Call Centers

Queueing

Theory, Science, Practice

Service Engineering

Madrid, July 3, 2002

e.mail: avim@tx.technion.ac.il

Tool: http://4CallCenters.com (register & use)

Course: http://ie.technion.ac.il/serveng

Supporting Material

Koole, and M.: "Queueing Models of Call Centers: An Introduction." *AOR* (MCQT '02).

Gans, Koole, and M.: "Telephone Call Centers: A Tutorial and Literature Review." Invited review to *MSOM*.

M., Sakov, and Zeltyn: "Empirical Analysis of a Call Center." Technical report, Technical, 2000.

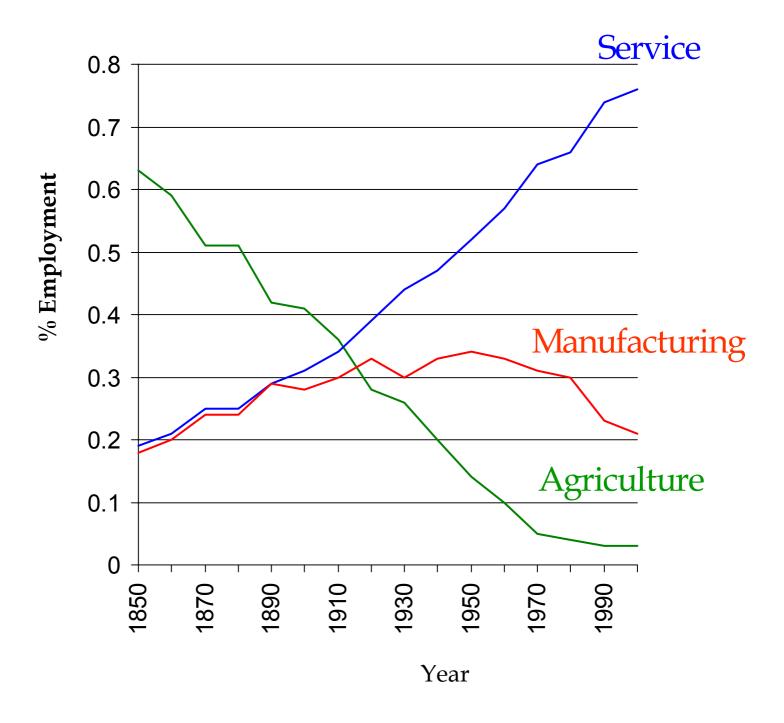
Jelenkovic, M. and Momcilovic: "The GI/D/N Queue in the QED (Quality and Efficiency Driven) Regime." Under preparation.

Borst, M. and Reiman: "Dimensioning Large Telephone Call Centers." Under revision to *Operations Research*.

Garnett, M. and Reiman: "Designing a Telephone Call-Center with Impatient Customers." Accepted to *MSOM*.

Jennings, M., Massey and Whitt: "Server staffing to meet time-varying demand." *Management Science* **42**, 1383–1394, 1966.

Atar, M. and Reiman: "Scheduling a Multi-Class Queue with Many Exponential Servers: Asymptotic Optimality in Heavy-Traffic." Technical Report, Technical, 2002.


M. and Stolyar: "Scheduling Flexible Servers with Convex Delay Costs: Heavy-Traffic Optimality of the Generalized cμ-Rule." Submitted to *Operations Research*, 2002.

Contents

- 1. Service Engineering Research, Teaching, Practice.
- 2. The World of Call Centers
- 3. Workforce Management (Staffing): Hierarchical View
- 4. Operational Regime: Quality-Driven, Efficiency-Driven
 The QED Regime (Quality- & Efficiency-Driven):
- 5. Strategy: Pooling Call Centers (via Erlang-C = M/M/N)
- 6. Economics: Optimal Staffing
- 7. Reality enforces Abandonment (Erlang-A = M/M/N+M)

 Patience: Understanding, Estimating, Managing
- 8. Predictable Variability: Time-dependent Queues
- 9. "Why Service Stinks": Skills-Based Routing (CRM)
- 10. Future Research
- 11. Homework: HW7 & HW11 in <ie.technion.ac.il/serveng>
 Using iProfiler and/or Charisma in <4CallCenters.com>

Employment History: 1850-2000

Service Engineering

• Contrast with the traditional and prevalent

Service Management (Business Schools)

Industrial Engineering (Engineering Schools)

• Goal: Develop scientifically-based design principles (rules-of-thumb) and tools (software), that support the balance of service quality and efficiency, from the (often conflicting) views of customers, servers and managers.

• Theoretical Framework: Queueing Networks

• Applications focus: Call (Contact) Centers

Example: Designing Techology-Intensive User-Interfaces

- Support + Sales via Telephone + Chat + e.mail

Example: Staffing the Modern Call Center

People = 60-80% costs of running a call center
 (±1% of 1000 agents = 10 salaries; 2% U.S. workforce.)

Multi-Disciplinary: Typical (OR, Marketing, CS, HRM)

Service Networks = Queueing Networks

- People, waiting for service: teller, repairman, ATM
- Telephone-calls, to be answered: busy, music, info.
- Forms, to be sent, processed, printed; for a partner
- Projects, to be developed, approved, implemented
- Justice, to be made: pre-trial, hearing, retrial
- Ships, for a pilot, berth, unloading crew
- Patients, for an ambulance, emergency room, operation
- Cars, in rush hour, for parking
- Checks, waiting to be processed, cashed
- Queues Scarce Resources, Synchronization Gaps
 Costly, but here to stay
 - Face-to-face Nets (Chat) (min.)
 - Tele-to-tele Nets (Telephone) (sec.)
 - Administrative Nets (Letter-to-Letter) (days)
 - Fax, e.mail (hours)
 - Face-to-ATM, Tele-to-IVR
 - Mixed Networks (Contact Centers)

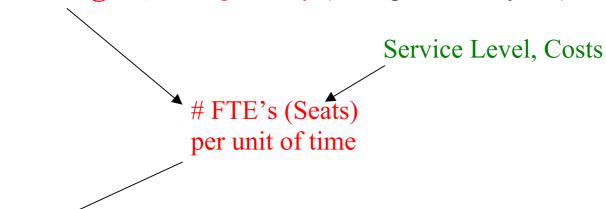
Tele-Nets: Call/Contact Centers

Scope	Examples	Perf. Meas.
Information (uni, bi-dir)	#411, Tele-pay, Help Desks	Avg. Delay > 0
Business	Tele-Banks, #800-Retail	Abandons, Econ % Wait > T
Emergency	Police #911	% Wait > 0
Mixed Info + Emerg. Info + Bus.	Utility, City Halls Airlines	Weighted

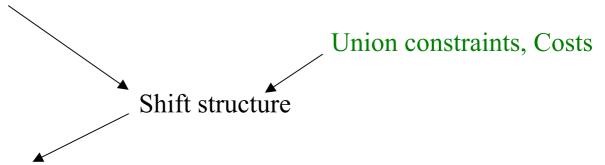
Scale

- 10s to 1000s of agents in a "single" Call Center
- 3% of U.S. work force in call centers (several millions)
- 70% of total business transactions in call centers
- 20% growth rate of the call center industry
- Leading-edge technology, but 70% costs for "people"

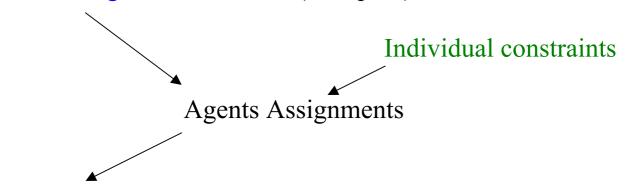
Trends: THE interface for/with customers


- Beyond the classical quality vs. efficiency paradigm (Scale)
- Contact Centers (E-Commerce/Multimedia), outsourcing,...
- Retails outlets of 21-Century
- but also the Sweat-shops of the 21-Century

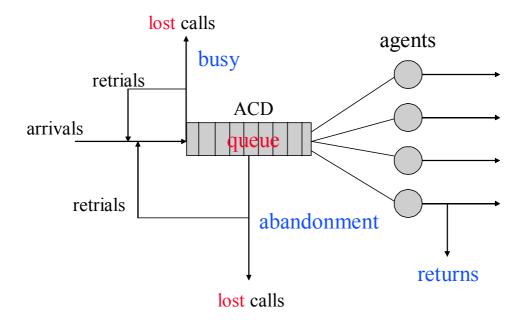
Workforce Management = Staffing: Hierarchical Operational View


Forecasting Customers: Statistics, Time-Series

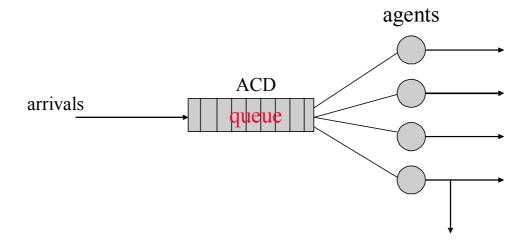
Agents: HRM (Hire, Train; Incentives, Careers)


