.1.

Corollary 3.4.4 (FCLT) Under the assumption of Theorem 3.4.1, we
have

(Z7 B™ L (2,B), asn— oo, (3.30)
where

Zo = 0, {(3.31)

Zy = Xy +[I - PV, {3.32)

Ko = & + Payll — Piléa, (3.33)

Xy = E(t) = I'V2W(t), (3.34)

Vi =5 (%), (3.35)

Py = Py + Pyll — B,7 Py, {3.36)

Zy = £+ PLI - P, - P, (3.37)

Pbc: = Py + PbaU - pa]glpac, (338)

B, = diag(ua) ' = Pl e ~ P Y, (3.39)

By, = —diag(u)™ ¥, (3.40)

B, = o, (3.41)

I' is the covariance matrix in (3.22), and W is a K-dimensional standard
Wiener process as in (3.20)}.
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Remarks:

(1) The corollary demonstrates that the diffusion limit of queue length van-
ishes at the nonbottlenecks a. The diffusion approximation of the balanced
subnetwork b is a [bl-dimensional refiected Brownian motion. The diffusion
Hmit for quene lengths at strict bottlenecks requires centering. This is be-
cause Z. builds up at a rate of (A, — ), which is also the buildup rate
of the corresponding fluid approximation [¢f. Corollary 3.4.3]. After both
centering and rescaling, Z7° converges to the semimartingale Z, in {3.37):

the martingale component of Z, is a Brownian motion, which is associ-

ated with a and ¢; its bounded-variation component is nomncreasmg and
is associated with b [see (3.35)].

(2} The coroliary provides limits in light-traffic (no bottlenecks: b = ¢ = @).
For example, the centered and rescaled busy time processes B CONVerges
weakly to the driftless Brownlan motion

B = diag(u) [ - P|7'¢,

with £ in (3.34).

(3) Proposition 2.4.2 in Part I guarantees the existence of the inverse
[I— P, 1

3.5 Fitting Parametes

In Section 3.5.1 we provide two approximations to the nonparametric Jack-
son queueing network from Section 3.2.3: a first order approximation by a
fiuid network, which is supported by the FLIL Theorem 3.4.2, and a re-
fined second order approximation by an RBM, which is based on the FSAT
Theorem 3.4.1. These are specialized in Section 3.5.2 to the product-form
and single-station cases.

8.5.1 Nonparametric Jackson Networks

At a first order, the queue length process Z can be approximated by the
buffer content process Z of the linear fuid model

Z = X+[I-P7,
X(t) = Z(0) + [ + (P’ — Dul+,
¥ = @(X).

The order of the approximation is given by

sup 1Z{t) — Z(t)| = O(\/TloglogT), asT T co.
05t
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A refined second-order approximation is the RBM
Z = X+[-P)Y,
X{t) = Z(0) +

Y = &(X),

[@° + (P — Tyl t + T2 W),

where W is a K-dimensional Wiener process. The covariance matrix I' =
[Cke] is calculated from (3.9), (3.10) and {3.22), and takes the form

K
Tre = 0fcfbre + Z(Aj A i3) [Pie(Bre — i) + Cf(ij — &) (pse — 85e3] -
j=1
Assuming finite moments of order r > 2, and an ambient probability space
on which all our stochastic elements are defined, the error is quantified by
the pathwise bounds

sup |Z(t) — Z(t)| = o(TY"), asT 1 oo.
0<t<T

8.8.2  Product Form and Single Station

Consider the case of no-bottlenecks (p < e). It is then plausible to ap-
proximate the steady-state of Z by that of Z. In particular, when (3.15)
approximately applies, and in view of Remark 4 below Theorem 3.4.1, the
steady-state queue-lengths Zi (o), k = 1,..., K, are approximately inde-
pendent exponential, with means

N Tk
E[Zx(00)] 7 ="

The special case of a single station (K = 1) reduces to

e [ 1)
sizten) = ey [+ 2]

where p is the probability of feedback, and p == o®/[u(1—p)]. Finally, p = 0
reduces to the classical approximation

p_ (et +5)
{t-pp 2 7

which originated in Kingman's pioneering work on the G/G/1 gueue in
heavy fraffic.

