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Staffing (+SBR): How Many Agents? 

Fundamental problem in service operations / call centers: 

-  People = 70% costs of running call centers, employing

   3% U.S. workforce; 1000’s agents in a “single” Call Center. 

Reality

- Workforce Management (WFM) is M/M/N-based 

- Reality is complex and becoming even more so 

- Solutions are urgently needed

- Technology enables smart systems 

- Theory lags significantly behind needs 

»  Ad-hoc methods: heuristics, simulation-based 

Progress is based on

- Small yet significant models for theoretical insight 

  the research of which gives rise to

- Principles, Guidelines, Tools: Service Engineering
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Multi-Skill Call-Centers

Main Operational Issues (Given a Forecast of Workload):

• Design - Long Term

• Staffing - Short Term

• Routing - Real time

Very Complex: Hence treated hierarchically and unilaterally.
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Design “Building-Blocks”

Literature on I, V and ∧-designs:

• I-design: Halfin & Whitt (’81), Garnett, Mandelbaum & Reiman

(’02), Borst, Mandelbaum & Reiman (’03).

• V-design: Schaack & Larson (‘86), Brandt & Brandt (’99), Koole

& Bhulai (’02), Gans & Zhou (’02), Armony & Maglaras (’03),

Atar, Mandelbaum & Reiman (’02), Harrison & Zeevi (’03), Ya-

halom & Mandelbaum (’03), Gurvich, Mandelbaum & Armony

(’04).

• ∧-design: Rykov (’01), Luh & Viniotis (’01), de Véricourt & Zhou

(’03), Armony & Mandelbaum (’03).
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QED Theorem (Halfin-Whitt, 1981)

Consider a sequence of  M/M/N  models, N=1,2,3,…

Then the following 3 points of view are equivalent: 

Customer N
N

Plim {Wait > 0} = ,       0 <  < 1; 

Server )1(lim N
N

N  ,     0 <  < ;

Manager RRN   ,      R  E(S)   large; 

Here   

1

)(

)(
1   , 

where   )(/)(   is the standard normal density/distribution. 

Extremes:

Everyone waits: 01 Efficiency-driven

No one waits: 0 Quality-driven
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 Safety-Staffing: Performance

R =  E(S)  Offered load   (Erlangs) 

N = R + R  = “service-grade”  > 0

= R + safety-staffing

Expected Performance: 

% Delayed 0,
)(

)(
1)P(

1

   Erlang-C

Congestion index   = E
1

0Wait
E(S)

 Wait 
ASA

% 0WaitT
(S)E

Wait T-e      TSF

Servers’ Utilization = 
N

1
N

R
    Occupancy
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Dimensioning M/M/N:
√· Safety-Staffing

Borst, Mandelbaum & Reiman (’02)

Quality C (t) delay cost (t = delay time).

Efficiency S (N) staffing cost (N = # agents)

Assume S(N) ≡ N

Optimization: N∗ that minimizes total costs

• C << 1: Efficiency-driven N ≈ R + γ

• C >> 1: Quality-driven N ≈ R + δR

• C ≈ 1: QED N ≈ R + β
√

R

Satisfization: N∗ that minimizes staffing costs s.t. delay constraints.

Here: N∗ that is minimal s.t. P(Wait > 0) ≤ α.

• α ≈ 1 : Efficiency-driven N ≈ R + γ

• α ≈ 0 : Quality-driven N ≈ R + δR

• 0 < α < 1 : QED N ≈ R + β
√

R

Framework: Asymptotic theory of M/M/N, N ↑ ∞.
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Economics:  Safety-Staffing

Optimal N
*

 R + y
*

)(C R

   where   C  =  delay/waiting costs 

   Here    y*(C)

2/1

12/1 C

C
    , 0 < C < 10 

         

2/1

2
ln2

C
        , C  large. 

Performance measures:  = y* R      safety staffing

P{Wait > 0} P(y
*
) =

1

1
)y(

)y(y
*

**

       Erlang-C 

TSF  = P 0WaitT
(S)E

Wait
  = e-T

ASA = E 0Wait
(S)E

Wait
             = 

1

Occupancy                = 1
N

y
1

N

*
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The V -Design

N

.  .  .  . 1 2 3 J

1 2 3 J

• J customer classes: arrivals Poisson(λj).

• N iid servers: service durations Exp(µ).

Satisfization: N∗ that minimizes staffing costs s.t. delay constraints.

minimize N

subject to ∃π ∈ Π

Pπ(Wi > 0) ≤ αi, 0 < αi < 1, i = 1, ..., J

N ∈ Z+
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The V -Design

N

.  .  .  . 1 2 3 J

1 2 3 J

Add waiting costs C1 > C2 > . . .