Staffing: Queueing Theory (Erlang-A and beyond)

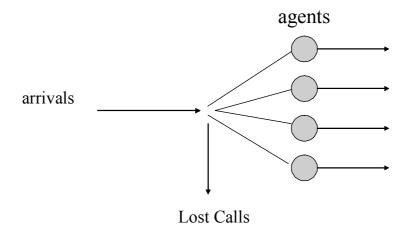
Shifts: IP, Combinatorial Optimization; LP

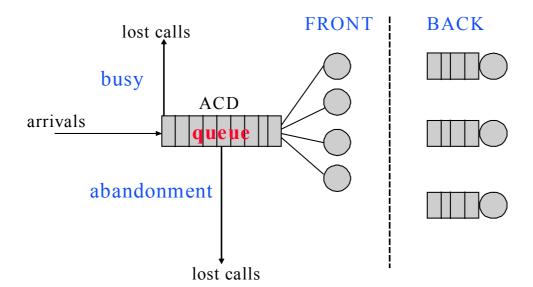


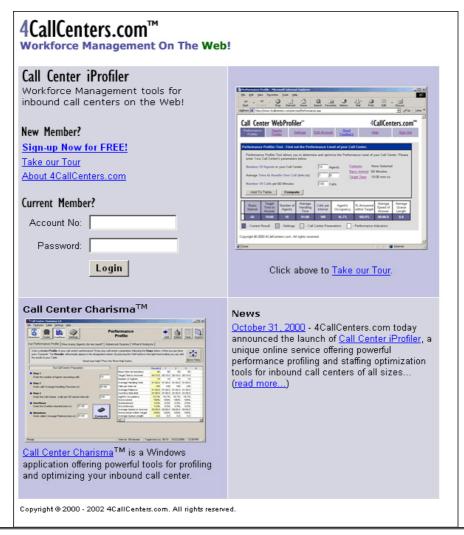
Scheduling: Heuristics, AI (Complex)



Online Skills-based Routing: Stochastic Control (ongoing)


The Basic Call Center


Erlang-C = M/M/N


Erlang-B

Erlang-A <4CallCenters.com>

iProfiler @ 4CallCenters.com

Call Center iProfil	er™							
Performance Profiler	Staffing Profiler		<u>Settings</u>	Edit Acc	<u>ount</u>	Send Feedback		
Performance Profiler Tool - F	ind out the Perfor	rmance Level	of your Call Cent	er.				
Performance Profiler Tool allo Please enter Your Call Cente	•	•	the Performance L	evel of your Call	Center.			
Number of Agents in your ca	II center	10 Ag	ents. <u>Features:</u> <u>Basic Inte</u>	None Selei <u>rval</u> : 30 Minutes				
Average Time to Handle on	Average Time to Handle one call (mm:ss) 1 Target Time: Not Defined.							
Number of Calls per 30 minutes 100 Calls.								
Add To Table Con	pute							
Basic Interval Number of Agents	Average Handling Time	Calls per Interval	Agent's Occupancy	Average Speed of Answer	Average Queue Length			
12 2	2		1	21	<u>u</u>			
- Current Result - Se	ttings 🔲 - Call (Center Parame	ters - Perfor	mance Indicators	3			
Copyright © 2000 4CallCenters.com. All	ights reserved.							

Workforce Management (Staffing): Hierarchical Operational View

Forecasting Customers (Statistics), Agents (HRM)

Staffing: Queueing Theory (Erlang-A and beyond) Service Level, Costs # FTE's (Seats) per unit of time Shifts: IP, Combinatorial Optimization; LP Union constraints, Costs Shift structure Scheduling: Heuristics, AI (Complex) Individual constraints **Agents Assignments**

Online Skills-based Routing: Stochastic Control (ongoing)

What can be adrieved

Copy of Summary Interval . Order PK

Date: 7/7/97 Spil/Skill: Order PK

€₹	And Variable And Time		Time 4/	3	Time Calls	_	Time	6 2 8	Staff	Pos Lev Time	<u>}</u>	TIMe	Thrue Time	
Totals	:00:05	:00:28	10456	:03:47	:00:25	46	53	88	2	149		80		4
2:00 AM*	:00:00	:00:00	58	:04:31	:00:05	-	76	100	_	*	5	CV	9	
2:90 AM*	E0:00:	:04:10	4.	:07:27	:00:33	_	88	8	ď	60	4	. +	28	60
00 AM	00:00		(J)	04:54	:11:29	0	9	6	-	7	8	o	59	69
30 AM			۵			0	0		0	0		8	0	
DO AM	00:00		7	103.21	90:19	0	2	5	~	N	Š	Œ	· 0	#
30 AM	:00:00		27	:02:51	99:50	0	32	\$	4	8	5	I KO	(7)	8
SO AM	00:00:		ß	:03:34	:00:15	0	8	5	2	n	\$	5	4	8
30 AM	00:00		83	:03:11	:00:34	0	8	\$	8	e	100	7	4	8
WY 00	00:00:		120	:03:37	00:40	•	æ	5	47	n	50	ᅇ	W)	8
30 AM	00:00		2	203:04	:00:	0	7*	5	9	(C)	5	2	~	6
80 AM	10:00		283	:03:25	:00:52	0	25	88	75	4	18	O)	 	47
30 AM	20:00:	90:00:	381	:03:45	:00:25	CV	9	87	9	4	68	a 0	- 40	23
OO AM	:00:05	:00:01	418	:03:48	:00:26	-	63	87	3	4	88	VO.	•	10
30 AM	90:00:		348	:03:35	:00:33	r	25	8	96	ļ	86	φ	œ.	¥
11:00 AM*	200:00		352	:03:50	:00:27	O	5	\$	102	r)	\$	7	60	4
30 AM	00:00; 00:00;		348	:03:44	:00:18	9	4	\$		4	8	ထ	Ø	\$
00 PM*	100:00:		354	:03:69	:00:18	0	52	8		*	88	60	VD.	1.7
30 PM*	00:00:		336	:03:38	12:00:	0	23	68		es	8	œ	6 0	46
.M. 00	00:00		3	:03:59	:00:32	0	55	2		4	8	₽	80	4
Md OE	90;00 00;00		388	:03:52	200:14	0	58	8		4	8	=	~	8
S PM.	:00:01		383	:03:55	71:00:	٥	5	5		4	5	온	40	46
. N. O.	8 8 8		403	:03:58	:00:13	0	Į,	5		4	5	유	4	8
30 PM	00:00:	30:04	2	:04:02	:00:18	-	57	8		4	96	Φ	'n	5
30 PM	00:00		347	:03:59	\$1:00:	0	8	5	8	C.)	5	7	ιΩ	3
BO PM	:00:00		382	:03:48	:01:37	0	20	충	2	4	50	80	_	4
30 PM.	00:00:		378	53:41	:00: 10:00:	0	55	8	8	4	88	80	пD	33
80 PW	:00:00		4	:03:53	90:19	٥	23	<u>8</u>	409	**	5	G	VO	
30 PM	90:01		387	:03:58	91:00:	٥	23	8	8	4	8	5	ဖ	5
6:00 PM*	000	:00:21	371	:03:28	:00:25	-	S	4	<u>6</u>	4	88	G	6	47
6:30 PM*	00:00		88	:03:26	:00:13	Φ	4	5	8	(T)	00	80	4	37
7:00 PM*	00:00:		289	:03:24	:00:1	0	4	5	0	60	6	φ.	10)	38

Rough Performance Analysis

Peak
$$10:00 - 10:30$$
 a.m., with 100 agents

400 calls

3:45 minutes average service time

2 seconds ASA = Average Speed of Answer

Offered load
$$\mathbf{R} = \lambda \times \mathbf{M}$$

 $= 400 \times 3:45 = 1500 \text{ min.}/30 \text{ min.}$

= 50 Erlangs

Occupancy
$$\rho = R/N$$

$$\rho = R/N$$

$$= 50/100 = 50\%$$

- ⇒ Quality-Driven Operation (Light-Traffic)
- \Rightarrow Classical Queueing Theory (M/G/N)

Quality-driven: 100 agents, 50% utilization

⇒ Can increase offered load - but by how much?

