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1 Introduction

The arrival process of calls to a call center is usually associated with a Poisson
process. The Poisson process model provides simple solutions to many different
problems related to call center operations management. However, modern call
centers have automated answering and routing services that may operate in a
way that leads to a non-Poissonian output process. This output process forms
the arrival process to a downstream system, such as the human agent queueing
and service system. When analyzing the latter system, departure from Poisson
arrivals may affect results and decisions. We illustrate this non-Poisson arrival
phenomenon using real data, propose a model that could explain how it may have
arisen, and consider its practical ramifications on system analysis.

The main assumptions of the Poisson arrival model are that the number of in-
coming calls per interval follows the Poisson distribution, and that the numbers
of arrivals in disjoint intervals are independent. We are interested in studying
the arrivals to the agents service queue, which consists of those customers who
have passed through the VRU (Voice Response Unit) and have sought an agent’s
help. Note that not all the incoming calls proceed to the agent queue: in many
call centers most of the incoming calls end their service at the VRU (since they
do not require a human agent). Figure 1 illustrates the two stage system. Differ-
ent studies have tested and determined that the first VRU arrival process indeed
follows a Poisson process. Surprisingly at first, tests of the arrival process to the
agents queue have shown that it does not behave like a Poisson process.

Our paper will focus on modeling the arrival process of calls to the agents service
queue. The idea for the model was motivated by empirical analyses of data
collected as part of the Data-MOCCA (Data MOdel for Call Center Analysis)
project [4]. This project is being carried out at the Technion’s Service Enterprise
Engineering (SEE) Center. One aim of the project is to provide a standardized
format for creating and maintaining call center databases, which is independent
of the data source, and which stores information at the individual call level.
This data repository design differs from the usual summaries routinely available
from most call center systems. Data-MOCCA is currently populated using data
from several call centers; however, in this paper we concentrate on data which
originated from the call center of a large Bank in the USA. This data were also
analyzed in other papers such as [2] and [5].

2 Empirical Distribution

In Brown et al [3], one hypothesis tested was whether the arrival process to the
service queue in a call center follows an inhomogeneous Poisson process. In order
to test this hypothesis they assumed that the arrival rate remains constant during
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Figure 1: A simplified process flow of an incoming call to the call center.

short six-minute intervals. They tested this hypothesis over two separate hours:
between 7:00-8:00, at the beginning of the working day; and between 12:00-13:00,
at the peak of the working day. In the above paper they came to the conclusion
that the null hypothesis is rejected; that is, the arrival process to the agent service
queue does not behave like a Poisson process.

In order to fully understand how the arrival process to the agents’ queue deviates
from a Poisson process we compared the empirical process with the Poisson model.
We considered the same two hours on June 11, 2002, which is a regular work day
(i.e. there is no holiday on this date or any abnormal activity). Using the
same method, we broke down the hours into six-minute intervals. Under the
Poisson assumption for each six-minute block, the number of arrivals for each
second should be approximately Poisson distributed. For each six-minute block
we calculated the estimated arrival rate and derived the expected distribution of
the number of arrivals for each second assuming a regular Poisson process. An
example for a given six-minute period from each hour is given in Tables 1 and 2.

The comparisons showed an interesting phenomenon: on the one hand there were
“too many” seconds with no arrivals compared to a regular Poisson distribution.
On the other hand, in a regular Poisson distribution with small λ the probability
of large values is virtually zero but in our data we see several seconds with “too
many” arrivals.

3 The Gatekeeper Model

Based on previous research (for example [1]), we continue to assume that calls
entering the call center follow a Poisson process. However, upon exiting the VRU
and entering the service queue they apparently “lose” this Poisson property. We
suggest a relatively simple model to describe the observed service queue entrance
process.

Our model describes a stochastic mechanism which controls the number of calls
which leave the VRU and join the service queue. One can imagine a gatekeeper
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Number of Calls mi 0 1 2 3 4+ sum
Actual Frequency fi 277 58 20 3 2 360
Theoretical Proba-
bilities

0.7428 0.2208 0.03281 0.00325 0.00026 1

Expected Frequency 267.43 79.48 11.81 1.17 0.09 360

Table 1: Actual and expected number of seconds with given number of calls

during 7:00-7:06. The estimated arrival rate is
P

i fi·mi

360
= 0.2972.

