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Abstract

This is a longer version of a paper with the same title, which has been submitted to Management

Science.

Abstract from the Journal Version

This paper develops methods to determine appropriate staffing levels in call centers and other
many-server queueing systems with time-varying arrival rates. The goal is to achieve targeted
time-stable performance, even in the presence of significant time-variation in the arrival rates.
The main contribution is a flexible simulation-based iterative-staffing algorithm (ISA) for the
M,;/G/s; + G model - with nonhomogeneous Poisson arrival process (the M;) and customer
abandonment (the +G). For Markovian M;/M/s; + M special cases, the ISA is shown to
converge. For that M;/M /s;+M model, simulation experiments show that the ISA yields time-
stable delay probabilities across a wide range of target delay probabilities. With ISA, other
performance measures - such as agent utilizations, abandonment probabilities and average
waiting times - are stable as well. The ISA staffing and performance agree closely with the
modified-offered-load (MOL) approximation, which was previously shown to be an effective
staffing algorithm without customer abandonment. While the ISA algorithm so far has only
been extensively tested for M;/M /s, + M models, it can be applied much more generally, to
M, /G /s; + G models and beyond.

What is Contained Here?

This longer version presents more examples; e.g., it treats the M;/M/s; model (without cus-
tomer abandonment) and the M;/M/s; + M model with § > p and 6 < pu, where 6 is the
abandonment rate and p is the service rate. It treats the challenging example from Jennings et
al. (1996). There is extra detail for the previous examples; there are 47 figures here, but only

10 in the journal version. This longer version also provides additional theoretical support.
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1. Introduction

Service systems such as banks, insurance companies and hospitals play an important role
in our society. Services employ about 60-80% of the work force in western economies, and
their importance is sharply on the rise, both within service and manufacturing companies.
In our service-driven economy, it is estimated that over 70% of the business transactions are
carried out over the phone. Most of these transactions are processed by telephone call centers,
which have become the preferred and prevalent means for companies to communicate with
their customers. For an overview of call centers and models of them, readers are referred to
the recent review by Gans, Koole and Mandelbaum (2003).

The modern call center is a highly complex operation that fuses advanced technology and
human beings. But the economic and managerial significance of the latter clearly outweighs
the former. More specifically, labor costs (agents’ salaries, training, etc.) typically run as high
as 70% of the total operating costs of a call center, and attrition rates in call centers reach
anywhere from 30% per year (considered low) to over 200% at times. In such circumstances,
perhaps the most important operational decision to be made is staffing: what is the appropriate
number of telephone agents that are to be accessible for serving calls. Overstaffing is wasteful,

while understaffing leads to low service levels and overworked agents.

1.1. The Staffing Problem

The staffing problem typically takes the following form: Under an existing operational reality,
and given a desired quality of service, we seek the least number of agents at each time that
is required to meet a given service-level constraint. This problem, which has received much
attention over the years (see Section 4 in Gans et. al.), is challenging both theoretically and
practically. The challenges are easy to understand, because the natural model for the staffing
problem is a many-server queue with a time-varying arrival rate, which is notoriously difficult to
analyze. The practical importance of staffing is highlighted by considering a bank employing
10,000 telephone agents and catering to millions of customers per day; even small gains in
operational efficiency or service quality clearly can provide great benefit.

Figure 1 depicts a typical arrival-rate function to a telephone call center. Call volumes
are low around midnight (hour 0), starting to increase in the early hours of the morning,
peaking at late morning, then dropping somewhat around midday (12, lunch break), rising

again afterwards, and then dropping thereafter to midnight levels. The displayed arrival-rate



function is an average of several similar days; the actual number of arrivals, in a given hour
on a given day, fluctuates randomly around this average. (The functional form in Figure 1 is
typical; the particular values for the arrival rates come from Green, Kolesar and Soares (2001).)

Staffing planners are thus faced with two sources of variability: predictable variability
— time-variations of the expected load — and stochastic variability — random fluctuations
around this time-dependent average. Most available staffing algorithms are designed to cope
only with stochastic variability; they avoid the predictable variability in various ways. For
example, when the service times are relatively short, as in many call centers when service is
provided by a telephone call, it is usually reasonable to use a pointwise stationary approrimation
(PSA), i.e., to act as if the system at time ¢ were in steady-state with the arrival rate occurring
at that instant (or during that half hour). With PSA, one performs a stationary or steady-
state analysis with a stationary model having parameters that vary by the time of day; see
Green and Kolesar (1991) and Whitt (1991). (The PSA is the leading term in the more
sophisticated uniform-acceleration (UA) approximation; see Massey and Whitt (1998) and
references therein.)

However, service times are not always short, even in call centers. If relatively lengthy
interactions are not uncommon, then PSA tends to be inappropriate. When service times are
not so short, significant predictable variability can cause PSA to produce poor performance.

As a consequence, some parts of the day may be overstaffed, while others are understaffed.

Figure 1: Hourly call volumes to a medium-size call center
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For a review of staffing methods, see Green, Kolesar and Whitt (2005).

In this paper we address the staffing problem with both predictable and stochastic variabil-
ity. Here is the problem we aim to solve: Given a daily performance goal, and faced with
both predictable and stochastic variability, we seek to find the minimal staffing
levels that meet this performance goal stably over the day. In particular, we aim
to find an appropriate time-dependent staffing function for any arrival-rate function, where
“appropriate” means that we achieve time-stable performance. We aim to agree with PSA
when PSA is appropriate and do significantly better when it is not appropriate. We empha-
size the importance of achieving time-stable performance. With time-stable performance, the
nearly-constant quality of service is easily adjusted up or down, as desired.

The main contribution of this paper is a flexible simulation-based iterative-staffing algo-
rithm (ISA). We develop the ISA for the many-server M;/G/s; + G queueing model, which
has a nonhomogeneous Poisson arrival process (the M;) with time-varying arrival-rate function
A(t), independent and identically distributed (i.i.d.) random service times with a general cu-
mulative distribution function or cdf (the first G), a time-varying number of servers s;, which
is for us to set, and i.i.d. random times to abandon (before starting service) with a general cdf
(the final +G). And we show that the ISA yields time-stable performance across a wide range
of delay-probability targets for Markovian M;/M /s, + M special cases (where the service-time
and time-to-abandon cdf’s G and F' are exponential). The ISA uses a target delay probability,
so stability is directly achieved for the delay probabilities, but other performance measures are
quite stable as well.

Even though we only report results for ISA applied to Markovian M;/M/s; + M models,
the method is developed for more general M,;/G/s; + G models. (Indeed, we obtained similar
results for log-normal and deterministic service-time distributions.) Moreover, the ISA applies
much more generally, so that it has the potential of far-reaching applications. Indeed, by
being based on simulation, ISA has two important advantages: First, by using simulation, we
achieve generality: We can apply the approach to a large class of models; we are not limited to
models that are analytically tractable. We are able to include realistic features, not ordinarily
considered in analytical models. For example, we can carefully consider what happens to agents
who are in the middle of a call when their scheduled shift ends. Second, by using simulation, we
achieve automatic validation: In the process of performing the algorithm, we directly confirm
that ISA achieves its goal; we directly observe the performance of the system under the final

staffing function {s{ SA.0<t<T }. Of course, in other settings the effectiveness of the ISA



still needs to be verified.

Although we do not discuss many-server heavy-traffic stochastic-process limits here, they
play a prominent role in supporting what we do. For example, they provide theoretical support
for the fundamental square-root-staffing formula in (2.7) below. Moreover, this paper shows
that many of the insights about the performance of stationary many-server Markovian queues
provided by the many-server heavy-traffic stochastic-process limits in Halfin and Whitt (1981)
and Garnett et al. (2002) carry over to corresponding queueing systems with time-varying
arrivals, provided that proper staffing is done, aimed at achieving time-stable performance.
With the ISA staffing, the global performance turns out to be essentially the same as for the
stationary models, being well described by the heavy-traffic approximation formulas. That is

dramatically demonstrated by Figures 11, 24, 32, 36 and 41 here.

1.2. Organization of this Paper

More than half this paper repeats the shorter journal version. We have added subsections and
a Table of Contents to better communicate the organization.

The material in §§2-6 mostly repeats what is in the shorter main paper; there are only a
few additions. Most of the additions are tables showing additional aspects of the performance
of the ISA. We start in §2 by briefly reviewing the previous contributions by Jennings et al.
(1996). We then overview our main contributions in this paper in §3. In §4 we specify our
iterative-staffing algorithm in detail.

We start discussing simulation experiments in §5. In §5 we illustrate the performance of our
algorithm by considering an Erlang-A-model (M;/M/s; + M) example (with abandonment).
In §6 we analyze the realistic example, related to Figure 1, including short service times (in
particular 6 minutes). In contrast to Green et. al. (2001), which is the source of Figure 1, we
incorporate abandonment, which significantly impacts staffing results. When abandonment is
present, as it often is in practice, it is possible to achieve good performance with significantly
fewer agents than when abandonment is present. We show that conservative rules of thumb
without abandonment tend to overstaff substantially.

We start presenting new results, not included in the main paper, here in §7. In §7, for
comparison, we consider a time-avaying Erlang-C-model (M;/m/s;) example (without aban-
donment) and show that ISA again performs well. In §8 we revisit the “challenging example”
in Jennings et al. (1996), which is again a M;/m/s; model, now applying our iterative-staffing

algorithm instead of the infinite-server and modified-offered-load (MOL) approximations used



before. We show that ISA performs essentially the same as MOL. In §9 we expand the analysis
of the Erlang-A example from §5 by considering different patience parameters. In §5 we let the
abandonment rate equal the service rate, which is often realistic in practice (approximately).
However, in §9 we let the abandonment rate be 5 times and 0.2 times the service rate, rep-
resenting the cases of very impatient customers and very patient customers, respectively. We
show that the staffing methods continue to perform well in those alternative cases.

In §§10 and 11 we return to material in the journal version. In §10 we present some
supporting theory. That mostly repeats what is in §6 of the journal version, but the final
subsection does not appear there. In §11, we discuss the dynamics of the iterative algorithm,
establishing monotonicity and convergence results. That too mostly repeats what is in the
main paper (§7), but includes some additional figures and discussion.

The remaining material is not in the main paper: In §4.3, we explain and define the
performance measures used in our simulations. In §12 we provide additional insight into the
square-root-staffing formula from the perspective of many-server heavy-traffic limits, using the
Markovian-service-network framework from Mandelbaum, Massey and Reiman (1998).

Finally, in §13 we summarize our main contributions and discuss directions for future

research.
2. Our Point of Departure

Our point of departure is our (with Otis B. Jennings) previous paper: Jennings, Mandelbaum,
Massey and Whitt (1996). There we considered the M;/G/s; model (without customer aban-
donment), having a nonhomogeneous Poisson arrival process with arrival-rate function A(t)
and independent and identically distributed (IID) service times {S, : n > 1}, distributed as
a random variable S with a general cumulative distribution function (cdf) G having mean
E[S]=1/p.

Let N; be the number of customers in the M;/G/s; system, either waiting or being served,
at time t. We focused on the probability of delay, aiming to choose the time-dependent staffing
level s; such that

P(Ny > si) <a< P(Ny>sp—1) forall t, (2.1)

where « is the target delay probability.
In (2.1) above, we choose a constant target delay probability « for all times ¢. To achieve

that for time varying arrival rate A(t), we aim to find an appropriate staffing function s;.



This problem is challenging because the time-dependent delay probability P(N; > s;) in (2.1)
depends on the staffing function before time ¢ as well as at time t.

In this section we review staffing algorithms based on infinite-server (IS) and modified-
offered-load (MOL) approximations from Jennings et al. (1996). These approximations were
developed for the M;/G/s; model without customer abandonment, but the methods extend
directly to the corresponding model with customer abandonment. The effectiveness of these
methods with abandonments was not demonstrated previously, though. Our simulation exper-
iments here will show that ISA produces essentially the same results as MOL, with and without
customer abandonment, and that both are effective. (Our reported experiments are limited to
Markovian M;/M /s, + M models, but limited experimentation for other M;/G/s; + G models

indicate that excellent results hold there too.)