(1 mp):

E{Z(o0)} =

3.6 Proof of the Main Results

We start with the p}roof of Theorern 3.4.2, We then use it to prove Theorem
3.4.1. Finally we prove Corollary 3.4.3 and Corollary 3.4.4.
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Note that Theorem 3.4.1 actually implies Theorem 3.4.2, if the stronger
assumption {3.5) is imposed.

Proof of Theorem 3.4.2
First rewrite (3.1) as

Z(t) = 4+ [T~ PY (1), (3.42)
where
Xy = Z(0)+ 6t + [F°{t) — o]
k
+ Z [F4(B;(t)) — o' B;(1)], (3.43)
Y(t) = diag(p)let ~ B(t)], (3.44)

and 8 is as defined in (3.21). Applying the FLIL assumption {3.5) to (3.43)
vields

X = X|lz = sup 1X(t) = X(t)| = O(\/Tloglogl), T 7100, (3.45)

where X is as defined in {3.27). Thus, {3.45) and the Lipschitz continunity
of the reflection mapping (Theorem 3.3.1) lead to equality (3.24) in the
theorem, and

¥ = Y]ir = sup |[Y(t)~ Y1) = O(/TloglogI) (3.46)

0<s<T
The proof of equality {3.25) in the theorem is now completed by combining
(3.44) and (3.46), with equality {3.47) to be proved in the following lemma.

Lemma 3.6.1 Let ¥ = ¥(X) with X as in (3.27). Then there exists an
M > 0 such that

sup (¥ (t) — (u— 27t < M, (3.47)

9<i<oo

where X is the effective arrival rate that solves (3.4}.

Proof. Let X*(¢) = 8t. Then ¥{X*){t) = (& — )"t (see the Remark
below Theorem 2.4.4 in Part I). By the Lipschitz property of the reflection
mapping, there exists an M’ > 0 such that

() — (X < MK~ X0 = M| 2(0)] = M

Proof of Theorem 8.4.1

Proving the theorem for r < 4 establishes it for r > 4 since (2.23) for
r > 4 implies it for all r < 4. We thus restrict attention to r < 4.
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First force (3.1} into the form {3.12) via

Z(ty=X @)+ I - PY(2),

where
X(t) = Z(0)+ [o® + (P = Dujt+ [FO{) — o't — (D020 (1)]
+§E FIB(t)) — of Bi(t) — (I FWH(Bg{1))]
ot
+k§ TRPRIWHR(B(t)) — W (o A 1)8)]
(TP 2WO() + i(r‘“)mwk((pk AT)E), (3.48)
Y(t) = diag(u)fet - B{t)]k_:l (3.49)
Let
X(1) = Z(0)+6t+ (T 2Wo0)
+§(F‘“)1/2W‘°((pk A1)L), (3.50)
= Z(kot):— 0t + TH2W (1), (3.51)

with & as in {3.21), and (3.51) being a defining relation for the standard
Browunian motion W. Once we prove that

sup Xt — X ()] = o(TYT), (3.52)
o<t
then we immediately deduce ({3.18) from the Lipschitz continuity of the

mapping ¥, By the FSAT assumption (2.23), to prove (3.52) it suffices to
show (note that |B{t) — B{s)l < |t — s|) that

02135 (Wi {B;()) — Wi ((p; A 1)) = o(T?/7),

for all j,k = 1,...K. This we do now by showing that, for any Wiener
process W on our ambient probability space,

s [W(B,(8)) = W ((es A L)) = o(T*") (3.53)

/
for all j = 1,2,..., K. We start with a lermsma, whose proof is postponed
to the end of this subsection.
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Lemma 3.6.2 Let W = {W(¢),{ = 0} be a Wiener process. Then for any
& > 0 there exists a constant C = (C{8) > 0 such that the inequality

T 2
P { sup [W(u) — W{v)| > x\/f;} < Cl+=)e ™ /{2+8)
0<uv<T; [u—vigh h

holds for every T >0 and 0 < h < T

Taking h = A{T") and X = g(T") in the above inequality and then apply-
ing the Borel-Cantelli Lemnma yields,

Lemma 3.6.3 Lot W = {WW(z),2 = 0} be is a Wiener process. Suppose
that there exists a pair of functions h and g satisfying

g(T;vllf(T) 40, 88T — oo, (3.54)
=T

3 e T S0 as T — 0. (3.55)
7= M)