Number of Calls mi 0 1 2 3 4 5 6+ sum
Actual Frequency fi 189 78 47 27 13 5 1 360
Theoretical Proba-
bilities

0.393 0.367 0.171 0.053 0.012 0.002 0 1

Expected Frequency 141.567 132.129 61.66 19.183 4.476 0.839 0.15 360

Table 2: Actual and expected number of seconds with given number of calls

during 12:00-12:06. The estimated arrival rate is
P

i fi·mi

360
= 0.9333.

which controls the calls that enter the service queue in the following way: every
second it sees calls that have finished their VRU service and are waiting to be
transferred from the VRU to the service queue. It then “decides” with probability
1−p to admit all these waiting calls to the agent service queue, or with probability
p to momentarily “deny” them this passage. This model may reflect the fact that
at each second, the gatekeeper processor may be pre-occupied with some other
task (e.g. dealing with another service type) and so not be able to control the
admission of calls to the particular service queue.

In subsequent seconds the gatekeeper will repeat the procedure independently
of its decision in the previous seconds. Of course the number of calls requiring
passage consists of the number of calls which have accumulated from the previ-
ous “blocked” seconds plus the number of calls which have just completed VRU
service.

It follows easily that if p equals zero then the gatekeeper model reduces to a
regular Poisson process and if p equals 1 then no calls will ever pass through to
obtain service.

One can imagine that each second the gatekeeper flips a coin (independently of
previous seconds) with a probability of 1 − p to open the gate and p to keep
it closed. When the gatekeeper opens the gate all the calls which where in the
exit queue during that second (including the ones which just finished their VRU
operations) pass through to the service queue. If he does not open the gate the
calls will accumulate and then the process will start over. Figure 2 illustrates the
model.

We use the following variables to formalize the model:
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Figure 2: The gatekeeper model. There are three queues: the entrance queue to
the VRU; the exit queue from the VRU; and the service queue. The gatekeeper
stands between the exit queue from the VRU and the service queue, each second
allowing all calls in the exit queue to pass through to the service queue with
probability 1− p.

• Yn is the number of calls which enter the exit queue during the nth second
(i.e. the calls which just finish their VRU operations during the nth second).
We assume that for a short interval the rate of arrivals to this queue is fixed
and that the distribution of this variable is Poisson, i.e.

Yn ∼ Poisson(λ) (1)

• Bn is the gatekeeper variable, i.e.

Bn =

{
1 if the gate is blocked during the nth second
0 if the gate is opened during the nth second

(2)

• Xn is the number of accumulated calls in the exit queue at the end of the
nth second (including Yn) that did not pass through to the service queue,
i.e.

Xn = Bn · (Xn−1 + Yn) (3)

It can be easily seen that if the gatekeeper opens the gate at the nth second
then Xn equals zero, meaning that the exit queue is empty.

• Tn is the number of calls which passed from the VRU exit queue to the
service queue in the nth interval, i.e.

Tn = (1−Bn) · (Xn−1 + Yn) (4)
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It is easily seen that if the gatekeeper closed the gate at the nth second then
Tn equals zero, meaning that no new calls entered the service queue.

The model assumptions are:

• The gatekeeper’s decision is not influenced by the number of calls which
entered the exit queue at any point of time and vice versa, i.e.

Bn⊥Ym for all m,n (5)

where ⊥ denotes statistical independence. It then follows that the number
of calls accumulated in the exit queue has no influence on the future number
of calls which will enter the exit queue and vice versa, i.e.