2.1. An Infinite-Server Approximation

We discuss the MOL and infinite-server approximations together, because the MOL approxi-
mation builds on the infinite-server approximation. We start by considering the infinite-server
approximation. Why would anyone consider an infinite-server approximation? From a math-
ematical perspective, the reason is that the finite-server M;/G/s; + G model of interest is
analytically intractable, whereas the corresponding infinite-server M;/G /oo model is remark-
ably tractable. From an engineering perspective, the reason is that the infinite-server model
can be used to show the amount of capacity that would actually be used (and is thus needed)
if there were no capacity constraints (i.e., a limited number of servers). For the Markovian
M;/M/s; + M model, where 0 = p, there is even a stronger connection: In that special case,
the distribution of the number of customers in the infinite-server M;/M /oo model actually
coincides with the distribution of the number of customers in the M;/M/s; + M model, as
we explain in §10, so there is additional strong motivation for considering the infinite-server
approximation.

So what does the infinite-server approximation do? The infinite-server approximation for
the M;/G/s; + G model approximates the random variable N; by the number N/ of busy
servers in the associated M;/G /oo model, having infinitely many servers but the same arrival
process and service times. The infinite-server staffing function s§° is obtained by applying (2.1)
with N7° instead of Ny. That approximation provides great simplification because (i) the tail
probability P(N{° > s;) at time ¢ depends on the staffing function {s; : ¢ > 0} only through

its value at the single time ¢ and (ii) the exact time-dependent distribution of N° is known.



The first simplification follows from the fact that the distribution of the stochastic process
{N£° : t > 0} is totally independent of the staffing function {s; : ¢ > 0}. When we calculate
P(Np® > s;), the staffing level s; just serves as the argument of the tail-probability function.
The second simplification stems from basic properties of M;/G /oo queues. In particular, as
reviewed in Eick et al. (1993a), for each ¢, N2° has a Poisson distribution whenever the number
in the system at the initial time has a Poisson distribution. (Being empty is a degenerate case

of a Poisson distribution.) That Poisson distribution is fully characterized by its mean mg°.

The Offered Load. As in previous work, such as Eick et al. (1993a,b) and Jennings et al.
(1996), our work reported here shows that the time-dependent mean ms° is the crucial quantity.
We regard this exact time-dependent mean m$° in the M;/G /oo model as the (time-dependent)
offered load for the M;/G/s; + G model.

We now observe that convenient formulas exist for the offered load m$°. Eick et al. (1993a)

showed that the offered load has the tractable representation

t t

m° = E[N{°] = / G(t —u)Nu)du=FE [/ A(u) du} =E[Nt—S)]|EIS], (22
—00 t—S

where A(t) is the arrival-rate function, S is a generic service time with cdf G, G¢(t) = 1-G(t) =

P(S >t), and S, is a random variable with the associated stationary-excess cdf (or equilibrium-

residual-lifetime cdf) G, associated with the service-time cdf G, defined by
1 t
Go(t) = P(S, < 1) = / Go(u)du, >0, (2.3)
E[S] Jo

with & moment E[S*] = E[S**1]/((k + 1)E[S]); see Theorem 1 of Eick et al. (1993a) and
references therein.

The different expressions in (2.2) provide useful insight; see Eick et al. (1993a, b) and
Section 4.2 of Green et al. (2005). For the special case in which A(t) is constant, m® =
m™® = AE[S]. Accordingly, the PSA approximation for m$® in the M;/G /oo model is m{94 =
A(t)E[S]. We call m{4 the PSA (time-dependent) offered load for the M;/G/s; + G model.

In addition, there are convenient explicit formulas for mg° in special cases as well as useful
approximations. We will use the explicit formula for sinusoidal arrival-rate functions in §5.
Based on a second-order Taylor-series approximation for A about ¢, the offered load can be

approximated by
A3 (1)
2

where A)(t) is the second derivative of the function A evaluated at time t; see Theorem 9

mi® ~ A(t — E[S.])E[S] + Var(S.)E[S] , (2.4)

of Eick et al. (1993a). Approximation (2.4) shows that the approximate offered load in (2.4)



coincides with the PSA offered load m{54 = A\(t)E[S] except for a time shift by E[S.] and a
space shift by A (t)Var(S.)E[S]/2. Since A(?)(t) will be negative at a peak, we see that the
actual requirements at times of peak demand are less than predicted by PSA. The mapping of
the arrival-rate function into the infinite-server mean m; acts as a smoothing operator, making
the results less extreme. Of course, that is convenient for meeting practical constraints on
staffing schedules (tours of duty).

The time shift is especially important. A simple refinemnt of PSA based on (2.4) suggested
by Eick et al. (1993a) is lagged PSA, where we ignore the space shift and approximate mg° by
At — E[Se])E[S].

Since the infinite-server approximation suggests shifting from the PSA offered load m{54 =
A(t)E[S] to the “infinite-server” offered load mg®, it is useful to quantify the difference between
these quantities. From (a special case of) Theorem 10 in Eick et al. (1993a), we can quantify
the difference between the offered load m$® and the PSA offered load m{4 = A(t) - E[S] in
another way. Letting (Se). be a random variable with the twofold stationary-excess cdf (G.).
(obtained by applying the stationary-excess operator twice to the service-time cdf G), we have

the formula
i~ \(t) - EIS] = B [X (t — (5.)0)] - E[S.] - B[] = 5 - E[X (¢~ (5.))] - F[S].  (25)

From (2.5), it follows that the PSA offered load will not be a good approximation of the
infinite-server offered load when the arrival rate varies rapidly in time (large derivative \').
For a given mean service time, they may also be far apart when the second moment of the
service time, E[S?], (or variance) is large. The second condition has implications for non-

exponential distributions that are heavy tailed; see Whitt (2000) for background.

The Normal Approximation. We now continue, exploiting the established Poisson dis-
tribution with a known time-dependent mean mj°. Assuming that m{® is not extremely
small, we can apply a normal approximation for the Poisson distribution, obtaining first

P(N; > s;) = P(Np° > s;) and then

_ o0 _ [e’e]
P(N® > s) ~ P(N(m®,m®) > s;) =P [ N(0,1) > L0 ) =1 2T )
Vg mgs
(2.6)
where N(m,o?) denotes a normally distributed random variable with mean m and variance

o2, and ®(x) = P(N(0,1) < z) is the standard normal cdf.



The Square-Root-Staffing Formula. From (2.6), we see that we can obtain a stable ap-
proximate delay probability if we can choose the staffing function sp° to make (s2°—mg®)/\/mg®

stable in the final term of (2.6). Accordingly, we obtain the square-root-staffing formula:

s = [m{® + By/m®], 0<t<T, (2.7)

where [z] is the least integer greater than or equal to x and the constant [ is a measure of
the quality of service. Combining the target in (2.1) and the normal approximation in (2.6),
we see that the quality-of-service parameter 3 in (2.7) should be chosen so that 1 — ®(5) = a.

The normal approximation and the square-root-staffing formula for stationary many-server
queues are classic results, see Whitt (1992) and references therein. What is less well understood
is the role of the offered load my® with time-varying arrivals. The notation s°® means that we
staff according to the infinite-server approximation. In doing so, we not only apply the normal
approximation and the square-root-staffing formula, but we also use the infinite-server mean

mz° as the offered load.

2.2. The Modified-Offered-Load Approximation as a Refinement

Section 4 of Jennings et al. (1996) also introduced a refinement of the infinite-server approxima-
tion for the time-dependent delay probabilities, which is tantamount to a modified-offered-load
(MOL) approximation, as in Jagerman (1975) and Massey and Whitt (1994, 1997). The MOL
approximation for V; in the M;/G/s; + G model at time ¢, denoted by NtM OL 'is the limiting
steady-state number of customers in the system in the corresponding stationary M/G/s + G
model (with the same service-time and time-to-abandon distributions and the same number of
servers $; at time t), but using mg° as the stationary offered load operating at time . Since the
stationary offered load is AE[S], that means letting the homogeneous Poisson arrival process
in the stationary M/G/s + G model have time-dependent arrival rate

mg° o .
AMOL — E[iS'] =m;°u at time t. (2.8)

The MOL staffing function sMOL is obtained by applying (2.1) with NMOL instead of Nj.
The important insight is that the “right” time-dependent offered load in the M;/G/s; + G
model should be the time-dependent mean number of busy servers in the associated infinite-
server model - m$°. Since the right offered load for the stationary model is AE[S], the “obvious”
direct time-dependent generalization is the PSA offered load m{4 = A(t)E[S]. However,

AE[S] is also the mean number of busy servers in the associated stationary infinite-server



model. It turns out that the mean number of busy servers in the infinite-server model is a
better generalization of “offered load” than the PSA time-dependent offered load for most
time-varying many-server models. Indeed, it may be considered exactly the right definition for
the infinite-server model itself.

The MOL approximation in §4 of Jennings et al. (1996) was not applied directly. Instead
of calculating the steady-state delay probability for the stationary M /M /s model, we exploited
an approximation for the delay probability based on a many-server heavy-traffic limit in Halfin
and Whitt (1981). That produces a simple formula relating the delay probability o and the
service quality #. Moreover, the heavy-traffic limit provides an alternative derivation of the
square-root staffing formula in (2.7), without relying on an infinite-server approximation or a
normal approximation. We will do the same thing here with customer abandonments, relying

on the heavy-traffic limits for the M /M /s + M model established by Garnett et al. (2002).

2.3. It Is Possible to Achieve Time-Stable Performance!

Jennings et al. (1996) showed that the method for setting staffing requirements in the M;/G/s;
model outlined above is remarkably effective. This was demonstrated by doing numerical com-
parisons for the M;/M /s, special case. For any given staffing function, the time-dependent
distribution of N; in that Markovian model can be derived by solving a system of time-
dependent ordinary differential equations (ODE’s). We too could have exploited ODE’s for the
M;/M/s; + M model, but we wanted to develop a method that applies to much more general
models.

The most important conclusion from those previous experiments in Jennings et al. (1996)
is that it is indeed possible to achieve time-stable performance for the M;/M/s; model by an
appropriate choice of a staffing function s;, even in the face of a strongly time-varying arrival-
rate function. Here we show the same is true for the M;/M/s; + M model. And we provide a

means to go far beyond these Markovian models.
3. Our Contributions Here

We develop staffing algorithms for more complicated time-varying many-server models, such
as many-server queues with abandonment. For example, we treat the much more realistic
M, /G /s+ G model with non-exponential service times (the first G) and non-exponential aban-
donments (the +G). Allowing non-exponential service-time and time-to-abandon distributions

is important, because they have been found to occur in practice; see Bolotin (1994) and Brown

10



et al. (2005). We emphasize that models with customer abandonment were not considered by
Jennings et al. (1996) or anybody else (as far as we know).

For call centers, our ultimate goal is to treat realistic multi-server systems with multiple
call types and skill-based routing (SBR), but we do not pursue that here. In that setting, it
is natural to apply SBR methods for stationary models after using the MOL approximation
in (2.8) for each call type at time ¢. Once we have reduced the problem to a stationary SBR
model, we may be able to apply the staffing method in Wallace and Whitt (2005). Approaches

based on these ideas remain to be investigated, however.

3.1. A Simulation-Based Iterative Staffing Algorithm (ISA)

Our first contribution is a simulation-based iterative-staffing algorithm (ISA) for many-server
queues with time-varying arrival rate. By being based on simulation, ISA has two important
advantages: First, by using simulation, we achieve generality: We can apply the approach
to a large class of models; we are not restricted by having to have a model that is analytically
tractable. We are able to include realistic features, not ordinarily considered in analytical
models. For example, we can carefully consider what happens to agents who are in the middle
of a call when their scheduled shift ends. Second, by using simulation, we achieve automatic
validation: In the process of performing the algorithm, we directly confirm that ISA achieves
its goal; we directly observe the performance of the system under the final staffing function
{s0:0<t<T}.

Following Jennings et. al. (1996), we assume that, in principle, any number of servers can
be assigned at any time. In our implementation, however, time is divided into short intervals
(we take 0.1 service times), and we keep the number of servers fixed over each of these small
intervals. The service discipline is FCFS, and servers follow an exhaustive service discipline: a
server that finishes a shift in the middle of a service will complete the service and sign out only
when finished. (Our results prevail also for preemptive service disciplines under which servers
leave at end-of-shifts and their customers, if any, are moved to the front of the queue; e.g., see
Ingolfsson (2005).)

In practice, staffing is required to be fixed over longer staffing intervals - typically ranging
from 15 minutes to an hour. Here we ignore that constraint. An initial staffing function with
such constraints is obtained from our results by using in each staffing interval the maximum
required staffing level at any time point within that staffing interval. That will yield an upper

bound on the required staffing. Simulation can then be used, in the manner of the ISA, to

11



see if these initial staffing levels can be decreased, while still meeting the performance target
at every time. See Green et al. (2005) for additional discussion on this point, and references
studies of the impact of staffing intervals.