Then with probability one,
sup W (u) — W) = o(TVT), as T Too.  (3.56)
)

0w, ST lu—v]Sh{T
When 2 < r < 4,

WT) = M/TloglogT ~ and  g(T) = T3(3~1)

clearly satisfy {3.54) and {3.55). On the other hand, from equality (3.25)
of Theorem 3.4.2, we know that there exists an M > 0 such that

sup |B;(#) — (p; A Dt} < M+/TloglogT.

o<t<T

Now applying Lemma 3.6.3 yields (3.53). _
Finally, if we note that W7, § = Q,1,..., K, are independent Wiener
processes, then (3.50) implies that the covariance matrix T is of form (3.22).

Proof of Lernma 3.6.2  Noting that

{fu,):jlu—vi<h, O0<u<T 0<v<T}
is a subset of
{(u,v):OSuST,OSw-uSh}U{(u,v):OSUST,DSu——USh},

we can use Lemma 1.2.1 of Csorgd and Revesz [1981] with T replaced by
T + h and C replaced by C/2 to obtain the desired results. i
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Proof of Corollary 3.4.3

We take Z as defined in Corollary 3.4.3. First, it follows from (3.24) and
{3.25) of Theorem 3.4.2 (also note Remark (1) below the theorem) that for

any fixed T > 0,
Lz(nt) - 220ty = 0 [ /2 10g1 (3.57)
n n f == n glogr f, ]

sup
o<t
1 1
sup |=Bint) —(pAre) t' = O (U = log 1{)gn) . (3.58)
ogtgT | n

These two equalities clearly imply the convergence of (3.29).
Proof of Corollary 3.4.4

For fixed T > 0, the strong approximation {3.18) implies that

sup
0<t<T

1 1 5 i o{l
WZ(nt) - WZFnt)l = W%?)?-é;}—, as n T oco.
Thus, the proof for Corollary 3.4.4 amounts to proving a central limit the-
orem for the reflected Brownian motion Z as defined through (3.19)-(3.23),
which will be stated as Proposition 3.6.4 below.

To simplify notations, we remove the tilde notation from the reflected
Brownian motion; namely, the reflected Brownian motion will be repre-
sented by

Z = X+[I-PYy, (3.59)
X(t) = Z(0) + 8t + T W(t), (3.60)
0=a-+ [P - I, (3.61)
Y = $(X) (3.62)
We define
B(t) = et — diag(p™ )Y {2), (3.63)
and “hat” notations:
Zn(t) = % [Z(nt) — (A — p)ytnat],
Bt = -\7% (pAelt—Bn),  and
Pt = %Y_(nt).

/
Proposition 3.6.4 For the processes defined in (3.59}-(3.62), the conver-
gence {3.30) prevails with the limiting processes defined by (3.31)-(3.40).
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First we state and prove two lemimas.

Lemma 3.6.5 Recall that e is the set of nonbottleneck stations. Then we
have
Zrt0, asn oo (3.64)
Proof. The proof proceeds as follows. First, we prove the convergence
(3.64) for the set of sub-critical stations (those for which #; < 0; see Sec-
tion 2.4 of the previous chapter). Then we consider a subnetwork which
is obtained from the coriginal network by removing all sub-critical stations,
and then we prove the convergence (3.64) for those stations that are sub-
critical stations in the subnetwork. We continue with this process unless
we reach a subnetwork which does not have sub-critical stations, and then,
by Propositions 2.4.2 and 2.4.3 in the previcus chapter, we know that the
lemma is proved. This process is very similar to that used in the proof of
Theorem 2.4.4 in last chapter. So we will only provide the first step here,
i.e., to prove the convergence of {3.64) for the set of sub-critical stations.
Consider a sub-critical station j, i.e., ; < 0. Let ¢, = max{ZP(0); k =
., K} and note that ¢, — 0. Then introduce for t 2 0,

vi(t) =supi{s < t: Z7(s) < en}

{abbreviated as v} when convenient and well defined because the set over
which the supremum is taken always contains s = O: 29"(0) < €y). Now
2" is & continuous function. It follows from the definition of v7 () that

Zjn( ?) = €n. Furthermore, if v7{(¢) < ¢ then Z”(s) > e, = Ofors &
[ "(t) t] . Using the Comp}ementarity condition {3. 14}, applied to the “hat”

representation of (3.59), implies that Y:,"' (vMB) = Y;" (), which also holds
when v1'{t) = ¢. One utilizes all this in

—en & 2P - 27 (V)
= £ () — £ () + byt — ) ZPkg[Yk ) - Yk(?)]