M/M/N	N=100	E(S) = 3:45 m	in.
<u>λ</u> /hr	$\underline{\rho}$	$E(W_q) = ASA$	% Wait ≤ 2 sec
800	50%	0	100%
1000	62.5%	0	100%
1200	75%	0	99.7%
1400	87.5%	0:02 min.	88%
1500	93.8%	0:15 min.	60%
1550	96.9%	0:48 min.	35%
1580	98.8%	2:34 min.	15%
1585	99.1%	3:34 min.	12%

Efficiency-driven Operation (Heavy Traffic)

Intuition: at 100% utilization, N servers = 1 fast server.

$$W_{q} \approx W_{q} \mid W_{q} > 0 = \frac{1}{N} \cdot \frac{\rho_{N}}{1 - \rho_{N}} \cdot E(S) \rightarrow E(S) / \gamma$$

$$N(1 - \rho_{N}) \sim \gamma \qquad (\rho_{N} \rightarrow 1)$$

Changing N (Staffing)

			E(S) = 3:4	15
λ / hr	$\underline{\mathbf{N}}$	OCC	ASA	% Wait $\leq 2 \sec$
1585	100	99.1%	3:34	12%
1599	100	99.9%	59:33	1%
1599	100+1	98.9%	3:06	13%
1599	102	98.0%	1:24	24%
1599	105	95.2%	0:23	51%

=> **New** operational regime

Heavy traffic, in the sense that OCC > 95%;

Light traffic, 50% answered immediately.

Rationalized Operation: high service + efficiency levels

QED Regime = Quality-Driven + Efficiency-Driven

Enabler: Economies of Scale in a

Frictionless Environment (e.g. Call Center)

Theorem (Halfin-Whitt, 1981):

Consider a sequence of M/M/N models, N=1,2,3,...

Then the following 3 points of view are equivalent:

• Customer
$$\lim_{N\to\infty} P_N \{ \text{Wait} > 0 \} = \alpha, \quad 0 < \alpha < 1;$$

• Server
$$\lim_{N\to\infty} \sqrt{N}(1-\rho_N) = \beta$$
, $0 < \beta < \infty$;

• Manager
$$N \approx R + \beta \sqrt{R}$$
, $R = \lambda \times E(S)$ large;

Here
$$\alpha = \left[1 + \frac{\beta \phi(\beta)}{\phi(\beta)}\right]^{-1},$$

where $\varphi(\cdot)/\phi(\cdot)$ is the standard normal density/distribution.

Extremes:

Everyone waits:
$$\alpha = 1 \iff \beta \le 0$$
 Efficiency-driven

No one waits:
$$\alpha = 0 \iff \beta = \infty$$
 Quality-driven

Theorem (Halfin-Whitt, 1981):

Consider an M/M/N (Erlang-C) model, N large.

Then the following 3 points of view are equivalent:

• Customers
$$%{\text{Wait}} > 0} = \alpha, \quad 0 < \alpha < 1;$$

• Agents
$$\rho \approx 1 - \frac{\beta}{\sqrt{N}}$$
, $0 < \beta < \infty$;

• Managers
$$N \approx R + \beta \sqrt{R}$$
, $R = \lambda \times E(S)$ large;

Here
$$\alpha = \left[1 + \frac{\beta \phi(\beta)}{\rho(\beta)}\right]^{-1}$$
,

where ϕ/ϕ are the standard normal density/distribution

Extremes:

Everyone waits:
$$\alpha = 1 \iff \beta \le 0$$
 Efficiency-driven

No one waits:
$$\alpha = 0 \iff \beta = \infty$$
 Quality-driven

√ Safety-Staffing: Performance

$$R = \lambda \times E(S)$$

Offered load (Erlangs)

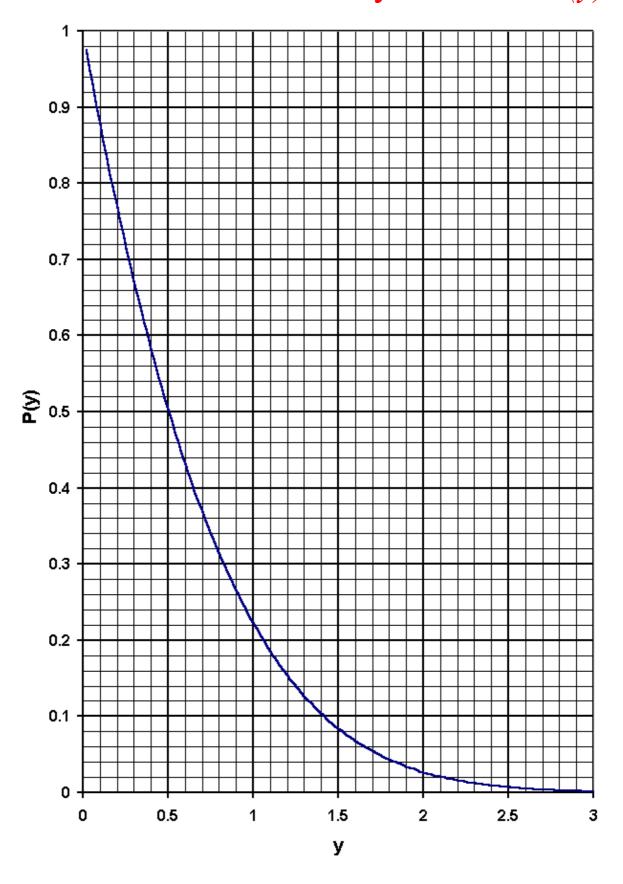
$$N=R+\underbrace{\beta\sqrt{R}}$$

$$\beta$$
 = "service-grade" > 0

$$= R + \Delta$$

$$\sqrt{\cdot}$$
 safety-staffing

Expected Performance:


% Delayed
$$\approx P(\beta) = \left[1 + \frac{\beta \phi(\beta)}{\phi(\beta)}\right]^{-1}, \quad \beta > 0 \approx \text{Erlang-C}$$

Congestion index
$$= E\left[\frac{\text{Wait}}{\text{E(S)}}\middle| \text{Wait} > 0\right] = \frac{1}{\Delta} \text{ ASA}$$

$$% \left\{ \frac{\text{Wait}}{\text{E(S)}} > T \mid \text{Wait} > 0 \right\} = e^{-T\Delta}$$
 TSF

Servers' Utilization =
$$\frac{R}{N} \approx 1 - \frac{\beta}{\sqrt{N}}$$
 Occupancy

The Halfin-Whitt Delay Function P(y)

QED: Intuition (Assume $\mu = 1$)

M/M/N:
$$W_N \mid W_N > 0 \stackrel{d}{=} exp\left(mean = \frac{1}{N} \frac{1}{1 - \rho_N}\right)$$

$$\sqrt{N} W_N \mid W_N > 0 \stackrel{d}{=} exp\left(\sqrt{N} (1 - \rho_N)\right) \Rightarrow exp(\beta)$$

But why $P(W_N > 0) \rightarrow \alpha$, $0 < \alpha < 1$? answer via

M/D/N: (with P. Jelenkovic and P. Momcilovic)

Observation: Cyclic assignment does not alter waiting times \Rightarrow Same waiting as in $E_N/D/1$!

QED $N = R + \beta \sqrt{R}$ and consider one of the $E_N/D/1$:

Interarrivals
$$A_N \approx 1 + \frac{\beta}{\sqrt{N}} + \frac{Z}{\sqrt{N}}$$
, $Z \stackrel{d}{=} N(0,1)$
Lindley $W_N = (W_N + 1 - A_N)^+$ $(\sqrt{N} \ W_N \Rightarrow W)$

$$P(W_N \le 0) = P(W_N + 1 - A_N \le 0) \approx$$

$$\approx P(W/\sqrt{N} + 1 - 1 - \beta/\sqrt{N} - Z/\sqrt{N} \le 0) = P(W - \beta \le Z)$$

$$P(W_N > 0) \rightarrow P(Z < W - \beta) = E\phi(W - \beta) < 1$$

(Efficiency: $N = R + \gamma$ (HT); Quality: $N = R + \delta R$ (D/D/1)

Rules of Thumb: Operational Regimes

$$\mathbf{R} = \lambda \times \mathbf{E}(\mathbf{S})$$

 $R = \lambda \times E(S)$ units of work per unit of time (pure)

Efficiency-driven

$$(P{Wait > 0} \rightarrow 1)$$

$$N = \lceil R + \gamma \rceil,$$

 $\gamma > 0$ service grade

Quality-driven

$$(P{Wait > 0} \rightarrow 0)$$

$$N = \lceil R + \delta R \rceil$$
,

$$\delta > 0$$

QED Regime

$$(P{Wait > 0} \rightarrow \alpha, 0 < \alpha < 1)$$

$$\mathbf{N} = \left\lceil R + \beta \sqrt{R} \right\rceil$$

 $N = \lceil R + \beta \sqrt{R} \rceil$, $\beta > 0$ service grade

How to determine parameters? regimes?