Optimization: N∗ that minimizes total costs

J∑
i=1

CiλiWi + N

Optimal Control: minimize waiting costs “
∑J

i=1 CiλiWi(·)”

Yahalom 2003 - Blackwell optimality:

• Static priorities 1 > 2 > . . . with thresholds

0 = K1(x) ≤ K2(x) ≤ . . .

i.e. a class-j customer is served when the system state is x

if she is of the present highest-priority and the number of idle

servers is more than Kj(x).
12



The M/M/{Ki} Model

N

.  .  .  . 1 2 3 J

1 2 3 J

Static priorities 1 > 2 > . . . with thresholds

K1 ≤ K2 ≤ . . .KJ

i.e. a class-j customer is served when it is of the present

highest-priority and the number of idle servers is more

than Kj.

Let K
�
= KJ.

Performance analysis of M/M/{Ki} in steady-state

(Schaack & Larson 1986).
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M/M/{Ki}-Performance Analysis

Two-Class case using Larson (Let M = N − K)

PM+ = P0

(
N−1∑
n=M

(
λ1 + λ2

2

)M (
λ1

µ

)n 1

n!

1

1 − λ2h1(M)

+
(

λ1 + λ2

2

)M (
λ1

µ

)N 1

N !

1

1 − λ1

Nµ

1

1 − λ2h1(M)

)
.

where

P0 =

[
M−1∑
n=0

(
λ1 + λ2

µ

)n 1

n!
+

N−1∑
n=M

(
λ1 + λ2

2

)M (
λ1

µ

)n 1

n!

1

1 − λ2h1(M)

+
(

λ1 + λ2

2

)M (
λ1

µ

)N 1

N !

1

1 − λ1

Nµ

1

1 − λ2h1(M)

]−1

.

and

h1(M) =
1

Mµ
+

N−M∑
k=2

λ1
k−1

µk
∏k−1

j=0
(M + j)

+
λ1

N−M

(Nµ − λ)µN−M
∏N−M

l=1
(N − l)

.

Complicated.

Instead:

Consider a sequence of M/M/{Ki} systems, such that

λr, Kr �
= Kr

J and Nr all go to ∞ in a certain manner.
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M/M/{Ki}-Performance Analysis : Steady

State (1).

Proposition 1 Fix r and assume Kr > 0. We then have the follow-

ing:

1. The threshold system is stable if
∑J

i=1 λr
i < (Nr − Kr)µ.

2. If
∑J

i=1 λi > (Nr−Kr)µ
(1−δr)

∧ N where δr ≤ λc
J/((N−K)µ)

(N−K)(1−λc
J/((N−K)µ))

,

λc
J =

∑J−1
i=1 λi.

The system is not stable i.e Qr(t) → ∞ as t → ∞.

If Kr ≡ 0 (static priority), Condition 1 is necessary and sufficient.

R − (N − K) = O(1)

i.e. if N ≈ R + ∆

K < ∆ + O(1)
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M/M/{Ki}-Performance Analysis : Steady

State (2).

Assume that λr
J/λr → ε > 0 and define ρr

C = λr/(Nr−Kr)µ, then:

Proposition 2 : QED Characterization

• Customer: limr→∞ P{W r
J > 0} = α, 0 < α < 1;

• Server: limr→∞
√

Nr (1 − ρr
C) = β, 0 < β < ∞;

• Manager: Nr − Kr ≈ R + β
√

R , R = λ/µ large.

In that case
Y r(∞) − (Nr − Kr)√

Nr
⇒ X(∞)

Where Y r is the total number of customers in system r, and X(∞)

has a density:

f(x) =

⎧⎨
⎩

exp{−βx}α(β) x ≥ 0

φ(β+x)
Φ(β)

(1 − α(β)) x < 0

Also Let Qr
i be the queue of class i, then:

1√
Nr

Qr
i(∞) ⇒ 0, i = 1, ..., J − 1
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M/M/{Ki}-Performance Analysis : Steady

State (3).