Yn⊥Xm for n > m (6)

From Definition (3) it follows that Xn is a simple Markov chain with transitions
probabilities:

Pr(Xn = i|Xn−1 = j) = Pr(Bn = 1) · Pr(Yn = i− j)

= p · e−λ · λi−j

(i− j)!
, for i ≥ j > 0 (7)

Pr(Xn = 0|Xn−1 = j) = 1− p + p · e−λ · I{j=0}, for j ≥ 0 (8)

The relation between Xn and any previous Xm (i.e. for n > m) can be formalized
in the following manner:

Xn = Xm ·
n∏

i=m+1

Bi +
n∑

i=m+1

(
Yi ·

n∏

l=i

Bl

)
(9)

E(Xn) = pn−m · E(Xm) +
λp · [1− pn−m]

1− p
(10)

E(Xn ·Xm) = pn−m · E(X2
m) + E(Xm) · λp

1− p
· (1− pn−m) (11)
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3.1 Steady state behavior at one second resolution

Looking at the steady state of the above Markov chain we can derive the following
results, assuming that 0 < p < 1:

E(X) = p · [E(X) + E(Y )] ⇔ E(X) =
λ · p
1− p

(12)

E(X2) = E(B2 · (X + Y )2) ⇔ E(X2) =
λp

1− p
+

λ2p(1 + p)

(1− p)2
(13)

Var(X) =

(
λp

1− p

)[
1 +

λ

1− p

]
(14)

CV(X) =

√
λ + 1− p

λp
(15)

For the case p = 0, where the gatekeeper always keeps the gate open, Xn ≡ 0
and the chain is degenerate; and for the case p = 1, the chain is transient.

Let πk be the (stationary) probability that the Markov chain Xn is in state k, i.e.
πk = Pr(Xn = k). It can be seen that πk can be calculated from the following
recursion:

πk =
p

1− p · e−λ

k−1∑
i=0

πi · P (Y = k − i) (16)

π0 =
1− p

1− p · e−λ
(17)

What is observed as arrivals to the agents service queue is Tn, the number of calls
which passed through the gatekeeper during the nth second. From Definition (4)
we derive the following conditional probabilities:

Pr(Tn = 0|Xn−1 = j) = p + (1− p) · e−λ · I{j=0}for j ≥ 0 (18)

Pr(Tn = i|Xn−1 = j) = (1− p) · Pr(Yn = i− j)

= (1− p) · e−λ · λ(i−j)

(i− j)!
, for i ≥ j > 0 (19)

The following characteristics of Tn can also be derived from Definition (4):

E(Tn) = (1− p) · [E(Xn−1) + λ] (20)

E(Tn · Tm) = (1− p)[E(Xm−1) · λ(1− pn−m)

+ λ2p · (1− pn−m−1) + λ2(1− p)] (21)

6



Looking at the steady state we arrive at the following results for p < 1:

E(T ) = (1− p) · [E(X) + E(Y )] = (1− p) ·
[

λ·
1− p

+ λ

]
= λ (22)

E(T 2) = E((1−B)2(X + Y )2) =
λ2(1 + p)

1− p
+ λ (23)

Var(T ) =
2pλ2

1− p
+ λ (24)

CV =

√
2pλ2

1−p
+ λ

λ
=

√
2p

1− p
+

1

λ
(25)

For the special case where p = 0, Tn becomes a regular Poisson variable with the
result that Var(Tn) equals λ and the coefficient of variation equals 1√

λ
.

From Equation (18) we can deduce the limit distribution of Pr(Tn = i):

Pr(T = i) =

{
p + (1− p) · e−λ · π0 = p+e−λ·(1−2p)

1−p·e−λ if i = 0

(1− p) ·∑i
j=0 P (Y = i− j) · πj if i > 0

(26)

3.2 Steady state behavior at coarser resolutions

An interesting question that arises from the model is “can we observe Poisson-
like behavior if we examine longer intervals?”. In other words, if we count the
number of arrivals during groups of successive intervals of n-seconds, rather than
during each individual second, will these grouped counts have a more Poisson-
like distribution. In order to answer the above question we are interested in the
stationary behavior of

∑n
i=1 Ti. The following characteristics can be computed:

E

(
n∑

i=1

Ti

)
= nλ (27)

Var

(
n∑

i=1

Ti

)
= nλ + 2λ2 · p(1− pn)

(1− p)2
(28)

CV

(
n∑

i=1

Ti

)
=

√
1

nλ
+ 2p

(1− pn)

(1− p)2n2
(29)