via Strategy, Economics

Strategy: Sustain Regime through Pooling

Economies of Scale

Base case: M/M/N with parameters λ , μ , N

Scenario: $\lambda \to m\lambda \ (R \to mR)$

	Base Case	Efficiency-driven	Quality-driven	Rationalized
Offered load	$R = \frac{\lambda}{\mu}$	mR	mR	mR
Safety staffing	Δ	٥	$m\Delta$	\sqrt{m}
Number of agents	$N = R + \Delta$	$mR + \Delta$	$mR + m\Delta$	$mR + \sqrt{m}\Delta$
Service grade	$eta = rac{\Delta}{\sqrt{R}}$	$rac{eta}{\sqrt{m}}$	$eta\sqrt{m}$	B
$Erlang-C = P\{Wait > 0\}$	P(eta)	$P\left(rac{eta}{\sqrt{m}} ight)\uparrow 1$	$P(\beta\sqrt{m})\downarrow 0$	B(eta)
Occupancy	$\rho = \frac{R}{R + \Delta}$	$rac{R}{R+rac{\Delta}{m}} \uparrow 1$	$\rho = \frac{R}{R + \Delta}$	$rac{R}{R+rac{\Delta}{\sqrt{m}}}\!\uparrow\!1$
$ASA = E\left[\frac{Wait}{E(S)} \middle Wait > 0\right]$	$\frac{1}{\Delta}$	$\left[rac{1}{\Delta}= ext{ASA} ight]$	$rac{1}{m\Delta} = rac{ ext{ASA}}{m}$	$rac{1}{\sqrt{m}\Delta} = rac{ ext{ASA}}{\sqrt{m}}$
$TSF = P\left\{\frac{Wait}{E(S)} > T \mid Wait > 0\right\}$	$e^{-T\Delta}$	$e^{-T\Delta} = TSF$	$e^{-mT\Delta} = (TSF)^m$	$e^{-\sqrt{m}T\Delta} = (\text{TSF})^{\sqrt{m}}$

Strategy: Sustain Regime through Pooling - Example

Base:
$$\lambda = 300/\text{hr}$$
, AHT = 5 min, N = 30 agents
 $R = 300 \times \frac{5}{60} = 25$, OCC = 83.3% ASA = 15 sec

$$y = (N - R)/\sqrt{R} = (30 - 25)/\sqrt{25} = 1$$
, $P(1) = 22\%$

4 CC:
$$\lambda = 1200$$
, AHT = 5, R = 100; N=?

Quality-Driven: maintain OCC at 83.3%.

$$N = 120$$
, $ASA = .5 \text{ sec}$, $y = (120 - 100)/10 = 4$

Efficiency-Driven: maintain ASA at 15 sec.

$$N = 107$$
, $OCC = 95\%$, $y = 0.8$

QED: maintain $%{Wait>0}$) at 22% (y at 1).

$$N = 100 + 1 \cdot \sqrt{100} = 110$$
, OCC = 91%, ASA = 7 sec

9 CC:
$$\lambda = 2700$$
, AHT = 5, R = 225

$$\mathbf{O}$$
: $N = 271$

E:
$$N = 233$$

QED:
$$N = 225 + 1 \cdot \sqrt{225} = 240$$
, $OCC = 94\%$, $ASA = 47$ sec

Economics: √. Safety-Staffing

Service-Quality vs. Operation Efficiency

With S. Borst, M. Reiman (1997-2002)

Quality D(t) delay cost (t = delay time)

Efficiency C(N) staffing cost (N = # agents)

Optimization: N* that minimizes total costs

(Satisfization: N* least that adheres to a cost constraint)

• **C** >> **D**: Efficiency-driven

• **C** << **D**: Quality-driven

• $\mathbf{C} \approx \mathbf{D}$: Rationalized: QED

Framework: Asymptotic theory of M/M/N, $\mathbb{N} \uparrow \infty$.

Economics: Linear Costs Model

Expected cost / unit of time =

$$E(N, \lambda) = C(N) + \lambda \cdot P\{W_q > 0\} \cdot E[D(W_q) | W_q > 0]$$

Change of variables
$$N \to N_{\lambda}(x) = \frac{\lambda}{\mu} + x \sqrt{\frac{\lambda}{\mu}}, \quad x > 0$$

Erlang-C Formula

$$P\{W_q > 0\} = \pi\left(N, \frac{\lambda}{\mu}\right) \rightarrow \pi_{\lambda}(x)$$

Linear costs $C(N) = c \cdot N$, $D(t) = d \cdot t$

Then
$$E(N, \lambda) = c \cdot N + \lambda \pi \left(N, \frac{\lambda}{\mu} \right) \frac{d}{N\mu - \lambda}$$
$$= c \frac{\lambda}{\mu} + cx \sqrt{\frac{\lambda}{\mu}} + \pi_{\lambda}(x) \frac{d}{x} \sqrt{\frac{\lambda}{\mu}} .$$

Continuous Approximation of original discrete problem:

$$x_{\lambda}^* = \underset{x>0}{\arg\min} \left\{ cx + \frac{d_{\lambda}}{x} \pi_{\lambda}(x) \right\}$$
 (c-fixed, d varies with λ).

Economics: Linear Costs Asymptotics

Efficiency-driven: $d_{\lambda} = d\lambda^{-1/2}$; then $x_{\lambda}^* \to 0$, $\pi_{\lambda}(x_{\lambda}^*) \sim 1$.

Let
$$y_{\lambda}^* = \underset{y>0}{\operatorname{arg\,min}} \left\{ cy + \frac{d}{y} \lambda^{-1/2} \right\}$$

Quality-driven: $d_{\lambda} = d\lambda^{1/2}$; then $x_{\lambda}^* \to \infty$, $\pi_{\lambda}(x_{\lambda}^*) \sim \frac{\varphi(x_{\lambda}^*)}{x_{\lambda}}$.

Let
$$y_{\lambda}^* = \underset{y>0}{\operatorname{arg\,min}} \left\{ cy + \frac{d}{y^2} \lambda^{1/2} \varphi(y) \right\}$$

QED: $d_{\lambda} \equiv d$;

then
$$x_{\lambda}^* \to x^*$$
 $(0 < x^* < \infty)$, $\pi_{\lambda}(x_{\lambda}^*) \sim P(x_{\lambda}^*)$.

Let
$$y^* = \arg\min_{y>0} \left\{ cy + \frac{d}{y} P(y) \right\}$$

Theorem: Asymptotic Optimality of $N_{\lambda}(y_{\lambda}^{*}) = \frac{\lambda}{\mu} + y_{\lambda}^{*} \sqrt{\frac{\lambda}{\mu}}$

(Roughly)
$$\frac{E(N_{\lambda}(y_{\lambda}^{*}),\lambda) - C\left(\frac{\lambda}{\mu}\right)}{E(N_{\lambda}^{*},\lambda) - C\left(\frac{\lambda}{\mu}\right)} \to 1, \text{ as } \lambda \uparrow \infty.$$

Economics: Quality vs. Efficiency (Linear Costs)

Optimal
$$\mathbf{N}^* \approx \mathbf{R} + \mathbf{y}^* \left(\frac{d}{c}\right) \sqrt{\mathbf{R}}$$

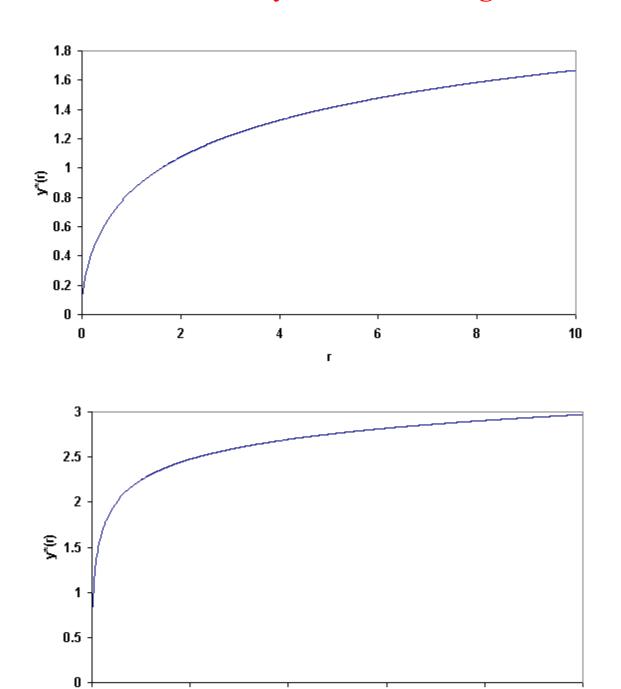
where $\mathbf{d} = \frac{\text{delay/waiting costs}}{\text{delay/waiting costs}}$

c = service/staffing costs

Here
$$y^*(\mathbf{r}) \approx \left(\frac{r}{1 + r(\sqrt{\pi/2} - 1)}\right)^{1/2}$$
, $0 < r < 10$