Continuing to follow Jennings et al. (1996), we use the delay probability as our target
performance measure, but the same method could be applied to other performance mea-
sures. Specifically, given a target probability of delay, we identify time-varying staffing levels
under which the actual probability of delay remains approximately equal to the given target at
all times. Other performance measures, such as the average waiting time and the queue-length
tail delay-probabilities, turn out to be relatively constant over time as well.

For the main model we study, the Markovian M;/M /s, + M model, we not only implement
and evaluate ISA, but we also provide a proof of convergence. To do so, we must set aside
the (important) issue of estimating the time-dependent delay probability for any given staffing
function by computer simulation, which is subject to statistical sampling error. That statistical
sampling error decreases as we increase the number of independent replications, so it can be
made arbitrarily small at the expense of computational effort, but for any given amount of
computational effort it is always present. However, if we assume that we actually know the
true delay probabilities associated with each staffing function, then we establish convergence.

That is accomplished by applying sample-path stochastic-order notions, as in Whitt (1981).

3.2. An Extension of the Square-Root-Staffing Formula

While working with ISA, we discovered that the simulation-based solutions have astonishing
regularity. In particular, we found that global performance measures coincide with the per-
formance measures of the associated stationary model. In particular, when we used ISA to
staff the time-varying M;/M/s; + M model, we found that the staffing could be related to the
steady-state behavior of the associated stationary M /M /s + M model. That implies that the
modified-offered-load approximation will work well for the M;/M /sy + M model.

That leads us to our second contribution: We extend the square-root staffing formula
based on the modified-offered-load approximation in Jennings et al. to the M;/M/s;+ M
model. In particular, we suggest staffing according to the square-root-staffing formula in (2.7),
where the service quality 5 = (5(«) is derived from a theoretical one-to-one relation between
« and f for the corresponding stationary model.

In particular, we propose using 3(«), for which staffing levels of s = m + 8y/m would lead

to the desired delay probability « in the corresponding stationary model. For that purpose, we
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could calculate the steady-state probability of delay in the associated stationary m/M/s + M
model, which is routine because the number in system L; is a birth-and-death stochastic
process. We can also calculate all other performance measures in the M /M /s+ M model; e.g.,
see Garnett et al. (2002) and Whitt (2005).

However, instead of calculating the exact steady-state delay probability in the stationary
model, we propose using an approximation for the steady-state delay probability - a sim-
ple formula based on a heavy-traffic limit - just as Jennings et al. applied the many-server
heavy-traffic limit from Halfin and Whitt (1981). For the M;/M/s; + M model, we use ex-
plicit formulas relating o to 3 obtained from the many-server heavy-traffic limits in Garnett,
Mandelbaum and Reiman (2002).

We justify this simple analytic staffing formula by conducting experiments for the My /M /s;+
M model, but we propose the approximation more generally. The effectiveness in any other

context can be verified by applying the simulation-based ISA.

3.3. Staffing at the Offered Load

Finally, we make yet one more contribution. To describe it, we remind readers of the three
heavy-traffic regimes for many-server queues: Quality-Driven (QD, lightly loaded), Efficiency-
Driven (ED, heavily loaded) and Quality-and-Efficiency-Driven (QED, normally loaded); see
Garnett et al. (2002). In our experiments for the many-server queue with abandonments we
found that simply staffing according to the offered load itself is remarkably effective
in the QED regime (specifically, where a = 0.5), i.e., staffing by letting s; = mj° for the
M;/M/s; + M model works very well in the QED regime. Needless to say, abandonments
play a crucial role in this property. This is another example of the importance of including
abandonments in the model, when customers actually do abandon; see Garnett et al. (2002)
for more discussion. See Section 12 for additional theoretical support, based on the Markovian-

service-network framework of Mandelbaum, Massey and Reiman (1998).

3.4. The Naive Deterministic Approximation

Even though staffing according to the offered load is a remarkably simple method, there re-
mains substantial sophistication, because we have to know that we should use the deterministic
offered-load function mg°. When the service times are relatively short (compared to the fluctu-
ations in the arrival-rate function), we can use a truly naive deterministic approximation:

We can then simply staff according to the PSA offered load: we can set s)? = m/54 = \(t)/u
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(which will coincide with the offered load, mg°, in that scenario). When we staff according
to the PSA offered load m{*4 = A(t)/u, we are truly ignoring all stochastic variability; we
are using only deterministic data about the model: the deterministic arrival-rate function A(t)
and the deterministic mean service time 1/u. Even though the infinite-server offered load mj®
is a deterministic function, it depends on the service-time distribution beyond its mean, as is
apparent from (2.2).

We conclude by mentioning that the naive deterministic approximation and PSA are ac-
tually not so effective in the setting of the realistic large example in Figure 1, when there is
customer abandonment in the QED regime; see §6. Even though the service times are short
for this realistic example, in particular, the mean service time is 6 minutes, the arrival-rate

function changes very rapidly, especially in the hours 4 — 6.
4. The Simulation-Based Iterative-Staffing Algorithm (ISA)

In this section we describe the simulation-based interactive-staffing algorithm (ISA). As indi-
cated before, we determine time-dependent staffing levels aiming to achieve a given constant
probability of delay at all times. In the process of applying the ISA, we directly confirm that
our goal is being met. Indeed, the goal will necessarily be met, to a specified tolerance, if the
algorithm converges. We then can confirm that other performance measures, such as server
utilization, tail probabilities, average waits and abandonment probabilities, remain relatively

stable as well.

4.1. The Simulation Framework

For our implementation of the algorithm, we assume that we have an M;/G/s;+G = My /GI/si+
GI model with independent sequences of IID service times and IID times to abandon, which
are independent of the arrival process, having general distributions, and a nonhomogeneous
Poisson arrival process, which is fully specified by its arrival-rate function {A(¢);0 < t < T'}.
(It will be evident that our approach extends to more general models.) For application of our
algorithm, assuming that we use the M;/G/s; + G model, there are issues about model fitting.
For discussion about fitting non-homogeneous Poisson arrival processes, see Massey, Parker
and Whitt (1996).

To start, we fix an arrival-rate function, a service-time distribution, a time-to-abandon
(patience) distribution (when relevant) and a time-horizon [0,7]. For any random quantity

of interest, let X' denote the value at time ¢ in the n'! iteration, for t € [0,7] (the given
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time horizon). Although our algorithm is time-continuous, we make staffing changes only at
discrete times. That is achieved by dividing the time-horizon into small intervals of length A.
In all experiments presented in this paper, we use A = 0.1/u, where 1/ is the mean service
time. We then let the number of servers be constant within each of these intervals.

For any specified staffing function, the system simulation can be performed in a conventional
manner. We generate a continuous-time sample path for the number in system by successively
advancing the next generated event. The candidate next events are of course arrivals, service
completions, abandonments and ends of shifts (the times at which the staffing function is al-
lowed to change). For non-stationary Poisson arrival process, we can generate arrival times
by thinning a single Poisson process with a constant rate \* exceeding the maximum of the
arrival-rate function A\(¢) for all ¢, 0 < ¢ <T. Then an event in the Poisson process at time ¢
(a potential arrival time) is in an actual arrival in the system with probability \(¢)/\*, inde-
pendent of the history up to that time; see Section 5.5 of Ross (1990). Alternatively, the times
between successive arrivals can be generated as independent events, according to probability
distributions, determined by the last customer arrival time, and adjusted if necessary at ends
of shifts.

In this section, let SE") be the staffing level at time ¢ in iteration n for 0 < ¢t < T. Let
Nt(n) denote the random total number of customers in the system at time ¢, under this staffing
function. We estimate the distribution of Nt(n) for each n and ¢ by performing multiple (5000)
independent replications. We think of starting off with infinitely many servers. Since this is
a simulation, we choose a large finite number, ensuring that the probability of delay (i.e., of

having all servers busy upon arrival) is negligible for all ¢. For the examples in §5 and §7, it

suffices to let Sgo) = 200 for all ¢.

4.2. The Algorithm

The algorithm iteratively performs the following steps, until convergence is obtained. Here,
convergence means that the staffing levels do not change much after an iteration. (Practically,

they are allowed to change by some threshold 7, which we take to be 1.)

1. Given the 7't staffing function {sl(f) : 0 <t < T}, evaluate the distribution of Nt(i), for

all ¢, using simulation.

2. Foreacht, 0 <t < T, let sgiﬂ) be the least number of servers such that the delay-
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probability constraint is met at time ¢; i.e., let
(i+1) _ : . (%)
s; =argmin{k e N: P(N,’ > k) <a}.

3. If there is negligible change in the staffing from iteration ¢ to iteration ¢ + 1, then stop;
ie., if

150+ — 5Dl = max {|s{"™) — sV ;0<t< T < 7 |

then stop and let s(t1) be the proposed staffing function. Otherwise, advance to the next
iteration, i.e., replace i by i + 1 and go back to step 1. (Welet 7 =1.) =

For further discussion, let a superscript ISA denote the final iteration of ISA, so that s/54
denotes the final staffing level at time ¢ and N/ denotes the (random) number in system
at time t with that staffing function s’54. Then, if the algorithm converges, it converges to a
staffing function s/54 for which P (NtISA > s{SA) ~a, 0<t<T.

Our implementation of ISA was written in C4++. For the special case of the Markovian
M;/M/s; + M model, we rigorously establish convergence of the algorithm, as we explain in
§11. Experience indicates that the algorithm consistently converges relatively rapidly. The
number of iterations required depends on the parameters, especially the ratio r = 6/u, where
0 is the individual abandonment rate. If r = 1, corresponding to an infinite-server queue (§10),
then no more than two iterations are needed, since the distribution of the number in system
does not depend upon the number of servers. As r departs from 1, the number of required
iterations typically increases. For example, when r» = 10, the number of iterations can get as

high as 6 — 12. When 7 is very small and the traffic intensity is very high, so that we are at

the edge of stability, the number of iterations can be very large. For more discussion, see §11.

4.3. Estimating the Performance Measures

Throughout this paper we present several performance measures. Since we have time-varying
arrivals, care is needed in their definition and estimation. In this subsection we describe our
estimation procedure.

Most measures are time-varying. We define them for each time-interval ¢, and graph their
values as function over ¢ € [0,T]. Other measures are global. They are calculated either as
total counts (e.g. fraction abandoning during [0, 7), or via time-averages. We used T' = 24 in
all our simulations.

For replication k, the delay probability in interval t is estimated by the fraction of

customers who are not served immediately upon arrival, out of all arriving customers during
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the t time-interval. Namely, for the k*® replication, the estimator is:

> Hcustomer_i_entered_queue_at_interval t} Qr(t)
2 Y customer_i_entered_system_at_interval t} — Sy(t)

A (1) (4.1)

We obtain the overall estimator &(t) by averaging over all replications. That was found to be
essentially the same as (identical to for our purposes) the ratio of the average of Qy(t) over all
replications to the average of Sy (t).

For replication k, the estimator of the average waiting time in interval t is defined in

an analogous way by

> wil{customer_i_entered_system_at_interval_t }

Wy (t) = (4.2)

>; Y customer_i_entered_system_at_interval_t}

where w; is the total waiting time of customer i. Again we obtain the overall estimator w(¢)
by averaging over all replications.

The average queue length in interval t is taken to be constant over the time-interval.
The queue length is also averaged over all replications. By the tail probability in interval t
we mean specifically the probability that queue size is greater than or equal to 5 (taking 5 to be
illustrative). Specifically, the indicators 1{L§o°) — sgoo) > 5} are averaged over all replications.
(Here L,EOO) and sgoo) are the values at time ¢ obtained from the last iteration of ISA.)

For replication k, the estimator of the server utilization in interval t is the fraction of

busy-servers during the time-interval, accounting for servers who are busy only a fraction of

the interval: o)

~ zSt:1 bz‘
pu(t) = S=—— (4.3)
s§°°) <A

where b; denotes the busy time of server ¢ in interval t. Again, we obtain the overall estimator

p(t) by averaging over all replications.
5. An Example with the Time-Varying Erlang-A Model

We demonstrate the performance of ISA by considering a time-varying Erlang-A model (M;/M/s;+

M) with a special structured arrival-rate function.

5.1. A Sinusoidal Arrival-Rate Function

We consider a sinusoidal arrival-rate function. In particular, let the queueing system be faced

with a non-homogeneous Poisson arrival process with a sinusoidal arrival-rate function
At)=a+b-sin(ct), 0<t<T, (5.1)
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where a = 100, b = 20 and ¢ = 1. Let the service times and the customer times to abandon
(if they have not yet started service) come from independent sequences of independent and
identically distributed (IID) exponential random variables, both having mean 1. As can be
seen from PSA, the arrival rate is sufficiently large, that about 100 servers are required, so this
example captures the many-server spirit of a call center. However, the sinusoidal form of the
arrival-rate function is clearly a mathematical abstraction, which has the essential property
of producing significant fluctuations over time, i.e., significant predictable variability. This
particular arrival-rate function is by no means critical for our analysis; our methods apply to
arbitrary arrival-rate functions, such as in Figure 1. (Indeed, for that, see Section 6.