The three equations show the deviation of the expectation, variance and CV from
the corresponding Poisson characteristic. The first term, in all three equations,
is the Poisson characteristic. The second terms in equations (28) and (29) show
how the deviation from Poisson-ness depends on p, λ and n. For large enough
values of n the CV characteristic will approximate that of the Poisson distribution
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regardless of the value of p. Figure 3 illustrates the CV ratio between the sum of
regular Poisson variables, which is just a Poisson variable with parameter nλ and∑n

i=1 Ti for various values of λ and p. The reader is referred to the Appendix for
the derivations of equations (28) and (29).
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Figure 3: CV comparison. Each graph illustrates the ratio between CV(
∑n

i=1 Mi)
(where Mi ∼ Poisson(λ)) and CV(

∑n
i=1 Ti) , as a function of n. There are nine

graphs. In each row we compare models with the same λ but with different values
of p. In each column there are models with the same value of p but with different
λ’s. The dotted line is a horizontal line with intercept 1. As p grows so does the
number of intervals (n) required for the ratio to approach 1. As λ grows so does
the number of intervals (n) required for the ratio to approach 1.
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4 Model Fitting

As described previously we analyzed two hours: 7:00-8:00 and 12:00-13:00. We
divided them into twenty six-minute intervals. In each interval we calculated the
number of arrivals for each second. A frequency table for each interval was then
computed (the ith cell in the table counts the number of seconds during which
exactly i arrivals occurred). These tables served as the observed frequency tables.
Using our model, calculating the expected number of arrivals per second requires
two parameters: the arrival rate λ and the probability p of a blocked second. The
arrival rate per second can be easily estimated by the average number of calls
per second over the six-minute interval. The estimate of p is determined as the
solution to the following minimum chi-square problem:

p̂ = arg min
0<p<1

k∑
i=1

(Oi − Ei(λ̂, p))2

Ei(λ̂, p)
(30)

The function is the well-known chi-square statistic where:

• parameter k is the number of bins with different call arrival frequencies.
Note that the number of bins varied between intervals depending on the
count of seconds with a larger number (3+, 4+ , 5+) of arrivals.

• Ei(λ̂, p) is the expected number of one-second intervals with i arrivals.
Ei(λ̂, p) = n · P (T (λ̂, p) = i) where P (T (λ̂, p) = i) is defined according
to Definition (26) and n is the number of seconds in the time window under
study (in our case 360).

• Oi is the observed frequency for cell i.

The number of degrees of freedom of the minimum chi-square statistic is k-3,
after accounting for the two estimated parameters.

For each 6-minute interval we estimated λ̂ and p̂. We used a standard minimiza-
tion solver to estimate p̂. Consequently, for each interval we obtained a chi-square
statistic which now could be used to test the goodness of fit of our theoretical
distribution. The results of the above test are shown in Table 3. Further ex-
amination of the p-values reveals that none of the hypotheses can be rejected,
suggesting that the gatekeeper model fits well. It is important to note that fixing
p = 0, corresponding to a Poisson arrival process, does not fit the data at all. For
almost all six-minute intervals, the p-value is significant, rejecting the Poisson
process model for arrivals to the agents service queue.

In Figure 4 we plot p (the probability for a blocked second) versus the arrival
rate λ. For most of the intervals, p̂ has a value between 0.25 and 0.4.
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Starting time Ending time p̂ λ̂ Chi-Square statistic df p-value
07:00 07:06 0.421 0.297 1.6740 2 0.433005
07:06 07:12 0.564 0.203 4.5196 3 0.210547
07:12 07:18 0.315 0.242 0.3374 1 0.561288
07:18 07:24 0.323 0.258 1.7829 2 0.410054
07:24 07:30 0.290 0.275 0.6344 2 0.728181
07:30 07:36 0.338 0.256 2.0061 1 0.156662
07:36 07:42 0.256 0.283 1.0632 1 0.302469
07:42 07:48 0.261 0.317 4.3491 2 0.113656
07:48 07:54 0.284 0.367 3.8414 2 0.146504
07:54 08:00 0.412 1.372 5.0688 3 0.166111