Corollary 3
√

NrW r
J(∞) ⇒ W (1)

Where

W ∼
{

exp(εµβ) w.p. α(β)
0 otherwise

(2)

Proposition 4 For every r > 0

1 ≤ P{W r
i (∞) > 0}

P{W r
J(∞) > 0} · ∏J−1

j=i (ρ
r
k)

Kr
j+1−Kr

j

≤
(

Nr

Nr − Kr

)Kr

, (3)

in particular for Kr = o(
√

Nr) and assuming α(β) > 0 we have

P{W r
i (∞) > 0} ∼ α(β) ·

J−1∏
k=i

(ρr
k)

Kr
k+1−Kr

k (4)
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Service-Level Differentiation

Two Class Example:

Threshold K ∼ P{WN
1 > 0} ∼ P{WN

2 > 0}

a α(β) · ρa
1 α(β)

b lnN α(β)ρb lnN
1 α(β)

c
√

N α(β − c) · ρc
√

N
1 α(β − c)

Without threshold (a = 0), both classes enjoy QED ser-

vice with the same delay probability.

As the threshold increases, differentiation of service level

increases as well, which is manifested through the delay

probabilities (but not through average delays).

Example: Logarithmic thresholds improve dramatically

the accessibility of high-priority and, at the same time, are

not hurting the low-priority (who are still QED-served).
18



M/M/{Ki}-Performance Analysis : Steady

State (4).

Proposition 5 Assume that class J is non-negligible. Then, for all

k = 1, ..., J − 1

Nr[W r
k |W r

k > 0] ⇒ [Wk|Wk > 0] (5)

[Wk|Wk > 0] has the Laplace transform:

µ(1 − σk)(1 − γ̃(s))

s − λ̂k + λ̂kγ̃(s)
(6)

where σj = limr→∞
∑j

i=1 ρr
i , and

γ̃(s) =
s + µ

2bkµ
+

1

2
−

√(
s + µ

2bkµ
+

1

2

)2

− 1

bk

(7)

where bk = lim
r→∞

∑k−1
i=1 λr

i

Nr

Also,

NrE[W r
k |W r

k > 0] → [µ(1 − σk)(1 − σk−1)]
−1

(Nr)2E[(W r
k )

2|W r
k > 0]

→ 2(1 − σkσk−1)
[
(µ)2(1 − σk)2(1 − σk−1)3

]−1

(8)

Waiting time of High Priorities is O(1/N)

Queue of High Priorities is O(1)
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Asymptotic Optimality (1)

Cr(Nr, πr) - cost with Nr servers and policy πr

Definition: {Nr, πr} is asymptotically optimal with re-

spect to λ̄r, if,

• Asymptotic feasibility :

lim sup
r→∞ Pπ{Wr

i > 0} ≤ αi ,∀i = 1, ..., J

• Asymptotic Optimality : If we take any other sequence

of policies {Nr
2, πr

2} that is asymptotically feasible

then

lim inf
r→∞

Cr(Nr
2, πr

2) − Cr

Cr(Nr, πr) − Cr
≥ 1
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Optimal Control (1): QED Solution

minimize N

subject to Pπ(Wi > 0) ≤ αi

N ∈ Z+

Asymptotically optimal (staffing + scheduling) as follows:

N∗ = R + β(αJ)
√

R

(determined by lowest priority J)

π∗: static priority 1 > 2 > . . . > J , with

thresholds S1 < S2 < . . . < SJ , given by

Sj = Sj−1 + ln
αj−1
αj

/ ln ρ+
j−1 , j = 2, . . . J ,

S1 = 1;

i.e. a class j customer served iff it is of the present high-

est priority and the number of idle agents is Sj or more.

(Here R =
∑

j λj/µ, ρ+
j =

∑j
k=1 λk/(µN∗))

Note: allowing αN
j ↓ 0 polynomially with N ,

requires SN
j ↑ ∞ as lnN
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Optimal Control (2): QED Solution

Optimization: N∗ that minimizes total costs

J∑
i=1

CiλiWi + N

Assume Ci’s are constants

and lim infλ→∞
λJ∑
j λj

= ε > 0 (non-negligible)

Then asymptotically optimal non-preemptive staffing and

control is

• Staff with N = R + β
√

R , β = y∗(CJ),

• non-idling, and

• static priority 1 > 2 > . . . > J

Starting point: For any non-idling strategy, the total work

in system (
∑

j Wj)(·) is that of an M/M/N , with param-

eters λ =
∑

j λj, µ, N .
22



Where are the Thresholds ?

Optimization: N∗ that minimizes total costs

J∑
i=1

Ci(λ)λiWi + N

Assume CJ(λ) ≡ CJ is constant

and Ci(λ) = diλ
γi, di, γi > 0, i �= J

Then, asymptotically optimal is

• Staff with N = R + β
√

R , β = y∗(CJ),

• Idling - M/M/{Ki} with logarithmic thresholds.
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M/M/{Ki}-Performance Analysis :

Diffusion Limits (1).