An important issue, however, is the rate of fluctuation in the arrival-rate function compared
to the expected service-time distribution. To be concrete, we will measure time in hours, and
focus on a 24-hour day, so that 7' = 24. A cycle of the sinusoidal arrival-rate function in
(5.1) is 27/c; since we have set ¢ = 1, a cycle is 2m ~ 6.3 hours. Thus there will be about 4
cycles during the day. That roughly matches the daily cycle in Figure 1 for the six-hour period
around 12:00 noon.

Since we let the mean service time be 1 and have chosen to measure time in hours, the
mean service time in this example is 1 hour. That clearly is relatively long for most call centers,
where the interactions are short telephone calls. If we were to change the time units in order
to rectify that, making the expected service time 10 minutes, then a cycle of the arrival-rate
function would become about 1 hour, making for more rapid fluctuations in the arrival rate
than are normally encountered in call centers. Thus our example is more challenging than
usually encountered in call centers, but may be approached in evolving contact centers if many
interactions do indeed take an hour or more. (We consider a practical example directly related
to Figure 1 in §6.) From this preliminary analysis, we should anticipate that the service times
are sufficiently long in our example that the traditional PSA method is likely to perform poorly
here, just as in Jennings et al. (1996), and it does. As before, we are deliberately choosing a
difficult case.

The arrival rate coincides with the PSA offered load, because the mean service time here
is 1. The (infinite-server) offered load is given in (2.2). Since we have a sinusoidal arrival-rate
function, we can apply Eick et al. (1993b) to give an explicit formula for the offered-load
mg°, i.e., the mean number of busy servers in the associated infinite-server system. Since the

service-time distribution is exponential, we can apply formula (15) of Eick et al. (1993b). For
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the sinusoidal arrival-rate function in (5.1), the offered load is

mg =a+ [sin(ct) — ¢ - cos(ct)] = 100 + 10[sin(t) — cos(t)] - (5.2)

1+ c?

The second formula in (5.2) is based on the specific parameters: a = 100, b = 20 and ¢ = 1.
In order to put our model into perspective, in Figure 2 we plot the offered load my® in
(5.2) for the sinusoidal arrival-rate function in (5.1) for the parameters a = 100 and b = 20,
as in our example, but with four different values of the time-scaling parameter c¢: 0.5, 1, 2
and 8. The offered load coincides with the mean number of busy servers in the M;/M /oo
model. Note that the offered load m$® is also a periodic function with the same period 27 /c
as the arrival-rate function A(¢). The length of the period decreases and the the size of the
fluctuations decreases as ¢ increases. As c increases, the modified offered load approaches the
average value a = 100. It is important to understand the offered load, because it is a primary

determinant of the required staffing, as we will see.

Figure 2: The offered load m{® for the sinusoidal arrival-rate function in (5.1) with

parameters a = 100, b = 20 and four possible values of ¢: 0.5, 1, 2 and 8.
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5.2. Application of the ISA

Our simulation-based iterated-staffing algorithm ISA generates staffing functions, for any given
target delay probability «. In Figure 3 we present three graphs, showing the generated staffing
functions for three regimes of operation: Quality-Driven (QD) - target a = 0.1, Efficiency-
Driven (ED) - target o = 0.9, and Quality-and-Efficiency-Driven (QED) - target o = 0.5.

In each graph, we plot three curves: the arrival rate A(t) (dotted), the offered load m;
(dashed) and the staffing function s; (solid). Since the mean service time is 1 hour (and we
are using ours as our time unit), the arrival rate A(t) here coincides with the PSA offered
load m{%4 = A(t)E[S], so the arrival rate and offered load are directly comparable. Note
that the peak offered load lags behind (occurs later than) the peak arrival rate, but the ISA
staffing follows the offered load. The ISA staffing levels in Figure 3 thus strongly support the
square-root-staffing formula with the modified-offered-load (MOL) approximation.

Note that we start our system empty. This allows us to observe the behavior of the
transient stage. In particular, there is a ramp-up at the left side of the plot. Our methods
respond appropriately to that ramp-up. That is consistent with Section 7 of Jennings et al.
(1996).

Note that the staffing level decreases as the target delay probability increases. Also note
that, in the QED regime (a = 0.5), the staffing function dictated by ISA falls right on top
of the offered load: In that QED case, it would have sufficed to simply let s; = mg°. The
ISA-staffing S{SA fell on top of the offered load m$® in the QED regime, in particular when

a = 0.5, in all our experiments. That itself is quite stunning.
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Figure 3: Staffing for the time-varying Erlang-A example: (1) a = 0.1 (QD), (2)
a=0.9 (ED), (3) a = 0.5 (QED)
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5.3. Time-Stable Performance

We now show that ISA achieves time-stable performance. In Figure 4 we show the actual prob-
ability of delay obtained by applying our algorithm with target « for nine different values of
the delay-probability target: o = 0.1,0.2,...,0.9. These delay probabilities are estimated by
performing multiple (5000) independent replications with the final staffing function determined
by our algorithm. Under the staffing levels produced by our algorithm, the delay proba-
bilities are remarkably accurate and stable; the observed delay probabilities fluctuate
around the target in each case.

In addition to stabilizing the delay probability, other performance measures (e.g. utilization
and tail probabilities) are found to be quite stable as well. Precise explanations and definitions
of the performance measures are given in Section 4.3. In Figures 5 are 6 are summary results
graphs for all 9 target a’s. These two performance measures increase as « increases, so we see
the 9 cases starting with a = 0.1 at the bottom and increasing to the case a = 0.9 at the top.

However, as the target delay probability increases toward heavy loading, the abandonment
probability becomes much less time-stable, as shown in Figure 7. We discuss this phenomenon

further in §10 below.

Figure 4: Delay probabilities for the sinusoidal example with nine delay-probability
targets o, ranging from 0.1 to 0.9.
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Figure 5: Utilization summary for the time-varying Erlang-A example
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Other measures of congestion such as average waiting time and average queue length were

also found to be relatively stable, but not perfectly so; e.g., see Figure 8.

23



Figure 6: Tail probability summary for the time-varying Erlang-A example
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Figure 7: Abandonment probabilities for the same sinusoidal example with the same
nine delay-probability targets.
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Figure 8: Congestion measures in the time-varying Erlang-A example in the three
regimes: (1) a = 0.1 (QD), (2) « = 0.5 (QED), (3) a« = 0.9 (ED)
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5.4. Validating the Square-Root-Staffing Formula

We now validate the square-root-staffing formula in (2.7). For that purpose, we define an
implied empirical service quality: A function {3/°4 :0 <t < T} is defined by setting
ISA _ , o0
psa =S T g<p<T (5.3)

0 )
my

ISA
t

where mg° is again the offered load in (2.2) and (5.2). while s is the staffing function

obtained by the ISA algorithm. Since s[4 is obtained from the ISA algorithm, the function
ﬁtISA is itself obtained from the ISA algorithm. It thus becomes interesting to see if the
implied service quality is approximately constant as a function of time, because
that would imply that (5.3) approximately coincides with the square-root-staffing formula
(2.7). And, indeed, it is, as shown in Figure 9. Again we consider 9 values of o ranging from
0.1 to 0.9 in steps of 0.1. As « increases, the quality of service reflected by 54 decreases.

But the main point is that the empirical service quality (; as a function of ¢ is approximately

constant as a function of ¢ for each a over the full range from 0.1 to 0.9.

Figure 9: The implied empirical quality of service ,BtI 5S4 for the sinusoidal example,
decreasing as « increases through the values 0.1, 0.2, ..., 0.9.
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Figure 9 is extremely important because it validates the square-root-staffing formula for
this example. First, Figure 4 shows that ISA is able to produce the target delay probability o
for a wide range of a. Then Figure 9 shows that, when this is done, the square-root-staffing
formula holds empirically. In other words, we have shown that we could have staffed directly

by the square-root-staffing formula instead of by the ISA.

5.5. Relating ( to «

However, one issues remains: In order to staff directly by the square-root staffing formula,
we need to be able to relate the quality of service B to the target delay probability . Indeed,
we want a function mapping « into 3. We propose a simple answer: For the time-varying
Erlang-A model, use the associated stationary Erlang-A model, i.e., the M/M/s + M
model. That is tantamount to applying the modified-offered-load approximation to the
M /M /s+ M model. Previously the MOL approximation has been applied only to the pure-loss
and pure-delay models (without customer abandonments).

Moreover, we suggest using simple formulas obtained from the many-server heavy-traffic
limit for the Erlang-A model in Garnett et al. (2002). The Garnett-Mandelbaum-Reiman

function, for brevity here referred to as the Garnett function mapping 3 into « is

n —1
0 h(B) . .
1+\ﬂ (—6)] , < B < o0 (5.4)

where 3 = [+/0/p, with p the individual service rate and 6 the individual abandonment rate
(both here set equal to 1 now) and h(x) = ¢(x)/(1 — ®(x)) is the hazard rate of the standard

o =

normal distribution, with ¢ being the probability density function (pdf) and ® the cdf. Of
course, we want a function mapping « into §. Thus, we use the inverse of the Garnett
function, which is well defined.

We now look at additional simulation output, aimed at establishing the validity of this
stationary-model approach of relating o and (. First, we compare the empirical distribution
of the customer waiting times to the theoretical distribution of those waiting times in the
stationary Erlang-A model. Specifically, in Figure 10 we plot the empirical conditional waiting
time pdf, given wait, i.e. the distribution of the waiting time for those who were in fact delayed,
during the entire time-horizon. In doing so, we are looking at all the waiting times experienced
across the day. As before, we obtain statistically precise estimates by averaging over a large

number of independent replications (here again 5000). In this case, the empirical conditional
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distribution is based on statistics gathered from the time of reaching steady until the end of
the horizon.

In Figure 10 we compare the empirical conditional waiting-time distribution to many-server
heavy-traffic approximations for the conditional waiting-time distribution in the stationary
M/M/s + M queue, drawing on Garnett et al. (2002). Note that the approximation for the
conditional waiting-time distribution in the stationary queues matches the performance of our
time-varying model remarkably well.

The significance of what we are seeing deserves some additional discussion. First, in the
way of background, we note that the stationary waiting-time distribution in the M /M /s + M
model, for parameters ), s and § with g = 1 and s =~ (\/mu) + 8y/\/p tends to depend
only on the parameters 3 and 6, provided that s and A are not small and |3| is not large,
as theoretically deduced by the many-server heavy-traffic limit in Garnett et al. (2002). For
0 = 1 as we are considering, then, the single key parameter is §. In other words, as long as
we keep the parameters 8 and 6 fixed, the stationary distribution tends to be approximately
independent of s or A (with the relation between them depending on f3).

Second, the time-dependent distribution in the M;/M/s; 4+ M model with s; ~ m; + 8/m;
and [ held fixed, tends to have the same distribution at each ¢ as the stationary model discussed
above, with the same 3. That is being supported by Figure 10. Indeed, the beautiful plots
we see in Figure 10 remain valid if we only sample at selected subsets of the times, e.g., only
when the arrival rate is near its maximum or only when the arrival rate is near its minimum.

We next relate the empirical («, 5) pairs to the Garnett function in (5.4). We define the
empirical values & and 3 as simply the time-averages of the observed (time-stable) values
displayed in the plots in Figures 4 and 9. In Figure 11, we plot the pairs of (a;, 3;) alongside
the Garnett function. Needless to say, the agreement is phenomenal!

As a consequence, we see that we can use the inverse of the Garnett function in (5.4)
and in Figure 11 to calculate the appropriate quality-of-service parameter § to use in the

square-root-staffing formula (2.7) for any specified target delay probability «.
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Figure 10: The empirical conditional waiting time distribution, given positive wait,
for the M;/M/s; + M example with three delay-probability targets: (1) a = 0.1
(QD), (2) a = 0.5 (QED), (3) a = 0.9 (ED).
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Figure 11: A comparison of the empirical relation between a and 3 with the Garnett
function for the time-varying Erlang-A example
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5.6. Comparison to PSA and SSA

Jennings et al. (1996) observed that their new infinite-server approximation and modified-
offered-load approximation both performed much better than classical alternatives, namely,
the pointwise stationary approximation (PSA) and the simple stationary approximation (SSA);
SSA uses the stationary model with the overall long-run average arrival rate.