Enity — &7 (V) + bt — 7)), (8.65)

IA

where

n . i

EM{t) = I‘mﬁW(nt) {3.668)
Consequently, for £ > 0,

0% (=00~ ] < T+ &0 - 28 () (3.67)
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The functional law of iterated logarithm for Browma.n motion guarantees
that both §”(t}/n and 5”(1/ (t))/n converge uniformly to zero on any com-
pact subset of [0, 00). Thus one concludes from (3.67) and &; < 0 that

vi(t)—1t woc (3.68)

Clearly,
é”—cﬂ £, asn-soo. {3.69)
Geoing back to {3.65), we have
0 Z0(t) < €00ty — €8 (1) + 27 (v]),

for all t > 0. Finally, 0 < ZP (v]') <€n, combined with (3.68) and (3.69),
establishes the convergence (3.64) for all sub-critical stations, &

Lemina 3.6.68 Recall that ¢ is the set of strict bottlenecks, Then we have

}A’C“—'i £, asn— o0 (3.70)
Proof. Let 4 be the union of b and ¢, Le., § is the set of all bottleneck
stations. The lemma will be proved in two qteps First, we prove that there
exists a sequence of processes Yfe , = 1,2,.., in 18 that dominates Y
no=1,2,..., and converges weakly to a ﬁnste process. Second, we show the
desired convergence (3.70}.

To the end of proving the first step, we rewrite Z7 of (3.59) in a and g
block form,

Z3(6) = Z7(0) + Bav/mit + £5(2)

— PR YR8 + [T — PLYMe), (3.71)
ZR{) + (g~ pup)Vnt = Z5(0) + Oav/at + £2(t)
= PaY2(t) + [T - PRVE (D), (3.72)

where £7 is defined in (3.66).

Since o(P) < 1, the inverse of (I — P.) exists [Proposition 2.4.2 of the
last chapter|. Solving for f/a“ in (3.71}) and substituting the outcome into
(3.72} yields

ZR() + (Ag = pp)v/nt = x3(t) + (Ag — pp)v/nt + (T — BOYE,  (3.73)
where
X3(t) = [Z3(0) + PLy(I — Py Z30)] - Pogld =Py~ 27
+ [€5 + Pls(I - PLy~1En], (3.74)
By = P+ Paa(l — P,) ' Pyg,
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and we used the fact that
85+ Pog(I — Po) '8, = X — pg {3.75}

By the definition of 3, we know that Ay — pg = 0. Therefore, by the least
element characterization of mapping ¥ (Theorem 3.3.1), we have

Vi =Wp (X5 + (hs ~ pa)vne) S Y5 =¥ {x3)- (3.76)

By (3.69) and Lemma 3.6.5, we can see that x} converges weakly to a Brow-
nian motion, and therefore, the continuous mapping theorem implies that
?é‘ converges weakly to a finite limit {in fact, the regulator of a reflected
Brownian motion). Now, we have compieted the first step.

To complete the proof, we rewrite 27 of {3.59} in blocks a, b and c

Z2(t) = Z2(0) + bav/nt + E1{t)
= PLYT(t) - PLYI() + [T~ PIYt), (3.77)
ZP(8) = ZP(0) + Gp/nt + EP(E)
— PLYR(8) — PLY™(t) + I — PAY (), (3.78)
Z2(E) + (Ao — pe)vnt = Z20) + G/t + €2(2)
~ PLYIE) ~ BV () + T - PI¥2(6)  (3.79)

Then we solve for ¥;* in (3. 77 }, and substitute the outcome into {3.79) to
obtain

Z?(t} + (’\c - f—"c)'\/— = Xﬂ(t) - pgc}'};}n + (Ac - #c)\/_n_t
+ I - By, (3.80)

where
Xr(t) = 1Z00) + Po (I — PO Z3(0)] — Poo(I — P 27
{ﬁc -+ Pcrw('[ "" Pci)M152:[a
Pc 2-Pc%"ljc:a{l"""“P'cm)—lllpa.c;