For r = 1,2, .... define the centered and scaled process

Xr(t) =
Y r(t) − (Nr − Kr)√

Nr

lim
r→∞

√
Nr(1 − ρr

C) = β , 0 < β < ∞
where

ρr
C =

λr

(Nr − Kr)µ

Proposition 6 Assume that Xr(0) ⇒ X(0), then

Xr ⇒ X

where X is a diffusion process with infinitesimal drift given by

m(x) =

{
−βµ x ≥ 0
−(β + x)µ x ≤ 0

and state independent infinitesimal variance σ2 = 2µ.

Remark: This is the Halffin-Whitt limit for the single class

model with N − K servers.
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M/M/{Ki}-Performance Analysis :

Diffusion Limits (2).

Corollary 7 State Space Collapse Denote by Er(t) the number of

busy servers above the level of Nr − Kr, i.e. Er(t) = [Zr(t) −
(Nr − Kr)]+

(
where [x]+ = max{x,0}) . Assume

lim
r→∞

λr
k

λr
= ak, k = 1, ..., J; aJ > 0, ai ≥ 0, i = 1, ..., J − 1

Then
1√
Nr

Er(t) ⇒ 0

1√
Nr

Qr
i(t) ⇒ 0, ∀i ≤ J − 1

1√
Nr

Qr
J(t) ⇒ X+

Corollary 8 Let W r
i (t) be the virtual waiting time process for class

i. If

∃ −∞ < c < ∞ :
√

N(
λr

J

Nr
− ajµ) → c ,

then
√

NrW r
J ⇒ 1

aJµ
(X ∨ 0)

Qi, i < J disappears in the
√

N scaling

QJ is the whole queue
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Extensions - What about Abandonment ?

Class i with patience parameter 0 < θi < ∞.

Assume N = R + β
√

R

Optimization: N∗ that minimizes total costs

J∑
i=1

CiλiPi{Ab} (9)

Ci’s are const, s.t Ci > Cj whenever θi > θj.

lim infλ→∞
λJ∑
j λj

= ε > 0

Then asymptotically optimal non-preemptive control is

• non-idling, and

• static priority 1 > 2 > . . . > J

Add logarithmic thresholds if Ci, i �= J scale polynomi-

ally.
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Extensions - What about Abandonment ?

Satisfization: N∗ that minimizes staffing costs s.t. delay

constraints.

minimize N

subject to Pi{Ab} ≤ αi, 0 < αi < 1, i = 1, ..., J

N ∈ Z+

Optimal Solution:

Server pool decomposition: Ni = λi
µi

(1 − αi).

Allow αi to scale with λ - Solution not trivial.
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Summary of Results

N

.  .  .  . 1 2 3 J

1 2 3 J

1. For both satisfization and Optimization the asymptot-

ically optimal policy is M/M/{Ki}.

2. State space collapse allows a complete asymptotic

analysis of the M/M/{Ki} model.
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Back Up 
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Reversed-V Design: Pure Routing 

Homogeneous Customers 

Heterogeneous Agents: S2 = Faster

Optimal Routing: "Slow-Server" phenomenon (Rykov) 

- S2(=Fast) always employed, if possible; 

- S1(= Slow) employed if # in queue exceeds a threshold.

QED regime: Safety-Staffing – see below (Armony) 

-  No threshold needed: just have all servers work

   when possible, ensuring that the "fast" get the priority. 

Asymptotically optimal staffing: 

1. Given a delay probability, determine S1 + S2 via  Safety. 

2. Given staffing costs, determine S1 / S2.

Distributed call centers: in progress. 

     S1      S2
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N-Design: Routing and Scheduling 

Heterogeneous Customers: C2=VIP

Heterogeneous Agents:  S2 = Faster (m1>m2) 

Costs:   D1, D2  Delay costs 

H1, H2 Staffing costs

Assume: D2  >> D1  (Truly VIP) 

Assume:  H1 m1 < H2 m2 (Otherwise V) 

QED regime:  Safety Staffing – see below (Gurvich).

- (C1, C2; S2)  operate as V-model, with "idle-thresholds" 

- (C1; S1, S2)  operate as , but without "queue-thresholds" 

Asymptotically optimal staffing: 

1. Given a delay probability (service level), determine

µ1S1 + µ2 S2  via  Safety; 

2. Given staffing costs, determine S1 / S2 via Math. Prog.

Ultimately:  Safety-Staffing is asymptotically optimal.

S1

C1

m1

S2

m

m2

C2
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