We now show that the same is true here for the time-varying Erlang-A model (using the
same parameters as before: p = 6 = 1 and the sinusoidal arrival-rate function in (5.1) with
a = 100, b = 20 and ¢ = 1). First we plot the arrival rates and staffing levels for PSA and
SSA in Figure 5.6. Then we plot the delay probabilities and the mean queue lengths and mean
waiting times for the two methods in Figures 5.6 and 5.6. The specific target delay probability
here is @ = 0.2. That can be confirmed by looking at SSA. The arrival rate A(¢) has average
100. For s = 109, the steady-state delay probability in the M /M /s+ M model with y =6 =1
is 0.196; while for s = 108, the steady-state delay probability is 0.225. Incidentally, the steady-
state abandonment probabilities in those two cases are 0.0104 and 0.0124, respectively. In
contrast, in the nonstationary environment we see that the time-dependent delay probablity is
as much as 0.75, with an average over 0.35. From the customer’s perspective, the inconsistency
of performance may be as bad as the high congestion itself.

The delay probability plots are quite similar for PSA and SSA, but note that the peaks and
troughs do not occur at the same places. From Figure 5.6, we see that PSA tends to understaff
most when going down, at a point just below the average (100), e.g., at time 10.5, while SSA

tends to understaff most when MOL is near its peak, e.g., at time 8.5.
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Figure 12: Staffing levels for (1) the pointwise-stationary approximation (PSA)
and (2) the simple-stationary approximation (SSA) for the time-varying Erlang-A
example
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Figure 13: Delay probabilities for (1) the pointwise-stationary approximation (PSA)
and (2) the simple-stationary approximation (SSA) for the time-varying Erlang-A
example
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Figure 14: Mean queue lengths and mean waiting times for (1) the pointwise-
stationary approximation (PSA) and (2) the simple-stationary approximation
(SSA) for the time-varying Erlang-A example
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6. The Realistic Example Related to Figure 1

In this section we consider the practical case that was first described in Figure 1. This example
is more realistic than the previous example, not only because we use an actual arrival-rate
function, but also because we use more realistic (shorter) service times. Specifically, we decrease
the mean service time from 1 hour to 6 minutes. That is achieved with our hourly time scale
by letting 4 = 10. Corresponding to that, we let § = 10, so that we have § = p as in Section

5. Results are shown below.
6.1. Time-Stable Delay Probabilities Again from ISA

We first plot the delay probabilities and implied empirical quality of service ﬂtI S4 for the nine
target delay probabilities ranging from 0.1 to 0.9, just as before. They appear in Figures 15
and 16. We see that we again achieve time-stable performance with ISA, and again it agrees

with MOL.

Figure 15: Delay probability summary for the realistic example
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With such short service times, we might think that that this should be an easy problem,
for which simple PSA would also work well. Indeed, when we look at the staffing for three
values of « in Figure 17, we do not see much difference, but there actually is a difference. Even
though the service times are indeed short here, the arrival-rate function is changing rapidly
at some times, especially in hours 4 — 6. For this example, Figure 18 shows that simple PSA

performs significantly worse than ISA.
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Figure 16: Implied service quality 8 summary for the realistic example
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Figure 17: A comparison of staffing levels based on ISA, PSA and lagged PSA for
the realistic example, for three delay-probability targets: 0.1, 0.5 and 0.9.
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6.2. Lagged PSA

As before, we find that ISA produces essentially the same results as MOL. Moreover, the

dominant effect in MOL is captured by the time lag in (2.4); i.e., here it suffices to use lagged

PSA, with approximate offered load A(t — E[S.])E[S].
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Figure 18: A comparison of ISA, PSA and lagged PSA for the same three delay-
probability targets.
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exponential, S, and S have a common exponential distribution, and the lagged-PSA offered
load is just A\(t — E[S])E[S]. The good performance of lagged PSA is consistent with the
various refinements proposed by Green et al. (2001). We show that simple PSA performs
worse than ISA and lagged PSA by plotting the delay probabilities for these three staffing
rules in Figure 18. The performance of simple PSA here is nowhere near as bad as it was
in the challenging M;/M/s; example in Jennings et al. (1996), and as it is for the example
here in §5 (see §5.6), but there are clear departures from the performance targets in Figure 18.
The PSA delay probabilities are significantly below the targets during the hours 4 — 6 with
rapidly increasing arrival rates. The differences among the corresponding staffing functions in
Figure 17 look small, but those small differences can have a significant impact, because the

arrival-rate function changes rapidly.

6.3. Deviations at the Ends of the Day

We also observe that ISA is not as successful as before, because the target delay probability is
not achieved accurately at the beginning and at the end of the day. This phenomenon is even
more evident for other performance measures, as shown in the plots below.

However, this bad behavior is quite clearly due to the extremely low arrival rates that

prevail at the beginning and the end of the day. When the load is small, the addition or
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Figure 19: Abandon probability summary for the realistic example
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Figure 20: Utilization summary for the realistic example
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removal of a single server while greatly affect the delay probability. On the positive side, note
that there is a clear time-interval - from 5 to 18, in which performance measures are quite
stable, and when operating under reasonable service quality (up to delay probability of 0.5),
performance measures are varying in quite a small range.

In Figures 37-39 we further describe the performance of ISA in the three regions: QD
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(o« = 0.1), ED (o = 0.9) and QED («a = 0.5). There are several important observations to
make here: First, note that in all cases the (infinite-server) offered load m; seems to fall almost
directly on top of the PSA offered load m{*4 = \(t)/p, suggesting that in this case that the
MOL approximation essentially coincides with the elementary PSA approximation. But from
Figure 18 we know that we need to incorporate the lag in PSA (to get lagged PSA) in order to
get that good performance. But the square-root-staffing formula (2.7) will perform the same
using either the infinite-server offered load or the lagged-PSA offered load. Moreover, the ISA
performs the same as the square-root-staffing formula with either the infinite-server offered
load or the lagged-PSA offered load.

Consequently, ISA does not differ much from lagged-PSA. However, for the time-varying
Erlang-A model, staffing using lagged-PSA is actually not so routine. We need to apply the
steady-state distribution of the M/M /s + M model or a suitable approximation.

The three regimes of operation in Figures 37-39 are clearly revealed by the average waiting
time: In the QD regime the average waiting time is relatively negligible; in the QED regime
average waiting time is in seconds; and in the ED it is in minutes. Figure 39 shows, once again,
that the staffing falls right on top of the offered load in the QED regime.

Finally, Figure 40 shows that the excellent matching between the Garnett function and the

empirical results is preserved also in this example.
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Figure 21: The realistic example in the QD regime (target a=0.1): (1) staffing level,
offered load and arrival function, (2) average queue length and average waiting
time (in average service time)
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Figure 22: The realistic example in the ED regime (target «=0.9): (1) staffing level,
offered load and arrival function, (2) average queue length and average waiting
time (in average service time)
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Figure 23: The realistic example in the QED regime (target a=0.9): (1) staffing
level, offered load and arrival function, (2) average queue length and average
waiting time (in average service time)
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Figure 24: Comparison of empirical results with the Garnett approximation for the
realistic example
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7. The Time-Varying Erlang-C Model

For comparison with the experiments for the time-varying Erlang-A (M;/M /sy + M) model
in §5, we now show the performance of ISA for the same system described in §5 only without
abandonment (with infinite patience) - the M;/M/s; or time-varying Erlang-C model. As
expected, the required staffing levels are higher than with abandonment, for all target delay
probabilities; compare Figure 25 with Figure 3 in Section 5. For example, for a = 0.5, the
maximum staffing level becomes about 120 instead of 115.

For both the Erlang-A and Erlang-C models, the ISA staffing level decreases as the target
delay-probability increases (as the performance requirement becomes less stringent) However,
the staffing tends to coincide with the offered load in the Erlang-C example only in the ED
regime, when o = 0.9, as opposed to in the QED regime, when a = 0.5. That illustrates how

abandonment allows greater efficiency, while still meeting the delay-probability target.
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Figure 25: The final staffing function found by ISA for the time-varying Erlang-
C example with three different delay-probability targets: (1) a« = 0.1 (QD), (2)
a = 0.5 (QED), (3) a = 0.9 (ED)
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7.1. Time-Stable Performance

As before, we achieve accurate time-stable delay probabilities when we apply the ISA; see

Figure 26, where again we consider target delay probabilities 0.1,0.2,...,0.9.

Figure 26: Delay probability summary for the Erlang-C example
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is stabilizing as well, as can be seen from Figure 27, which

shows results for the same 9 target delay probabilities. As in Figure 9, the empirical service

Figure 27: Implied service quality 3 summary for the Erlang-C example (The implied
service quality decreases as « increases through the values 0.1, 0.2, ..., 0.9.)
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quality decreases as the target delay probability increases. However, the empirical service
quality 8154 stabilizes at a much slower rate, especially for lower values of 3 (larger values of
a). (The approach to steady-state is known to be slower in heavy traffic.) Nevertheless, the
steady-state values can be seen at the right in Figure 27.

Without abandonment the system is more congested, but still congestion measures remain
relatively stable. That is just as we would expect, since the time-dependent Erlang-C' model

is precisely the system analyzed in Jennings et al. (1996). Corresponding plots for other

performance measures appear in Figures 28, 29, 30 and 31.

Figure 28: Utilization summary for the Erlang-C example

Utilization

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

As stated in Section 5, precise explanations and definitions of the performance measures
are given in Section 4.3.
Figures 27 and 30 show that here the time until system reaches (dynamic) steady-state is

much longer compared to a system with abandonment. In fact, in Figure 30 steady-state was
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Figure 29: Tail probability summary for the Erlang-C example
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Figure 30: Mean queue length and waiting time in the Erlang-C model with target
a=0.5
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Figure 31: The conditional distribution of the waiting time given delay in the
Erlang-C model with target «=0.5
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7.2. Validating the Square-Root-Staffing Formula

Just as for the time-varying Erlang-A model, we want to validate the square-root-staffing
formula in (2.7). We thus repeat the various experiments we did in §5. Recall that, for the
stationary M /M /s queue, the conditional waiting-time (W | W > 0) is (exactly) exponentially
distributed. The empirical conditional waiting-time distribution given wait, in our t¢éme-varying
queue and over all customers, also fits the exponential distribution very well; see Figure 31.
The mean of the plotted exponential distribution was taken to be the overall average waiting
time of those who were actually delayed during [0, 7).

Here, the relation between « and 3 is compared with the Halfin-Whitt function from

Halfin and Whitt (1981), namely,

—1
P(delay):aza(ﬁ)%[l—l—ﬁ-i((g))} , 0<fB<o0, (7.1)

where ¢ is again the pdf associated with the standard normal cdf ®. The Halfin-Whitt function
in (7.1) is obtained from the Garnett function in (5.4) by letting 8 — 0.

Just as we use the Garnett function to relate the target delay probability a to the quality-
of-service parameter (3 in the square-root-staffing formula in (2.7) for the M;/M/s;+ M model,
so we use the Halfin-Whitt function to relate @ to § in the square-root-staffing formula in (2.7)
for the My/M /s, model. And that essentially corresponds to the refinement performed in

Section 4 of Jennings et al. (1996). The results in Figure 32 are again remarkable.
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Figure 32: Comparison of empirical results with the Halfin-Whitt approximation
for the Erlang-C example
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7.3. Benefits of Taking Account of Abandonment

We now show the benefit of staffing a system taking account of abandonment, assuming that
abandonment in fact occurs. When compared to the model without abandonment, abandon-
ment in the model reduces the required staff. In Figure 33 we show the difference between
staffing levels for the two models introduced in §5 and §7, in the three regimes of operation:
QD, QED and ED.

It is natural to quantify the savings of labor by the area between the curves. In this case, the
savings in labor, had one used 6 = 1, is 46.5 time units when o = 0.1, 113.3 when « = 0.5, and
256.4 when o = 0.9. It may perhaps be better to quantify savings by looking at the savings
of labor per shift. Dividing the saving in time-units by the number of time-units they are
taken over, we come up with savings of about 2, 5 and 12 servers per shift, for o = 0.1,0.5,0.9

respectively. The labor savings increases as « increases.
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Figure 33: Staffing levels with and without customer abandonment (/ = 0 and 6 = 0):
(1) «=0.1 (2) a=0.5 (3) a = 0.9
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8. The Challenging Example from Jennings et al.