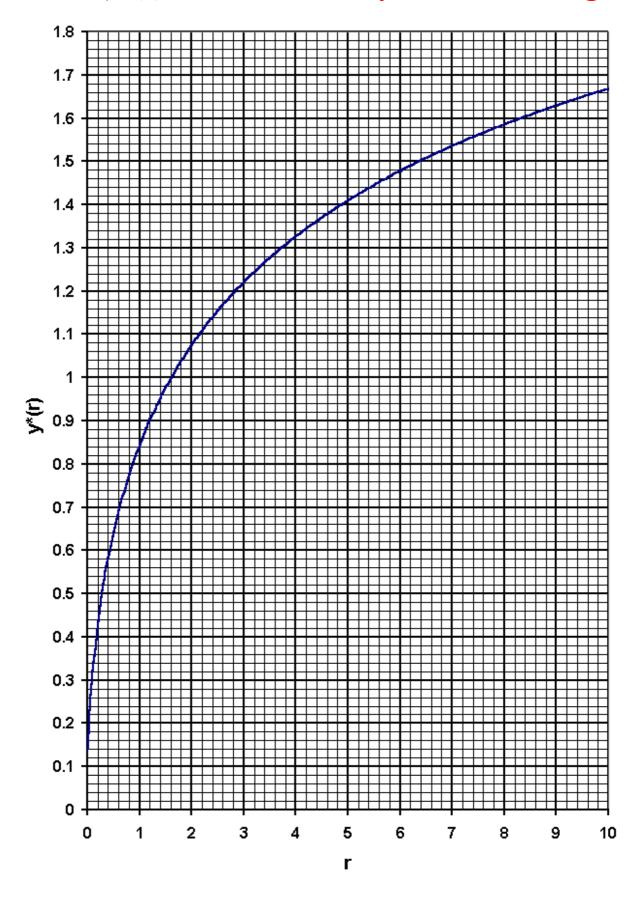
$$\approx \left(2 \ln \frac{r}{\sqrt{2\pi}}\right)^{1/2}$$
, $r \text{ large.}$

Performance measures: $\Delta = y^* \sqrt{R}$ safety staffing


%{Wait > 0}
$$\approx \mathbf{P}(\mathbf{y}^*) = \left[1 + \frac{\mathbf{y}^* \phi(\mathbf{y}^*)}{\phi(\mathbf{y}^*)}\right]^{-1}$$
 Erlang-C

TSF = %{\frac{\text{Wait}}{E(S)} > T | \text{Wait > 0}} = \text{e}^{-T\Delta}

ASA = E\left[\frac{\text{Wait}}{E(S)}| \text{Wait > 0}\right] = \frac{1}{\Delta}


Occupancy = 1 - \frac{\Delta}{N} \approx 1 - \frac{\mathcal{y}^*}{\sqrt{N}}

Square-Root Safety Staffing: $N = R + y^*(r)\sqrt{R}$ $r = \cos t$ of delay / $\cos t$ of staffing

Г

$y^*(r)$, $r = \cos t$ of delay / $\cos t$ of staffing

√ Safety-Staffing: Overview

Simple Rule-of-thumb:
$$\mathbf{N}^* \approx \mathbf{R} + \mathbf{y}^* \left(\frac{d}{c}\right) \sqrt{\mathbf{R}}$$

Robust: covers also efficiency- and quality-driven

Accurate: to within 1 agent (from few to many 100's)

Instructive: In large call centers, high resource utilization and service levels could **coexist**, which is enabled by **economies of scale** that dominate stochastic variability.

Example: 100 calls per minute, at 4 min. per call

 \Rightarrow R = 400, least number of agents

$$\frac{\Delta}{R} \approx \frac{y^*(r)}{\sqrt{R}} = \frac{y^*}{20}, \text{ with } y^*: 0.5-1.5 ;$$

Safety staffing: 2.5%-7.5% of R=Min! \Rightarrow "Real" Problem?

<u>Performance</u> :	$\underline{\hspace{1cm}N^*}$	% wait > 20 sec.	Utilization
	400 + 11	20%	97%
	400 + 29	1%	93%

Relevant: Large call centers do perform as above.

Scenario Analysis: "Satisfization" vs. Optimization

Theory: The least N that guarantees $%{Wait > 0} < \varepsilon$ is close to $N^* = R + P^{-1}(\varepsilon)\sqrt{R}$ (again $\sqrt{\cdot}$ safety-staffing).

(Folklore:
$$N^* = R + \overline{\phi}^{-1}(\epsilon)\sqrt{R}$$
, $\overline{\phi} = 1 - \phi$,

based on normal approximations to infinite-servers models.

The two essentially coincide for small ε .)

Example:
$$\lambda = 1,800$$
 calls at peak hour (avg)
$$M = 4 \text{ min. service time (avg)}$$

$$R = 1800 \times \frac{4}{60} = 120 \text{ Erlangs offered-load}$$

Service level constraint: less than 15% delayed, equivalently at least 85% answered immediately.

$$\Rightarrow N^* = R + P^{-1}(0.15)\sqrt{R} = 120 + 1.22\sqrt{120} = 133 \text{ agents}$$

$$\Rightarrow \%{\text{Wait} > 20 \text{ sec.}} = 5\% \qquad \text{delayed over 20 sec.}$$

$$ASA = E[\text{Wait}] = \textbf{2.7 sec.} \quad \text{average wait}$$

$$ASA \mid \text{Wait} > 0 = \textbf{18 sec.} \quad \text{average wait of delayed}$$

Scenario Analysis: 80:20 Rule (Large Call Center)

Prevalent std: at least 80% customers wait less than 20 sec.

Formally: %(Wait > 20 sec.) < 0.2

• Base Case: λ = 100 calls per min (avg)

M = 4 min. service time (avg)

R = 400 Erlangs offered load (large)

$$y^*(\frac{d}{c}) = 0.53$$
, by %{Wait > 20 sec.} = P(y^*) $e^{-1.67y^*} = 0.2$

Hence: $N^* = 400 + 0.53 \sqrt{400} = 411$, by $\sqrt{\cdot}$ safety-staffing

And
$$\frac{d}{c} = (y^*)^{-1} (0.53) = 0.32$$
, by inverting y^*

Low valuation of customers' time, at $\frac{1}{3}$ of servers' time, yet reasonable 80:20 performance? enabled by scale!

• What if $\frac{d}{c} = 5$?

$$N^* = 429$$
 agents (vs. 411 before)

Agents' accessibility (idelness) = 7% (vs. 3% before)

Hence, 1 out of 100 waits over 20 sec. (vs. 1 out of 5)

Figure 5 American data. Beta vs $P{Ab}$

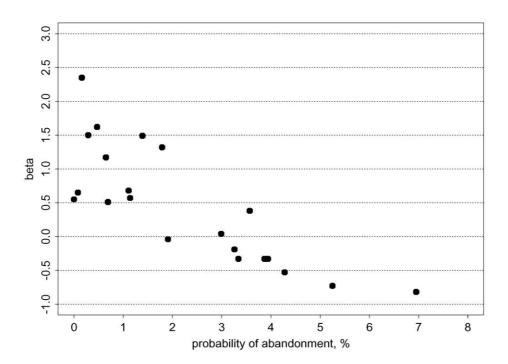
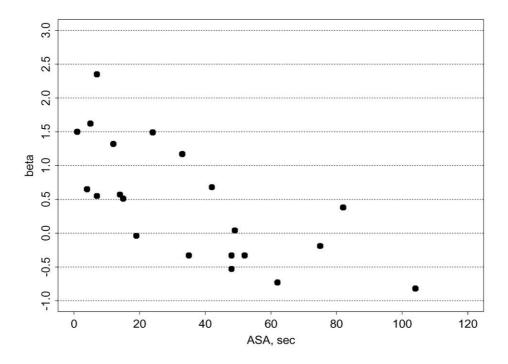



Figure 6 American data. Beta vs ASA

Operational Aspects of Impatience

The "fittest" survive and wait less — much less!

Recall earlier Q, E and QED Scenarios (E(S) = 3:45):

$\underline{\lambda}$ /hr	$\underline{\mathbf{N}}$	OCC	ASA	% Wait $\leq 2 \sec$
1599	100	99.9%	59:33	1%
1599	105	95.2%	0:23	51%
1600	100	100%	infinity	0%
		BUT	with	Impatience
				%Abandonment
1600	100	97.3%	0:23	2.7 %
1600	95	98.4%	0:23	6.5%
1800				3.4%

QED with **Impatient** Customers (with Garnett & Reiman):

Erlang-A: Theoretical performance analysis

Free Internet implementation (4CallCenters.com)