12:00 12:06 0.318 0.933 3.5012 4 0.477693
12:06 12:12 0.361 0.975 3.6791 4 0.451161
12:12 12:18 0.321 0.869 1.6599 3 0.645867
12:18 12:24 0.343 0.947 3.8446 5 0.571988
12:24 12:30 0.324 0.963 9.0676 4 0.059430
12:30 12:36 0.258 0.922 6.9987 6 0.320964
12:36 12:42 0.324 0.908 7.8848 6 0.246665
12:42 12:48 0.317 0.933 1.3427 5 0.930473
12:48 12:54 0.281 0.838 5.7747 4 0.216615
12:54 13:00 0.323 1.033 4.9943 5 0.416575

Table 3: Goodness of fit between the model results and the observed values. This
table summaries the estimated p, estimated arrival rate λ, chi-square statistic and
the appropriate p-value for each 6-minute interval between 7:00-8:00 and between
12:00-13:00.

5 Discussion

From the above analyses of data from a US bank call center, it is clear that
when modeling the arrival process to the agents queue, one cannot assume that
it is a Poisson process — at least not at the resolution of one second. The
gatekeeper model suggested here does however provide an adequate description
of the arrival process, with a probability of about 0.30 that for any given second
the accumulated potential arrivals will be detained (blocked) for another second.

Of course, we have no reason to believe that we have discovered the actual mech-
anism that disturbs the Poisson-ness of the arrival process. On the other hand,
it does give the software and hardware engineers some food for thought.

For macro decisions concerning call center operations, this aberration from the
usual assumption of Poisson arrivals is probably of marginal importance. As can
be seen from Figure 3, when considering the arrivals at a resolution of say 5
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Figure 4: Probability of a blocked second as a function of the arrival rate (per
second). Blue points correspond to intervals between 12:00-13:00 while red points
intervals between 7:00-8:00

seconds, rather than 1 second, the difference between the Poisson CV and the
Gatekeeper CV is small for p ≈ 0.3.
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Appendix Proof Outlines

In this appendix we will show how to calculate the coefficient of variation of∑n
i=1 Ti and prove Equation (29). First we will prove Equation (28). Calculating

the term (Var
∑n

i=1 Ti) requires a few steps.

Step 1 Proving the next three propositions:

Proposition 1 For all i > j the following equation holds:

E(Bj ·Xj−1 ·Xi−1) = pi−j · E(X2
j−1) +

[
λp2

1− p
− λpi−j+1

1− p
+ λpi−j

]
· E(Xj−1)

Proposition 2 For all i > j the following equation holds:

E(Yj ·Xi−1) = E(Xj−1) · λpi−j + (λ2 + λ)pi−j +
λ2p

1− p
· (1− pi−j−1)

Proposition 3 For all i > j the following equation holds:

E(Bj · Yj ·Xi−1) = E(Xj−1) · λpi−j + (λ2 + λ)pi−j +
λ2p2

1− p
· (1− pi−j−1)

Step 2 Calculating the term E(Ti · Tj) for i > j

E(Ti · Tj) = E [(1−Bi)(Xi−1 + Yi)(1−Bj)(Xj−1 + Yj)]

= (1− p)[E(Xi−1Xj−1)− E(BjXj−1Xi−1) + E(Xi−1Yj)− E(BjYjXi−1)

= (1− p)[E(Xj−1)(λ · (1− pi−j)) + λ2p · (1− pi−j−1) + λ2(1− p)]

Step 3 Calculating the term Cov(Ti, Tj) for i > j

Cov(Ti, Tj) = E(Ti · Tj)− E(Ti) · E(Tj)

= −λ2pi−j
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Step 4 Calculating the term Var(
∑n

i=1 Ti)

Var(
n∑

i=1

Ti) =
n∑

i=1

Var(Ti) + 2
n∑

i=2

i−1∑
j=1

Cov(Ti, Tj)

= nλ ·
(

1 +
2λp

1− p

)
− 2λ2

n∑
i=2

i−1∑
j=1

pi−j

= nλ + 2λ2p(1− pn)

(1− p)2

Using the above results, it is easy to prove Equation 29 in the following manner:

CV (
n∑

i=1

Ti) =

√
nλ + 2λ2 p(1−pn)

(1−p)2

nλ
=

√
1

nλ
+ 2p

1− pn

(1− p)2n2
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