In this section, we consider the “challenging example” presented in Jennings et al. (1996). It
is a time-varying Erlang-C' model (no abandonment), with exponential service times having
mean 1 and a nonhomogenous Poisson arrival process with the sinusoidal arrival-rate function
A(t) =30+ 20 - sin(5 - t). We want to see how ISA performs on this same example.

This example is not greatly different from the Erlang-C example we have just considered in
§7, but note that the frequency is 5 times greater here or, equivalently, the sinusoidal cycle is
five times shorter. Thus the fluctuation in the arrival rate is even greater than in the example
we have considered.

Figures 34 and 35 show that ISA also achieves time-stable performance for this example,

for the full range of target delay probabilities, ranging from 0.1 to 0.9, just as before.

Figure 34: Delay probability summary for the challenging example
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We now compare the empirical results with the Halfin-Whitt and normal approximations,
paralleling Figures 11 and 32. We do so for this example below in Figure 36. Again the results

are spectacular. In Figure 36 we use the Halfin-Whitt function in (7.1), just as in Figure
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Figure 35: Implied empirical quality of service ,B{SA
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32. We also include the normal tail probability in (?7), because that is the direct normal

approximation used by Jennings et al. (1996), before they apply their refinement in their

Section 4. That refinement is equivalent to working directly with the Halfin-Whitt function,

as we noted before.
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Figure 36: Comparison of empirical results with the Halfin-Whitt and normal ap-
proximation for the challenging example
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9. The Time-Varying Erlang-A Model with More and Less Patient Cus-
tomers

We now return to the time-varying Erlang-A model (M;/M/s; + M) considered in Section 5,

except we change the patience parameter, i.e., the individual abandonment rate 6.

9.1. More and Less Patient Customers

We consider two new cases (both with g = 1: § = 0.2; then customers are very patient, since
they are willing to wait, on average, five times the average service time; and 8 = 5.0; then
customers are very impatient, since they are willing to wait, on average, only one-fifth of the
average service time.

The performance of ISA is essentially the same as for the previous case with § = 1.0.
We compare the staffing levels for these alternative environments, for the three regimes QD
(o =0.1), QED (v = 0.5), and ED (o = 0.9) in Figure 37 below. In both these new cases,
the target delay probabilities were achieved quite accurately for all target delay probabilities
ranging from o = 0.1 to a = 0.9; see Figure 38. The implied empirical quality of service
B{SA defined in (5.3) is also stable, just as with # = 1.0; see Figure ??. We compare the
time-dependent abandonment P;(Ab) in these two scenarios in Figure 40. Note that the gap
between the required staffing levels in the two cases - § = 0.2 and § = 5.0 - grows as the
delay-probability target a increases, being quite small when o = 0.1, but being very dramatic
when o = 0.9.

We compare the empirical («, 3) pairs produced by ISA to the Garnett function in (5.4)
for these two cases in Figure 41. We are no longer surprised to see that the fit is excellent.

From all our studies of ISA, we conclude that for the time-varying Erlang-A model we
can always use the MOL approximation, here manifested in the square-root-staffing formula
in (2.7), obtaining the required service quality § from the target delay probability « by using
the inverse of the Garnett function in (5.4), which reduces to the Half-Whitt function in (7.1)
when 6 = 0. To see how the Garnett functions look, we plot the Garnett function for several

values of the ratio r = 6/p in Figure 42 below.
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Figure 37: Staffing for time-varying Erlang-A with more patient (§ = 0.2) and less
patient (0 = 5.0) customers: (1) a = 0.1 (QD), (2) « = 0.9 (ED), (3) a = 0.5 (QED)
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Figure 38: Delay probabilities for the time-varying Erlang-A example with the new
patience parameters: (1) 6=5 (2) 6=0.2
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Figure 39: Implied empirical quality of service ﬁ{SA for the time-varying Erlang-A
example with the new patience parameters: (1) =5 (2) 6=0.2
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Figure 40: Abandonment probabilities for the time-varying Erlang-A example with
the new patience parameters: (1) 6=5 (2) 6=0.2
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Figure 41: Comparison of the empirical results from ISA with the Garnett approxi-
mation for the time-varying Erlang-A example with the new patience parameters:
6=5 and 6=0.2
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Figure 42: The Halfin-Whitt/ Garnett functions
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9.2. Benefits of Taking Account of Abandonment Again

Following §7.3, we now expand our comparison of staffing levels for (im)patience distribution
with parameters § = 0,1,5,10. Clearly, the required staffing level decreases as 6 increases,
bringing additional savings. In Figure 43 we show the comparison for delay probability o = 0.5,

which we consider to be a reasonable operational target.

Figure 43: Staffing levels for the time-varying Erlang-A example for a range of
(im)patience parameters
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Here, the labor savings is: 113.3 time units for § = 1, 270 time units for § = 5, and 386
time units for 8 = 10. The corresponding savings in workers per shift are about 5, 12 and 18

servers, for = 1,5, 10, respectively.

9.3. Non-Exponential Service Times

In addition to the time-varying Erlang-C and Erlang-A examples, we also ran experiments
with different service-time distributions, such as deterministic and log-normal. The ISA was
successful in achieving the desired target delay probability, and results showed time-stable
performance, compatible with stationary theory, similar to here. For the case of deterministic

service times, theory was taken from Jelenkovic, Mandelbaum and Momcilovic (2004).
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10. Theoretical Support in the Case 6 = 1

In one special case, we can analyze the time-dependent Erlang-A model (i.e., the M; /M /s;+ M
model) in considerable detail. That is the case we considered in Section 5, in which the
individual service rate pu equals the individual abandonment rate 6. In this section, let 6 and

u be fixed with 6 = pu, but here we do not set these equal to 1.

10.1. Connections to Other Models

In one special case, we can analyze the M;/M/s; + M model in considerable detail. That is
the case we considered in §5 and §6, in which § = p. (As in §5, we let those both be 1.) With
the condition § = p, it is easy to relate the M;/M/s; + M model to, first, the corresponding
M;/M /oo model with the same arrival-rate function and service rate and, second, a corre-
sponding family of steady-state distributions of stationary M /M /s + M models, indexed by ¢,
with the same service and abandonment rates, but with special arrival rate that depends on
time t.

Let {s; : t > 0} be an arbitrary staffing function. For simplicity, assume that all systems
start empty in the distant past (at time —oo). By having A(t) = 0 for ¢ < tg, we can start
arrivals at any time ty. The first observation is that, for any arrival-rate function {\(¢) :
t > 0} and any staffing function {s; : t > 0}, the stochastic process {N; : ¢ > 0} in the
M;/M/s; + M model with = p has the same distribution (finite-dimensional distributions)
as the corresponding process {N° : ¢t > 0} in the M;/M /oo model, because the birth and
death rates are the same.

The second observation is that, for both these models, the individual random variables N;
and N have the same Poisson distribution as the steady-state number in system Néé) in the

corresponding stationary model with arrival rate mg°.

10.2. Waiting times and abandonment probabilities.

Let W, be the virtual waiting time at time ¢ (until service, i.e., the waiting time in queue that
would be spent by an infinitely patient customer arriving at time t), and let P?* be the virtual
abandonment probability at time ¢ (i.e., the probability of abandonment for an arrival that
would occur at time t), both in the M;/M/s; + M model. These quantities are considerably
more complicated than N;.

Even though it is difficult to evaluate the full distribution of W;, we can immediately

evaluate the virtual delay probability, because it clearly depends only on what the customer
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encounters upon arrival at time ¢. Hence, we have
P(W; > 0) = P(N¢y > s¢) = P(N° > s¢) = P(Poisson(mg®) > s) , (10.1)

where mg® is the offered load in (2.2), just as in (2.6), only here the infinite-server approxima-
tion is exact.

Next we observe that P = E[F(W,)], where F is the time-to-abandon cdf, so that it
suffices to determine the waiting-time distribution. Here is an important initial observation:
Conditional on the event that W; > 0, whose probability we have characterized above, W; is
distributed (exactly) as the first passage time of the (Markovian) stochastic process {IV,, : u >
t} from the initial value N; encountered at time ¢ down to the staffing function {s, : v > t},
provided that we ignore all future arrivals after time t. In other words, W; is distributed as
the first passage time of the pure-death stochastic process with state-dependent death rate IV,
for u > t down from the initial value N; to the curve {s, : u > t}. As a consequence, the
distribution of W; and the value of P depend on only N; and the future staffing levels, i.e.,
{sy : u > t}. The time-dependent arrival-rate function contributes nothing further.

It is easy to see that we can establish stochastic bounds on the distribution of W; if the
staffing level is monotone after time t: then setting s, = s; for all v > ¢ will yield a bound. We
can go further based on this observation if we make approximations. If the number of servers
is large, then W; will tend to be small, so that it is often reasonable to make the approximation
sy == s¢ for all u > t. We make this approximation, not because the staffing level should be
nearly constant for all u after ¢, but because we think we only need to consider times u slightly
greater than ¢.

If the future-staffing-level approximation held as an equality, then we would obtain the
following approximations as equalities: W; ~ W, and P ~ ng , where the constant staffing
level in the stationary M /M /s + M model on the righthand sides is chosen to be s; and the
constant arrival rate is chosen to be /\f‘/f OL ip (2.8). Given these approximations, we can use
established results for the stationary M/M/s + M model, e.g., as in Garnett et al. (2002)
and Whitt (2005). Algorithms to compute the (exact) distribution of Wy, are given there,
including the corresponding conditional distributions obtained when we condition on whether

or not the customer eventually is served.
10.3. Asymptotic Time-Stability in the Many-Server Heavy-Traffic Limit

In this subsection we turn to an issue not included in the main paper. As in the literature for

stationary models, e.g., Garnett et al. (2002), important insight can be gained by considering
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many-server heavy-traffic limits. That is achieved for our M;/M /s, + M model, by considering
a sequence of models indexed by n, where the arrival-rate function is allowed to depend upon
n. We can leave the service rate and abandonment rate unchanged, independent of n (and
t). Thus, for each n, we have arrival-rate function A\, = {\,(¢) : ¢ > 0}. As in the stationary
context, we want to let the arrival rate increase as n — co. However, now we need to carefully
specify how the entire function ), increases. Since we are staffing in response to the arrival
rate, we do not need to make any direct assumptions about the staffing levels s;. We will
assume that we staff according to the square-root-staffing formula (2.7) with a fixed target
delay probability a. We then want to determine when that yields asymptotically time-stable
performance.

As an initial condition, we want to assume that A\, (t) — oo as n — oo for each ¢, but we
will need more than that. From the analysis so far, it is clear that we need m;, — oo, where
myp is the time-dependent mean number in the nth M, /M /oo model. However, that actually
is not enough to get asymptotic time-stability for quantities such as the mean virtual waiting
time E[W;] and the virtual abandonment probability P.

To proceed, we exploit the approximations above. From the approximation for the mean,

we obtain the associated approximation
E[W,] = E[W] (10.2)

where the constant staffing level in the stationary M /M /s + M model on the righthand side
is chosen to be s; and the constant arrival rate is chosen to be A(t) = um; in (2.8).

Now we observe that previous heavy-traffic limits for the Erlang-A model in the QED
regime, Theorems 3 and 4 of Garnett et al. (2002), imply that

JIP® =y and  /mE[Wi] — g (10.3)
as my — 00, where
n = aE[N(0,1) = BIN(0,1) > 8] = a <§§% - 1) >0 (10.4)

and 0 = pu.

The important practical conclusion we deduce from (10.3) is that we see that \/nTtPt“b and
Vmy E[W;] will be asymptotically constant (time-stable and nondegenerate) as m; increases if
we are in the QED regime. However, in general, consistent with Figure 7, the performance

measures P and E[W;] themselves need not be asymptotically time-stable. In order for
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them to be asymptotically time-stable too, we need to impose extra conditions upon the mean
function m; itself.

We actual see the greatest departures from time-stability of P* and E[W;] for the M;/M s+
M model (e.g., in Figure 7) when the target delay probability is large. In those cases, it is
evident that the system actually should be regarded as being in the ED regime, not the QED
regime. From Garnett et al. (2002) and Whitt (2004), we can see the appropriate ED asymp-
totics, which also suggests that time-stability will not hold for the performance measures P
and E[W,], staffing as we have done. Moreover, it suggests that we might consider a different
staffing method designed to achieve time-stable abandonment in the ED regime. In particular,
ISA extends directly by changing the target performance measure from the delay probability to
the abandonment probability. The performance of such alternative iterative-staffing algorithms

is a topic for future research.
11. Algorithm Dynamics

In this section we establish the convergence of ISA for the M;/M/s; + M model. In doing
so, we disregard statistical error caused by having to estimate the delay probabilities associated

with each staffing function in the simulation.