Prevalent in well-managed large call centers

Charlotte – Center

6/13/00 - Tue

Time	Recvd	Answ	Abn	ASA	AHT	Occ %	On	On	Sch	Sch
			%				Prod%	Prod	Open	Avail
								FTE	FTE	%
Total	20,577	19,860	~3.0%	30	307	95.1%	85.4%	222.7	234.6	95.0%
8:00	332	308	7.2%	27	302	87.1%	79.5%	59.3	66.9	88.5%
8:30	653	615	5.8%	58	293	96.1%	81.1%	104.1	111.7	93.2%
9:00	866	796	8.1%	63	308	97.1%	84.7%	140.4	145.3	96.6%
9:30	1,152	1,138	1.2%	218	303	90.8%	81.6%	211.1	221.3	95.4%
10:00	1,330	1.286	3.3%	22	307	98.4%	84.3%	223.1	229.0	97.4%
10:30	1,364	1,338	1.9%	33	296	99.0%	84.1%	222.5	227.9	97.6%
11:00	1,380	1,280	7.2%	34	306	98.2%	84.0%	222.0	223.9	99.2%
11:30	1,272	1,247	2.0%	44	298	94.6%	82.8%	218.0	233.2	93.5%
12:00	1,179	1,177	0.2%	1	306	91.6%	88.6%	218.3	222.5	98.1%
12:30	1,174	1,160	1.2%	10	302	95.5%	93.6%	203.8	209.8	97.1%
13:00	1,018	999	1.9%	9	314	95.4%	91.2%	182.9	187.0	97.8%
13:30	1,061	961	9.4%	67	306	100.0%	88.9%	163.4	182.5	89.5%
14:00	1,173	1,082	7.8%	78	313	99.5%	85.7%	188.9	213.0	88.7%
14:30	1,212	1,179	2.7%	23	304	96.6%	86.0%	206.1	220.9	93.3%
15:00	1,137	1,122	1.3%	15	320	96.9%	83.5%	205.8	222.1	92.7%
15:30	1,169	1,137	2.7%	17	311	97.1%	84.6%	202.2	207.0	97.7%
16:00	1,107	1,059	4.3%	46	315	99.2%	79.4%	187.1	192.9	97.0%
16:30	914	892	2.4%	22	307	95.2%	81.8%	160.0	172.3	92.8%
17:00	615	615	0.0%	2	328	83.0%	93.6%	135.0	146.2	92.3%
17:30	420	420	0.0%	0	328	73.8%	95.4%	103.5	116.1	89.2%
18:00	49	49	0.0%	14	180	84.2%	89.1%	5.8	1.4	416.2%

Theorem (with Garnett and Reiman, 2001):

Consider a sequence of M/M/N+M (**Erlang-A**) models, with parameters λ_N , μ , θ , for N=1,2,3,...

Then the following **3 points of view** are equivalent:

• Customer
$$\lim_{N\to\infty} P_N \{ \text{Wait} > 0 \} = \alpha, \quad 0 < \alpha < 1;$$

• Server
$$\lim_{N\to\infty} \sqrt{N}(1-\rho_N) = \beta$$
, $-\infty < \beta < \infty$;

• Manager
$$N \approx R + \beta \sqrt{R}$$
, $R = \lambda \times E(S)$ large;

$$\Rightarrow$$
 Serendipity $\lim_{N\to\infty} \sqrt{N} P_N \{Abandon\} = \gamma, 0 < \gamma < \infty.$

Here $\alpha(\beta; \mu, \theta)$, $\gamma(\beta; \mu, \theta)$ are easily computable.

Extremes:

$$\alpha = 1 : N = R - \gamma R$$
 Eficiency-driven

$$\alpha = 0 : N = R + \gamma R$$
 Quality-driven

Erlang-A: Input, Inference

Input parameters:

Number of Agents (N): in ACD data

Arrival rate (λ) : ACD

Average Service time (M): ACD

Average Patience (T) estimated from ACD data via:

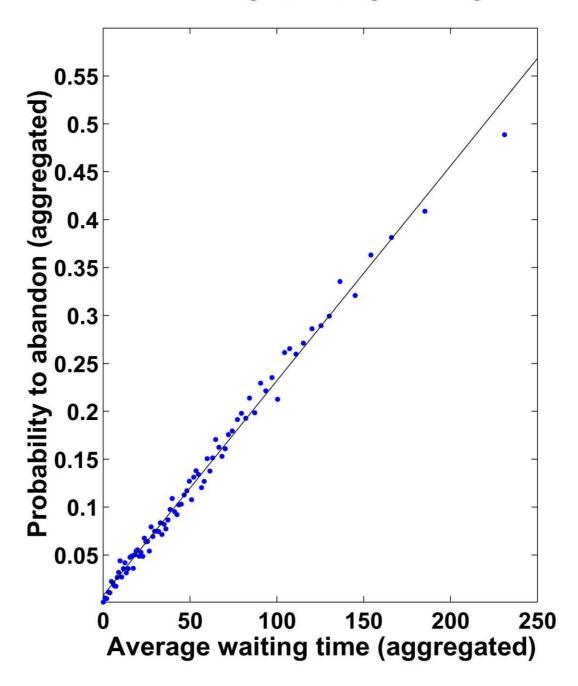
$$T = \frac{(\# \text{ served}) \times \left(\text{average wait} \atop \text{of served}\right) + (\# \text{ abandon}) \times \left(\text{average wait} \atop \text{of abandon}\right)}{\# \text{ abandon}}$$

$$= \frac{\text{Average wait (overall)}}{\text{% abandon}}$$

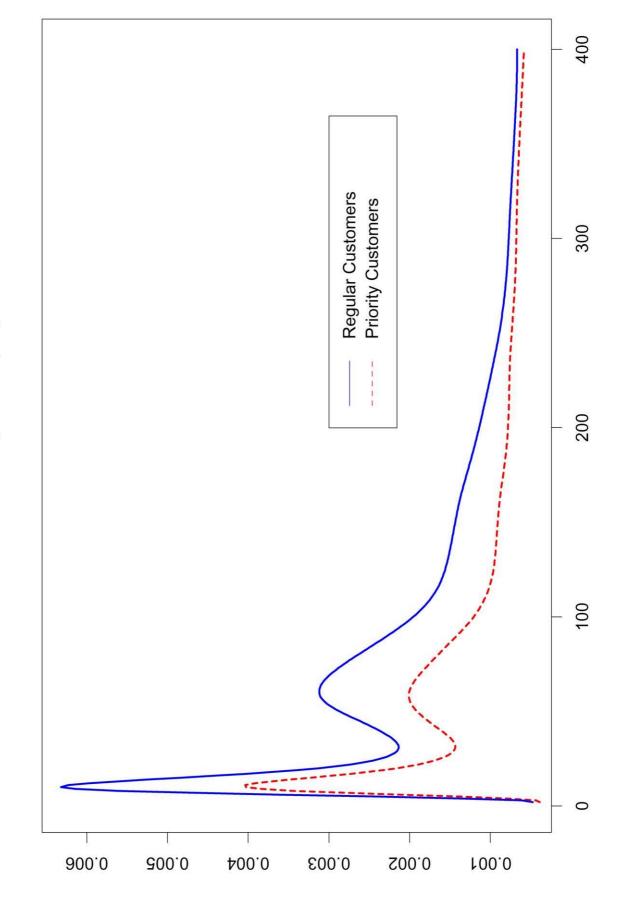
[can be estimated via linear regression of (Avg Wait, % abandon)]

For square-root safety staffing, which does apply here,

$$\mathbf{y} = \frac{N - R}{\sqrt{R}}$$
 , possibly negative (via N = R + y \sqrt{R})


where $\mathbf{R} = \lambda \cdot \mathbf{M}$ is the Offered Workload

Estimating Patience


Censored Sampling, or equivalently (under exp)

P(Abandon) = E(Wait) / E(Patience)

Fraction Abandoning vs. Average Waiting Time

Hazard Rate: Empirical (Im)Patience

Abandonment Important

- Lost business (now)
- Poor service level (future losses)
- 1-800 costs decrease (out-of-pocket vs. alternative)
- Self-selection: the "fittest" survive and wait less
- Must account for (carefully) in models and measures
 - Otherwise wrong picture of reality (e.g. Censoring)
 - Misleading performance measures (e.g. LIFO in skills-based-routing)
 - Unstable models (vs. Robustness)

But Abandonment also Interesting & Challenging

- Queueing Science (Paradigm: experiment, measure, model, validate)
- Research: OR + Psychology + Marketing (Modelling: steady-state, transient, equilibrium)
- Applications
 - VRU/IVR: opt-out-rates
 - Internet: business-drivers (60% and more)
 - Call Centers: unique subjective performance measures

PATIENCE INDEX

• How to Define? Measure? Manage? (via Israeli Data Base)

<u>Statistics</u>	Time Till	<u>Interpretation</u>			
360K served (80%)	2 min.	? must = expect			
90K abandon (20%)	1 min.	? willing to wait			

"Time willing to wait" of served is **censored** by their "wait".

"Uncensoring" (simplified)

Willing to wait
$$1 + 2 \times \frac{360 \text{K}}{90 \text{K}} = 1 + 2 \times 4 = 9 \text{ min.}$$

Expect to wait
$$2 + 1 \times \frac{90 \text{K}}{360 \text{K}} = 2 + 1 \times \frac{1}{4} = 2.25 \text{ min.}$$

Patience Index =
$$\frac{\text{time willing}}{\text{time expect}} = 4 = \frac{\text{\# served/wait} > 0}{\text{\# abandon/wait} > 0}$$

$$\uparrow \qquad \qquad \uparrow$$
definition measure

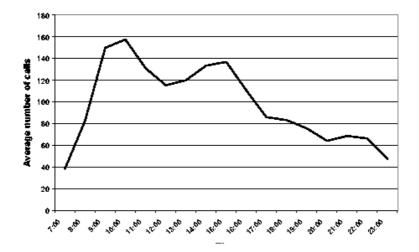
• Supported by ongoing research (with Brown, Haipeng, Zhao).