P, is defined in (3.38), and we also used (3.75).
Applying Remark (1) that succeeds Theorem 3.3.1 to (3.80) and observ-
ing inequality (3.76) vields

0 < VI = sup [BIF(s) = X7 (o) + BLIP(5) ~ (A=~ wiv/s]

0<s<t
o - . o +
< sup [PFR(s) = X2(s) + BT () = (3 = po)v/ns]
0<s<t
(3.81)
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Now note that all processes X7, }}b” and V" converge weakly to finite
limits, and that A, ~ . > 0 {since c is the set of strict bottlenecks). Then
applying the functional limit theorem for the supremum {Theocrem 6.1 of
Whitt [1980]), we prove that the process defined by the right hand side
of inequality (3.81) converges weakly to zero, therefore, the convergence
(3.70). o

Proof of Proposition 3.6.4  First solving for ¥ in (3.77} and substituting
the outcome into (3.78) yields

Zp(ty = X7 + [ - By, (3.82)
where

X)) = [Z]0) + Po(I — P TLZ0(0)) ~ PL(l — Py 47
+ [€8 + PL (I = B)TYER] — [Py + PL(I ~ PLYPLIYE,
(3.83)

P, is defined in (3.36}, and we used (3.75).

It follows from {3.69) and Lemmas 3.6.5 and 3.6.6 that X} in {3.82)
converges weakly to the Brownian motion X, in (3.33). The continuous
mapping theorem then implies that

(50 w5 (%) 22 = 05 ()

converges weakly to the reflected Brownian motion (Y}, Z3) defined through
(3.32)-(3.36). Next, the weak convergences of (3.69), Y;», ¥;", and Z7, ap-
plied to (3.80), imply the weak convergence of Z* with the limit Z7
(3.37). The convergence of B™ is by observing {3.76) and

Bt} = —~diag(u™) [Y(t) - (u - A) " v/t

Finally, we remark that all of the convergences actually hold jointly.

3.7 References, Possible Extensions and
Future Research

Gieneral Commentary: We have introduced strong approximations as a uni-
fying framework, at the cost of imposing assumptions that are mathemat-
ically too stringent. Indeed, all of our corollaries can be established, indi-
vidually, under weaker conditions. However, as far as current applications
are concerned, siich stronger results seem to offer no benefit.

In this chapter we focus on homogeneous single-server open networks.
Natural extensions include multi-server, and homogeneous closed and mixed
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networks, as well as heterogeneous (mulfi-class) networks of all kinds. Fluid
and diffusion approximations for heterogeneous multi-server nonparametric
Jackson networks under heavy traffic are given in Chen and Shanthikumar
{1990}, Combining their approach with ours easily establishes the strong
approximation for the heterogeneous multi-server network, with no heavy
traffic assumptions. Fiuid and diffusion approximations for nonparametric
closed Jackson networks are given in Chen and Mandelbaum [1891b]. As
far as FLIL arnd FSAT for closed networks, FLIL for the queue length pro-
cess {3.24) still holds, but our approach does not carry over to the FLIL for
the busy time process (3.25). Establishing FSAT for closed network takes a
different approach; see recent work by Zhang [1993]. This state of affairs is
consistent with the fact that the mapping @ for closed networks is Lipschitz
{Dupuis and Ishii [1991]) but ¥ need not be {a counter example appears
in Berger and Whitt [1992]). Mixed networks are currently under study
by Nguyen {1993]. Heterogeneous open networks present a significant chal-
lenge, as apparent from Harrison [1988], Harrison and Nguyen [1990;1992],
Dai and Wang [1993] and Whist [1994].

There is an alternative, deeper but less “user friendly”. form of strong
approximations, in terms of exponential bounds on the probability of de-
viations from a central trend. (See Csérgd and Révéz [1981] and Glynn
{19901). We have not presented this form here but, with some modification,
it can aiso be handled by our approach.

Work on strong approximations for queueing networks has been rather
scarce. We are aware only of Zbang, Hsu and Wang [1990], who analyze a
single station with nmiltiple-servers, Zhang [1990], that covers super-critical
nonparametric Jackson networks, Horvath [1990}, who treats two-station
open network, and Glyan and Whitt [1991] that deal with queue in series.