11.1. Sample-Path Stochastic Order

To prove convergence, we use sample-path stochastic order, as in Whitt (1981). We say that
one stochastic process {Nt(l) : 0 <t < T} is stochastically less than or equal to another,

{Nt@) :0 <t < T}, in sample-path stochastic order and write
(NYo<t<Ty < {IN® o<t <1}, (11.1)

if

E [f ({Nt(l) 0<t< T})} <4 E [f ({Nfz’ 0<t< T})} (11.2)
for all nondecreasing real-valued functions f on the space of sample paths. We have ordinary
stochastic order for the individual random variables Nt(l) and Nt(2) and write Nt(l) <st Nt(2)
if E[f (Nt(l))] < EI[f (Nt(2))] for all nondecreasing real-valued functions on the real line; see
Chapter 9 of Ross (1996) and Miiller and Stoyan (2002). Clearly, sample-path stochastic order
as in (11.1) implies ordinary stochastic order for the individual random variables for all t. For
the convergence, we only need ordinary stochastic-order for each time ¢, but in order to get

that, we need to properly address what happens before time ¢ as well.
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Here is the key stochastic-comparison property for the M;/M /s, + M model:

Theorem 11.1. (stochastic comparison) Consider the M;/M /s, + M model on the time in-
terval [0, T, starting empty at time 0. If r > 1 and sgl) < s§2) forallt, 0 <t < T, orifr <1

and sgl) > s§2) forallt, 0 <t <T, then

(N o<t < Ty <o (NP o<t < T} (11.3)

Proof. Here is the key fact: The death rates depend systematically on the number of servers
st. When r > 1 (r < 1), the death rates at time ¢ decrease (increase) as s; increases. The
ordering of the death rates in the two birth-and-death processes makes it possible to achieve the
sample-path ordering. Indeed, we justify the relation (11.3) by constructing special versions
of the two stochastic processes on the same underlying probability space so that the sample
paths are ordered with probability 1. As discussed in Whitt (1981), and proved by Kamae
et al. (1978), that special construction is actually equivalent to the sample-path stochastic
ordering in (11.3). The sample-path ordering obtained ensures that a departure occurs in the
lower process whenever it occurs in the upper process and the two sample paths are equal.
To start the construction, we let the two processes be given identical arrival streams. Then
we construct all departures (service completions or abandonments) from those of the lower
process at epochs when the two sample paths are equal. Suppose that at time ¢ the sample
paths are equal: Nt(l) = Nt(2) = k. Then, at that ¢, the death rates in the two birth and death
processes are necessarily ordered by d1(k) > d2(k). We only let departures occur in process 2
when they occur in process 1, so the two sample paths can never cross over. When a departure
occurs in process 1 with both sample paths in state k, we let a departure also occur in process
2 with probability d2(k)/d01(k), with no departure occurring in process 2 otherwise. This keeps
the sample paths ordered w.p. 1 for all . At the same time, the two stochastic processes

individually have the correct finite-dimensional distributions. =

11.2. Monotone and Oscillating Dynamics

The simulation experiments show that the way the staffing functions converge to the limit
depends on the ratio r = 6/u: Whenever r > 1, we encounter monotone dynamics. Whenever
r < 1, we encounter oscillating dynamics; and whenever » = 1, we encounter instantaneous
convergence. As shown in §10, when » = 1, the number in system is independent of the staffing

function, so we obtain convergence in one step.
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An example of the monotone dynamics is shown in Figure 44, where staffing levels are
shown for the first two and final iterations for the model in §5 with 4 = 1 and r = 6 = 10.

An example of the oscillating dynamics is shown in Figure 45, where staffing levels are shown

Figure 44: Monotone algorithm dynamics for the model in §5 when » = 0§ = 10:
staffing levels in the 15, 27¢ and final iterations.
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for the first two and final iterations for the model in §5 with 4 = 1 and » = 8 = 0 (no

abandonment).

Figure 45: Oscillating algorithm dynamics for the model in §5 when r = 6 = 0:
staffing levels in the 15¢, 274 and final iterations.
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11.3. Proof of Convergence

Theorem 11.2. (convergence) Consider the My/M /sy + M model on the time interval [0,T],
starting empty at time 0. Suppose that we consider piecewise-constant staffing functions that
only can change at multiples of A > 0. Suppose that in each iteration n we can obtain the actual
stochastic process {Nt(n) : 0 <t < T} associated with the staffing function {s%n) :0<t<T}
(without statistical error). Suppose that sgo) =o0 forallt, 0 <t <T.
(a) If r > 1, then sgn) < ng) for all n > m >0 and there exists a positive integer ng such
that
st = s§”0) = s§”) forall t and n>ng. (11.4)

(b) If r < 1, then there exist 2 subsequences {s§2”)} and {5§2n+1)}, such that s§2”) ! sﬁeve")

and S§2n+1) 1 Sgodd)'

50 > 20 5 202 5 ones) 5 2n+) 5 () (11.5)

forallt, 0 <t < T, and for all n > ng. Moreover, there exists a positive integer ng such that

SEQTL) — 8§2n0) — vaen > S?dd _ 8§2n0+1) — S§2n+1) (116)

forallt, 0 <t <T, and for alln > ng

Proof. Given that s§°) = 00, we necessarily have s(O)t > sﬁl) for all t, 0 <t < T. Hence
we have the ordering of the initial ordering of the staffing functions that lets us apply the
stochastic order. We then proceed recursively. As a consequence of the sample-path stochastic
order, we get ordinary stochastic order in (11.3), we get ordinary stochastic order Nt(l) <st
Nt(2) for all t. Ordinary stochastic order is equivalent to the tail probabilities being ordered:
P(Nt(l) > ) < P(Nt@) > z) for all z, which implies the ordering for the staffing functions at

time t. In particular, suppose that
P(NP zs) ca<P (NP =5 1) .

Since P (Nt(l) > s,@) <P (Nt(Q) > 552)> < «, necessarily sgl) < s§2).

(0) (0) (1)

Case 1: r > 1. For s, ’ = 0o, we necessarily start with s; * > s, for all ¢, which produces

first Nt(l) <st Nt(o) and then SEQ) < sgl) for all . Continuing, we get Nt(n) stochastically
decreasing in n and sgn) decreasing in n, again for all t. Since the staffing levels are integers,

if we use only finitely many values of ¢, as in our implementation, then we necessarily get

convergence in finitely many steps.
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Figure 46: Algorithm dynamics: range of staffing level for target a=0.1
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Case 2: r < 1. For SEO) = 00, we again necessarily start with sgo) > sgl) for all ¢.

That produces first Nt(l) >t Nt(o) and then s§°) > 8752) > 551) for all t. Afterwards, we get

2)

Nt(l) >t Nt(2) >t Nt(o) and Sgo) > sg > 31(53) > Sgl) for all t. Continuing, we get Nt@n)

stochastically increasing in n, while Nt(2n+1) stochastically decreases in n, for all ¢t. Similarly,
8152”) decreases in n, while s?nﬂ) increases in n for all t. We thus have convergence, to possibly

different limits. Since the staffing levels are integers, if we use only finitely many values of ¢,
as in our implementation, then we necessarily get convergence in finitely many steps. =
We remark that we also obtain the convergence in Theorem 11.2 with other initial condi-

tions. In particular, it suffices to let SEO) be sufficiently large for all t. For r > 1, it suffices to

have SEO) > /54 for all t. For r < 1, it suffices to have 51(50) > sgve™ for all t.
We conclude this section by making some empirical observations, for which we have yet
to develop supporting theory. We also observed that the target delay probability « strongly

influenced the dynamics. In particular, higher values of a cause larger oscillations in the

oscillating case, and slower convergence to the limit in all cases.

72



Figure 47: Algorithm dynamics: range of staffing level for target «=0.5
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11.4. Convergence First at Smaller Times

Finally, we also observed a time-dependent behavior in the convergence of sgn). We observed
a greater gap as time increased. For example, let I; = inf {j : ng‘) = ng) for all 7> j}. We
observed that I, > I;, for all to > t;. An illustration can be viewed in Figures 45, 47 and
48. This time-dependent behavior is understandable, because the gap between two different
staffing levels persists across time, so that there is a gap in the death rates at each t. Hence, as
t gets larger, the two processes can get further apart. Thus the gap can first decrease more at

the initial times. When it reaches the limit at earlier times, the gap will still have to decrease

more at later times.
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Figure 48: Algorithm dynamics: evolution of convergence during algorithm run-
time

Target Alpha=0.5

160

140 +

120 -

100 -

80 -

60 -

40 4

20 +

0 — T T T T T T T T T T T T
o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

— =—lteration 2 - - - lteration 4 —— Last Iteration

74



12. An Asymptotic Perspective

We can create a rigorous framework for the square-root-staffing formula by applying the asymp-
totic analysis of uniform acceleration to multi-server queues with abandonment. The under-
lying intuition for optimal staffing is that for large systems we staff exactly for the number of
customers requesting service so as a first order effect, abandonment simply does not happen.
Thus the associated fluid model should not be a function of any abandonment parameters.
The effects of abandonment appear as second order phenomena at best and are found in the
associated diffusion model. Moreover, we can show that for the special case of § = u, our

limiting diffusion gives us exactly the square-root-staffing formula.
12.1. Limits for a Family of Multi-Server Queues with Abandonment

In this section we will consider a family of Markovian M;/M/s; + M models indexed by a
parameter 7. As before, we will focus on the stochastic process representing the number of
customers in the system, which is a birth-and-death process. We will identify that stochastic
process with the M;/M/s; + M model.

For each n > 0, let Let { N7 | > 0 } by a family of multi-server queues with abandonment
indexed by 7, where 7 = § and u7 = p (i.e., the service and abandonment rates are independent
of ), but

N =n-X and s!=rn- s +\/ﬁ-s§d)+o(\/ﬁ). (12.1)

(The superscripts f and d on sgd) and sgd) indicate the “fluid-approximation” term and the

“diffusion-approximation” term, respectively.)

Unlike the uniform acceleration scalings that lead to the pointwise stationary approxima-
tion, as in Massey and Whitt (1998), this one is inspired by the scalings of Halfin and Whitt
(1981), Garnett et al. (2002) and Mandelbaum, Massey and Reiman (1998). Here we are
scaling up the arrival rate (representing “demand” for our call center service) and the number
of service agents (representing “supply” for our call center service) by the same parameter 7.
By limit theorems developed in Mandelbaum, Massey and Reiman (1998), we know that such
a family of processes have fluid and diffusion approximations as 7 — co. We want to restrict

ourselves to a special type of growth behavior for the number of servers.

Theorem 12.1. Consider the family of multiserver queues with abandonment having the growth

conditions for its parameters as defined above. If we set

sT=n-my+7- s\ + o(\/7) (12.2)
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i.e., if we use (12.1) with ng) = my, where

d
7= At — g -y, (12.3)

then
lim P(N/ >s)=p (Nt(d) > s@) : (12.4)

1n—00
where N4 = {Nt(d) |t >0 } s a diffusion process, which is the unique sample-path solution

to the integral equation
¢
N = NP+ [ 8- (40
0

t t
—/ <0u C(NDYF (N5d>)*> du+ B (/ O+ ftue - mu)du> (12.5)
0 0
and the process { B(t) |t > 0} is standard Brownian motion.

Thus we can reduce the analysis of the probability of delay (approximately) to the analysis of
a one-dimensional diffusion N@. Notice that since A¢ and p; are given, then so is m;. Thus
server staffing for this model can only be controlled by the selection of s(¥). Also notice that
the diffusion N(@ is independent of s@ gs long as 6y = uy or sgd) > ( for all time ¢ > 0.

For the special case of u = 6 we can give a complete analysis of the delay probabilities that

gives the MOL server-staffing heuristic.
Corollary 12.1. If 0 =y and s} =n-my + @1 (1 — ) -/ -my , where

1 /OO _ 2/2
— e dr = a, 12.6
V21 Jo-1(1-a) (126)

then we have

lim (N, > s)) = « (12.7)

n—00

for allt > 0.

Unfortunately, N(@ in general is not a Gaussian process. This also means that the following

set of differential equations are not autonomous.