Designing Call/Contact Centerswith Impatient Customers:

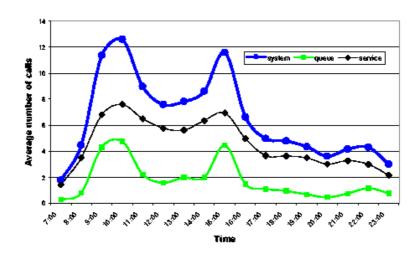
10 Years History, or A Modelling Panorama

- 1. Kella, Meilijson: Practice ⇒ Abandonment important
- 2. Shimkin, Zohar: No data ⇒ Rational patience in Equilibrium
- 4. Carmon, Zakay: Cost of waiting ⇒ Psychological models
- 5. Garnett, Reiman: Palm/Erlang-A to replace Erlang-C/B as the standard Steady-state model
- 6. Massey, Reiman, Rider, Stolyar: Predictable variability ⇒

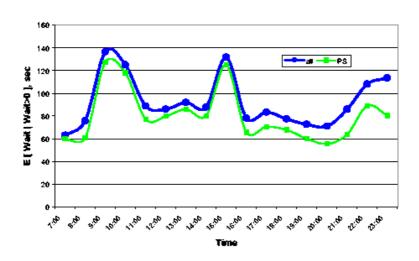
 Fluid models, Diffusion refinements
- 7. Ritov, Sakov, Zeltyn: Finally Data \Rightarrow Empirical models
- 8. Brown, Gans, Haipeng, Zhao: Statistics ⇒ Queueing Science
- 9. Garnett, Atar, Reiman: Skills-based routing ⇒ Control models
- 10. Nakibly, Meilijson, Pollatchek: Prediction of waiting ⇒Online Models and Real Time Simulation
- 11. Garnett: Practice \Rightarrow 4CallCenters.com

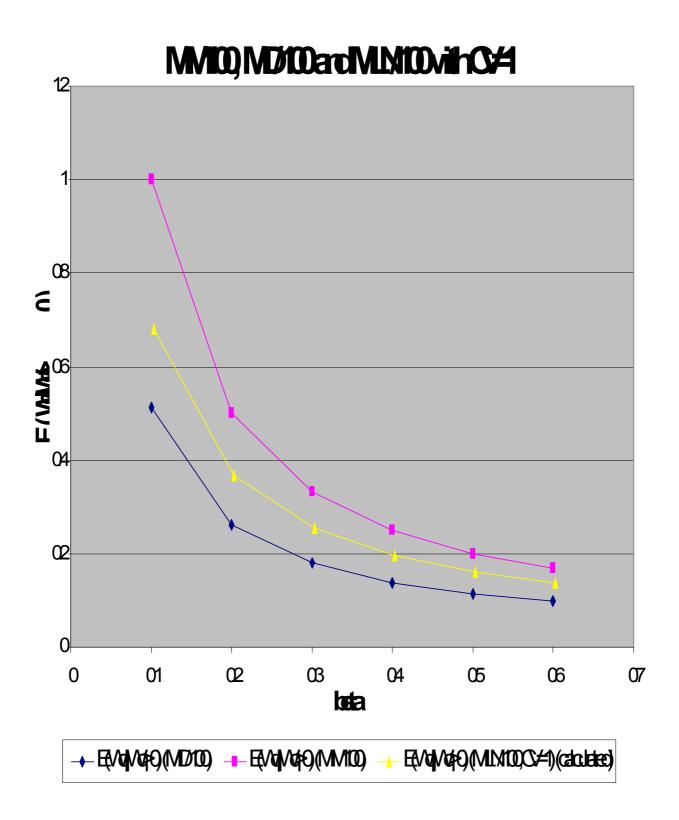

Staffing the "Modern" Basic Call Center

- 1. Erlang-C $N \approx R + y\sqrt{R}$, y > 0
 - Conceptual: Halfin & Whitt
 - Dimensioning: with Borst & Reiman $\Rightarrow y*(d/c)$
- 2. Erlang-A (Abandonment, with $-\infty < y < \infty$)
 - Conceptual: with Garnett & Reiman
 - Dimensioning: with Borst & Reiman, in progress
- 3. Time-Varying (Non-homogeneous Poisson arrivals)
 - Ample-server heuristics: with Jennings & Massey & Whitt
 - Conceptual part: with Massey & Rider, in progress
 - Dimensioning: open (Stochastic Control ?)
- 4. General Service Time (for all the above)
 - Conceptual supported by Puhalski & Reiman, M/PH/N
 - M/D/N: with Jelenkovic & Momcilovic, in progress
 - M/G/N open and challenging (measure-valued limit)
 (Beyond 2nd moment theory in the QED regime!)


Time-Varying Queues: Predictable Variability

(with Jennings, Massey, Whitt)


Arrivals


Queues

Waiting

HWO SB

BONUS SUPPLEMENT: E-TAILING'S FUTURE GEN

www.businessweek.com

isiness

OCTOBER 23, 2000

A PUBLICATION OF THE McGRAW-HILL COMPANIES

Mutual Funds

How to avoid a big

tax bill

Wall Street

Will tech's slide keep spreading?

Dot-coms

The search for

new business models

Managed Care

Employers seek a new solution

Companies know just how good a customer you are—and unless you're a high roller, they

would rather lose you

than fix your problem

#BXBBGDD****CAR-RT SORT**B083 hilliahdiahdlahaddhadlahahadd #06032865631763#J010201 018489 0830 52/INDUSTRIAL ENGINEERING LIBRARY 103

PO BOX 830657

AOL Keyword: BW

Common Performance

BCMS SKILL REPORT Switch Name: FDC/HAMPDEN Date: 7:00 pm WED MAR 10, 1999 Skill: 37 Skill Name: !BA AUTH1 Acceptable Service Level: 30 AVG AVG AVG TOTAL TOTAL % IN ACD SPEED ABAND ABAND TALK AFTER FLOW FLOW AUX/ AVG SERV DAY CALLS ANS CALLS TIME TIME CALL IN OUT OTHER STAFF LEVL 3/04/99 637 0:19 219 0:26 1:57 92:05 0 0 4310:06 8.7 66 3/05/99 849 0:06 135 0:06 1:35 179:58 0 0 4299:43 11.3 3/06/99 1330 0:11 363 0:13 1:42 280:22 0 0 5592:29 13.2 73 3/07/99 1213 0:12 358 0:18 1:46 226:20 0 0 4830:15 11.5 72 3/08/99 631 0:26 382 0:33 1:57 150:50 D. 0 3743:04 7.9 49 3/09/99 570 0:40 487 0:43 1:52 148:41 0 0 3979:04 6.7 38 3/10/99 512 0:29 0:28 1:41 243:06 292 0 0 3046:00 7.9 50 SUMMARY 5742 0:18 2236 0:26 1:46 1321:22 0 0 **** ** 9.6 63

Arrivals

Abandons 40 %

Switch Name: FDC/HAMPDEN Date: 7:00 pm WED MAR 10, 1999
Skill: 46

Skill Name: !BA AUTHORIZATION						A	Acceptable Service Level:				
		AVG		AVG	AVG	TOTAL	<i>a</i> .		TOTAL		30 % IN
	ACD	SPEED	ABAND	ABAND	TALK	AFTER	FLOW	FLOW	AUX/	AVG	SERV
DAY	CALLS	ANS	CALLS	TIME	TIME	CALL	IN	OUT	OTHER	16 St.	LEVI
3/04/99	1185	0:22	479	0:31	2:08	190:16	0	0	4213:22	8.4	61
3/05/99	1805	0:05	.308	0:04	1:38	337:20	0	0	4299:43	11.3	84
3/06/99	2437	0:12	642	0:12	1:51	444:03	0	0	5592:29	13.2	73
3/07/99	2260	0:13	558	0:14	1:46	326:33	0		4830:14	11.5	74
3/08/99	1260	0:35	676	0:28	2:06	308:19	0		3743:04	7.9	48
3/09/99	1126	0:40	653	0:34	2:10	250:40	0		3979:04	6.7	44
3/10/99	890	0:30	472	0:32	2:16	162:13	0		3046:00	7.9	51
					-						
SUMMARY	10963	0:19	3788	0:22	1:55	2019:24	0	0	****:**	9.6	65