Meyn and Down [1993] proves existence of a stationary distribution for
non-parametric closed and open Jackson networks. As in Horvath [1990],
one should be able to use strong approximations refinements to show that
this stationary distribution, properly normalized, converges to the station-
ary distribution of a corresponding RBM. {This is actually Kingman's ap-
preach in his pioneering work on heavy traffic: he showed convergence to
the exponential distribution, which is the stationary distribution of the one-
dimensional RBM; the issue is easy to settle for closed networks, as done
in Kaspi and Mandelbaum [1989], but it is still open for open networks.

Harrison and Williams [1987] established an integral equation, known as
a basic adjoint relation (BAR), to characterize the stationary distribution
of the approximating diffusion process for open gueueing networks. Har-
rison, Williams and Chen [1990] extends the result to irreducible closed
networks. BAR enables calculations of useful performance measures. On
rare occasions, the integral equations can be solved to yield an explicit ex-
pression for the stationary distribation {typically of a product-form). Dal
and Harrison [1991,1992] have developed computational methods for more
general cases.
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Diffusion approximations are used not only for performance evaluation,
but also for eptimal contrel of queueing networks. Specifically, a queueing
consrol problem is approximated by a diffusion control problem that is eas-
ier to bandle, and then optimal, or near optimal, solutions to the latter
problem are interpreted in the original queueing context, This line of re-
search started in Harrison {1988], and continued for example in Yang [1988],
Wein {1990], Harrison and Wein [1990]. Kelly and Laws [1991] expresses the
hope that ultimate justification of results that propose asymptotically opti-
mal control will not depend on the Brownian nature of the approximation.
It is plausible that the framework of strong approximations is what they
are searching for. We also note that Krichagina, Lou, Sethi and Taksar
[1991] proved the asymptotic optimality of the diffusion approximation for
a failure-prone manufacturing system.

Section 1

There is a voluminous literature on queueing networks, most of which traces
back to the seminal works of Jackson [1963], Gorden and Newell [1967],
Whittle [1967;1968], BCMP [1975] and Kelly [1979].

Diffusion approximations for queuveing systems bave been a subject of re-
search for almost 30 years. Readers are referred to Kingman [1965], Iglehars
and Whitt {1970a.b}, Reiman [1684], Johnson{1983], and Chen and Man-
delbaum [1991b]. More references can be found in the papers cited above
and in the survey papers by Whitt [1974], Lemoine {1978, Flores [1985]
and Glynn [1990].

Consider a non-parametric queueing network whose traffic intensities are
all strictly less than unity. The approximation of such a single queueing net-
work commonly entails perturbing {rescaling) it to get an approximating
sequence of networks, and then taking limits. Such an approximation is in-
formative at stations with traffic intensities that are very close to unity (in
heavy traffic); otherwise, the diffusion limit is zero. Qur strong approxima-
tions, on the other hand, are always applicable: no rescaling is needed, and
they give rise to both an approximating diffasion and an error bound. In
particular, strong approximations are applicable at stations with traffic in-
tensities significantly less than unity. This is consistent with success of the
numerical method developed by Dai and Harrison [1992], which perform
well in heavy traffic as well as moderate traffic.

Section 2

The model and the notation are adopted from Harrison and Williams
[1987]. The FSAT for renewal processes is Part (ii) of Corollary 3.1, in
Csbrgd, Horvath and Steinebach [19871. The FSAT for compound renewal
processes is Theorem A in the Appendix to Horvash [1992]. Horvéth uses
FSAT’s for summands of random vectors, which he attributes to Einmal
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[1989]. (Note that Horvath [1992] considers the probability-bound form of
the FSAT's.)

Section 3

Most of this section is a recapitulation of Sections 2.2 and 2.4 from Part 1.
Remark (2) in Section 3.3.3 follows from Harrison and Williams {19871

Section 4

Note that the strong approximation (3.18) implies the functicnal law-of-
iterated-logarithm. The latter result holds under & weaker condition than
the former.

Strong approximations can also be developed for a sequence of networks.
Then, Corollary 3.4.4 would recover the diffusion limits of Reiman {1984]
and Chen and Mandelbaum [1991b).

Section 5

For more details on how to fit a network, and the detailed calculations of
the covariance matrix, readers are referred to Harrison {1988] and Harrison
and Williams [1987].
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