30%

BCMS SKILL REPORT

Switch Name: FDC/HAMPDEN Date: 7:01 pm WED MAR 10, 1999

Skill: 33

Skill Nam	e: GA A	uthori:	zation			A	ccepta	able :	Service 1	Level:	3.0
		AVG		AVG	AVG	TOTAL	162		TOTAL		% IN
	ACD	SPEED	ABAND	ABAND	TALK	AFTER	FLOW	FLOW	AUX/	AVG	SERV
DAY	CALLS	ANS	CALLS	TIME	TIME	CALL	IN	OUT	OTHER		LEVL
3/04/99	1248	0:27	61	0:42	1:57	330:04	0	0	4390:04	9.5	72
3/05/99	1521	0:14	37	0:20	1:58	353:48	0	Ó	6035:35	13.0	85
3/06/99	2388	0:20	130	0:34	2:10	550:16	0	0	6369:58	14.4	76
3/07/99	1748	0:14	66	0:30	2:08	432:16	o	ō	4616:11	11.7	82
3/08/99	925	0:18	50	1:00	1:53	191:06	Ó		3835:19	8.4	81
3/09/99	856	0:26	57	0:53	1:54	125:16	Ō		4388:02	8.1	73
3/10/99	959	1:15	125	1:55	1:48	186:44	Ö		4198:39	8.9	53
							-				
SUMMARY	9645	0:25	526	0:57	2:02	2169:30	0	0	****:**	10.6	76

6%

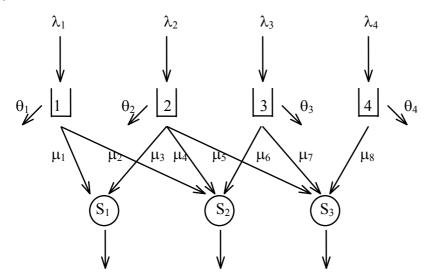
BCMS SKILL REPORT

Switch Name: FDC/HAMPDEN Date: 7:02 pm WED MAR 10, 1999

An Introduction to Skills-Based Routing and its Operational Complexities

By Ofer Garnett and Avishai Mandelbaum Technion, ISRAEL

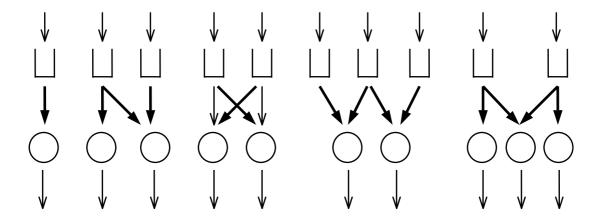
(Full Version)


Contents:

- 1. **Introduction**
- 2. N-design with single servers
- 3. X-design with multi-server pools and impatient customers
- 4. Technical Appendix: Simulations the comutational effort

<u>Acknowledgement</u>: This teaching-note was written with the financial support of the Fraunhofer IAO Institute in Stuttgart, Germany. The authors are grateful to Dr. Thomas Meiren and Prof. Klaus-Peter Fähnrich

Introduction


Consider the following multi-queue parallel-server system (animated, for example, by a telephone call-center):

Here the λ 's designate arrival rates, the μ 's service rates, the θ 's abandonment rates, and the S's are the number of servers in each server-pool.

Such a design is frequently referred to as a **Skills-Based** design since each queue represents "customers" requiring a specific type of "service", and each server-pool has certain "skills" defining the services it can perform. In the diagram above, the arrows leading into a given server-pool define its skills. (For example, a server from pool 2 can serve customers of type 3 at the of rate μ_6 customers per unit of time).

Some canonical designs are: I (I^k), N, X, W, M (V).

SBR in Efficiency-Driven Systems (with Stolyar)

Customer types i (renewal arrivals)

Server skills j (overlapping)

 $\mu_{ij} = \text{service rate of type } i \text{ by server } j \text{ (iid services)}$ $\mu_{ij} = 0 \text{ if } j \text{ cannot serve } i \text{ ;} \qquad (1/\mu_{ij} = E[\text{service time}])$

 $C_i(w) = cost ext{ for type } i ext{ waiting } w ext{ units of time, Convex}$ $(C_i(0) = C_i' ext{ } (0+) = 0 ext{ ; eg., quadratic, not linear })$

Generalized cμ-rule: when becoming idle at time t, server j chooses to serve type i for which

$$i \in arg \max_{i} C'_{i}(W_{i}(t)) \ \mu_{ij}$$

 $W_i(t)$ = head-of-line waiting time in queue i at time t.

Theorem In heavy traffic and with sufficient skills-overlap, Gcμ is asymptotically optimal: minimizes cumulative costs.

Special cases single server: Van Mieghem's Gcµ rule quadratic costs: Kleinrock's aging factor

Idea: complete pooling into a single super-serve

SBR in the QED-Regime (with Atar, Reiman)

Agents' assignment to queues (upon service completion) as well as

Customers' routing to idle servers (upon arrival) are both significant.

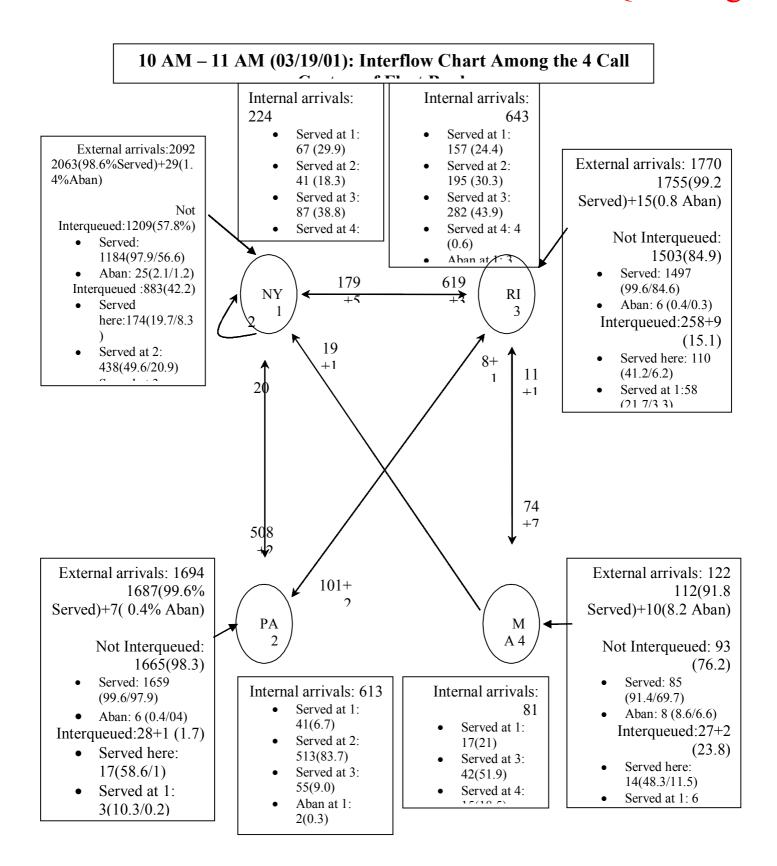
Customer types i (renewal arrival; exponential services)

Abandonment (exponential patience)

N servers (iid, in a V-Design)

Convex costs of queue-lengths (linear delay costs, abandons)

Theorem In the **QED Regime**, namely $N \approx R + \beta \sqrt{R}$, Hamilton-Jacobi-Bellman policies are asymptotically optimal: minimize cumulative discounted costs. $\left(R = \sum_i \lambda_i / \mu_i\right)$


Qualitative insights

- Preemption benefits are negligible.
- Queueing and waiting costs are "equivalent".
- Work-conservation is optimal for work-encouraging costs: optimal if optimal under preemption.
- No state collapse in general ⇒ numerical insights (as in Harrison-Zeevi)

Beyond the "Basic" Call Center

- Skills-based Routing
 - Efficiency-Driven: with Stolyar, Gcu optimal
 - QED: iid Servers, with Atar & Reiman, HJB-based
 - QED: Heterogeneous Servers, with Atar & Reiman
- Networks
 - IVR + ACD; Retrials
 - Hierarchical Help Desk
 - Distributed Call Centers
- Staffing SBR / Networks: Open
- Profit Contact Centers: \$-driven multi-media interface
- Information to customers
- Forecasting: with Brown & Haipeng & Zhao: important

Distributed Call Center: Simultaneous Queueing

Beyond Traditional Queueing Theory Some Characteristics of Services

- Time-varying conditions
 - Predictable variability dominant Fluid View
 - Arrivals typically given, Services Staffing
- State-dependent responses
 - Skills-based routing
 - Finite Buffers
 - Physical = finite waiting room, busy-signal
 - Mental: customers balk, abandon
- Stability ? (9:00 17:00, Abandonment)
- Human factors
 - Equilibrium (decentralized) analysis
 - Fairness FCFS often costly, unnecessary
 - Tele-queues patience, information
- Approximations Fluid and Diffusion (Long- & Short-run)
- Theory + Real Data + Experiments = Multi-Disciplinary Queueing Science

Suggested "What Next"

- Register at <u>www.4CallCenters.com</u>, and play some
 (eg. Review lecture)
- Visit http://ie.technion.ac.il/serveng, then do
 - Homework 7: Gazolco
 - Homework 11: Staffing a Small, Medium, Large CC
- Feedback on Homework (⇒ I'll send solution)
- Download Charisma, and play/pay some