Corollary 12.2. The differential equation for the mean of N4 is

CB[ND) = u =00 ) 00 B[N - B[NO)] (128)

Since (Nt(d))Jr . (Nt(d))_ =0, the differential equation for the variance of N9 equals
%Var [Nt(d)] = —20;-Var [(Nt(d))‘*'} — 2p¢ - Var [(Nt(d))_} (12.9)
=200+ ) - B [(NS) |- B (V)] + 2 4 g - o
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Proof of Theorem 12.1 . Define the function f;'(-), where

fl@)y=n-X—0-(n-z—sNT —pe-(n-xAs)). (12.10)
Now we have

f(@) = n-M =0 (nz—s{)" = pe- ((nz) Asf)

= M= O+ (0 — ) ((n-2)As).
However
(o) As) = (-a) A (nemi s+ o(Vin) )
d)y—
= Lm0 @+ 0(Vi1) + Loz - (- ma =77+ (51”) ™ + o(/1)

Fasmey - (- me =/ - 57+ 0(V/i1))
= - @Am) v (4 Ly = 6 Lz ) +o(vT)

combining these results gives us the asymptotic expansion
@) = n-N=0 (@ —m)" — - (x Amy))
1+ 0= 1) () T ammy = (587 Tazmy )+ 0(ViT)

as 17 — oo.

It follows that f7 = n- /) +/7 - f1¥ + o(\/77 ), where

ft(f)(CU) =N =0 (x—m)" — g - (2 Amy) (12.11)
and
d d d)\—
10@) = 0= ) - () Ly = (547 Lzzmay ) - (12.12)
Now
A @sy) = (00— ) - (4 Loy = V™ Lammey) = Oc v (12.13)

where Ag(x;y) = ¢'(x+)yt — ¢ (x—)y~ is the non-smooth derivative of any function g that has

left and right derivatives. Hence we have
AP (mey) = ey~ = 0yt and 19 (my) = (e — 0)(s8) (12.14)
Finally, we have
(@) VG (@)
N@ = N +/ (Aft(f (mu;N5d>) + 1 (mu)> du (12.15)
0
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+B ( / O+ 11 mu>du)

- 50 | (6 (VDY 4 (s)7) — - (VD) 4 (50)))
0
+B </0t()\u + - mu)du> . (12.16)

12.2. Case 1: 6, = y; for all ¢

We then have
4 4 t t
N = N® — /0 f - NDdu + B (/0 O =+ g - mu)du> . (12.17)
It follows that N@ is a zero-mean Gaussian process (if Néd) =0) and

d
& Var [N = —2p - Var [N(O] 4+ A+ p -y, (12.18)

Moreover, if my = Var [Néd)} , then Var [Nt(d)} =my for all ¢t > 0.

We remark that the simplification in this special case is to be expected, because we know
from Section 10 that the M;/M;/s; + M; model in this case reduces to the infinite-server
M;/M; /oo model, which in turn - by making a time change - can be transformed into a
M; /M /oo model, for which the time-dependent distribution is known to be Poisson for all ¢,

with the mean m; in (2.2).

12.3. Case 2: 6, =0

We then have

N = N 4 /Ot L - ((Néd))’ + (sg@)*) du + B </Ot(Au + fiug - mu>du> : (12.19)
with
%E (NP = e (B[] + (57)7) (12:20)
and
d

CVar [N = =2+ (Var [(NO) ] + B[] B[ ]) g me (1221)

To conclude this section, we summarise the implications for our proposal to staffing at the
offered load in the QED regime. Here is the implication: Asymptotically, controlling the delay
for this queue with abandonment is a second order staffing effort (selecting sgd)) whereas the

leading order staffing level is satisfied by using the offered load. Moreover, for the special case
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of the abandonment rate equaling the service rate, we can apply this argument to rigorously
obtain the square-root staffing formula for the multi-server queue without abandonment. This

is also the one case where the diffusion N@ is Gaussian.

13. Summary and Directions for Future Research

13.1. Summary

We have developed a simulation-based algorithm - ISA - that generates staffing functions for
which performance has been shown to be stable in the face of time-varying arrival rates for
the My/M/s; + M model. The results have been found to be remarkably robust, applying to
all forms of time variation in the arrival-rate function, with or without abandonment, covering
the ED, QD and QED operational regimes. All experiments were done with nine target delay
probabilities, ranging from o = 0.1 (QD) to o = 0.9 (ED). In §11 we proved that the ISA
converges for the My /M /sy + M model.

In our simulation experiments, we found that ISA performs essentially the same as the
modified-offered-load (MOL) approximation (reviewed in §2) with and without customer aban-
donment. Thus we provided additional support for MOL and the square-root-staffing formula
in (2.7) based on it (using arrival rate AMOL in (2.8)). As we saw in §6, in many applications
the MOL approximation is well approximated itself by lagged PSA and, in easy cases, by PSA
itself. To implement the MOL approximation with abandonments, we applied many-server
heavy-traffic limits from Garnett et al. (2002), which yield the Garnett function in (5.4); just
as Jennings et al. (1996) applied applied many-server heavy-traffic limits from Halfin and
Whitt (1981) without customer abandonment.

Finally, we found that the simple approach of staffing to the offered load is remarkably
effective in the QED regime (when o = 0.5). That was substantiated time and again by
having the ISA staffing function s/ S4 fall on top of the offered load mg°, as in case 3 in Figure
3. Of course, abandonment plays an important role; the staffing is always above the offered
load without abandonment. When the service times are short, the offered load my® may agree
closely with the PSA offered load m{4 = \(t)E[S]; then staffing to the offered load reduces
to the naive deterministic approzimation: staffing to the PSA offered load m) SA However, it
is good to be careful, because even for the realistic example in §6, PSA performed significantly

worse than ISA, MOL and lagged PSA.
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13.2. Next Steps

There is much yet to be done. Here are some natural next-steps:

1. As discussed in Section 5, for the M;/M /sy + M model, it remains to explore alternative
staffing methods to achieve better time-stability of abandonment probabilities and expected
waiting times, especially under heavy loads, but experience indicates that the delay probability
is a good performance target.

2. A great advantage of ISA is its generality. However, it remains to explore the ISA
for additional queueing systems. We already have had partial (successful) results for deter-
ministic and log-normal service-time distributions. It remains to consider other service-time
distributions for the same models; it remains to consider other models. Some other models to
analyze appear in Mandelbaum et al. (1998), e.g., queues with retrials and priority classes. Of
special interest for actual call centers are multi-class models with skill-based routing. For call
centers, our ultimate goal is to treat realistic multi-server systems with multiple call types and
skill-based routing (SBR), but that remains to be done. In that setting, it is natural to apply
SBR methods for stationary models after using the MOL approximation in (2.8) for each call
type at time t. Once we have reduced the problem to a stationary SBR model, we may be
able to apply the staffing method in Wallace and Whitt (2005). Approaches based on these
ideas remain to be investigated. With networks of queues, the MOL approach can be applied
together with results for networks of infinite-server queues; see Massey and Whitt (1993).

3. We proved that ISA converges for the M;/M/s; + M model and we observed that it
usually does so quite quickly, but it remains to analyze convergence of the algorithm more
generally. Even for the M;/M/s; + M model, some of the phenomena have not yet been
adequately explained.

4. For one special case - the one with § = p - we have provided strong theoretical sup-
port for our methods in §10 and §12. In §12 we exploited the mathematical framework of
service networks in Mandelbaum et. al.(1998). It would be nice to prove much more generally
that, under proper scaling, the actual time-dependent probability of delay under ISA indeed

converges to the specified target as scale increases.
14. Acknowledgments

The reported research was supported by Grant No. 2002112 from the United States—Israel

Binational Science Foundation (BSF). Avishai Mandelbaum and William A. Massey were also

80



supported by NSF grant DMI-0323668, while Ward Whitt was also supported by NSF grant
DMI-0457095.

81



References

1]

Bolotin, V. 1994. Telephone circuit holding-time distributions. In Proceedings of the In-
ternational Teletraffic Congress, ITC 14, J. Labetoulle and J. W. Roberts (eds.), North-
Holland, Amsterdam, 125-134.

Brown, L., N. Gans, A. Mandelbaum, A. Sakov, H. Shen, S. Zeltyn and L. Zhao. 2005.
Statistical analysis of a telephone call center: a queueing-science perspective. J. Amer.

Statist. Assoc. 100, 36-50.

Eick, S., Massey, W. A., Whitt., W. 1993a. The Physics of The M,;/G /oo Queue. Opera-
tions Research, 41(4), 731-742.

Eick, S., Massey, W. A., Whitt, W. 1993b. M;/G /oo Queues with Sinusoidal Arrival
Rates. Management Science, 39(2), 241-252.

Gans, N., Koole, G., Mandelbaum, A. 2003. Telephone Call Centers: Tutorial, Review and

Research Prospects. Manufacturing and Service Operations Management, 5(2), 79-141.

Garnett, O., Mandelbaum, A., Reiman, M. I. 2002. Designing a Call Center with Impatient

Customers. Manufacturing and Service Operations Management, 4(3), 208-227.

Green, L. V., Kolesar, P. J. 1991. The Pointwise Stationary Approximation for Queues
with Nonstationary Arrivals. Management Science, 37(1), 84-97.

Green, L. V., Kolesar, P. J., Soares, J. 2001. Improving the SIPP Approach For Staffing
Service Systems That Have Cyclic Demand. Operations Research, 49, 549-564.

Green, L. V., Kolesar, P. J., Whitt, W. 2005. Coping with Time-Varying Demand when
Setting Staffing Requirements for a Service System. Production and Operations Manage-

ment, forthcoming. Available at: http://www.columbia.edu/~ww2040/Coping.pdf

Halfin, S., Whitt, W. 1981. Heavy-Traffic Limits for Queues with Many Exponential
Servers. Operations Research, 29, 567-587.

Ingolfsson, A. 2005. Modeling the M(t)/M/s(t) Queue with an Exhaustive Discipline.

Available at: http : //www.bus.ualberta.ca/aingol f sson/workingpapers.htm

Jagerman, D. L. 1975. Nonstationary Blocking in Telephone Traffic. Bell System Technical
Journal, 54, 625—661.

82



Jelenkovic P., Mandelbaum A., Momcilovic P. 2004. Heavy Traffic Limits for Queues with

Many Deterministic Servers. Queueing Systems, 47, 53—69.

Jennings, O. B., Mandelbaum, A., Massey, W. A., Whitt, W. 1996. Server Staffing to
Meet Time-Varying Demand. Management Science, 42(10), 1383-1394.

Kamae, T., Krengel, U., O’Brien, G. L. 1978. Stochastic Inequalities on Partially Ordered
Spaces. Annals of Probability 5, 899-912.

Mandelbaum, A., Massey, W.A., Reiman, M. I. 1998. Strong Approximations for Marko-
vian Service Networks. Queueing Systems: Theory and Applications (QUESTA), 30, 149
201.

Massey, W. A., Parker, G. A., Whitt, W. 1996. Estimating the Parameters of a Nonho-

mogeneous Poisson Process with Linear Rate. Telecommunication Systems, 5, 361-388.

Massey, W. A., Whitt, W. 1993. Networks of Infinite-Server Queues with Nonstationary
Poisson Input. Queueing Systems 13 (1), 183-250.

Massey, W. A., Whitt, W. 1994. An Analysis of the Modified Offered Load Approximation
for the Erlang Loss Model. Annals of Applied Probability, 4, 1145-1160.

Massey, W. A., Whitt, W. 1997. Peak Congestion in Multi-Server Service Systems with

Slowly Varying Arrival Rates. Queueing Systems, 25, 157-172.

Massey, W. A., Whitt, W. 1998. Uniform Acceleration Expansions for Markov Chains
with Time-Varying Rates. Annals of Applied Probability, 9 (4), 1130-1155.

Miiller, A., Stoyan, D. 2002. Comparison Methods for Stochastic Models and Risks, Wiley.
Ross, S. M. 1990. A Course in Simulation, Macmillan.

Ross, S. M. 1996. Stochastic Processes, second edition, Wiley.

Ross, S. M. 2003. Introduction to Probability Models, eighth edition, Academic Press.

Wallace, R. B., Whitt, W. 2005. A Staffing Algorithm for Call Centers with Skill-Based
Routing. Manufacturing and Service Operations Management, forthcoming.

Available at: http://www.columbia.edu/~ww2040 /recent.html

83



[27]

28]

Whitt, W. Comparing Counting Processes and Queues. 1981. Advances in Applied Prob-
ability 13 207-220.

Whitt, W. 1991. The Pointwise Stationary Approximation for M;/M;/s Queues Is Asymp-

totically Correct as the rate Increases. Management Science, 37(2), 307-314.

Whitt, W. 1992. Understanding the Efficiency of Multi-Server Service Systems. Manage-
ment Science, 38, 708-723.

Whitt, W. 2000. The Impact of a Heavy-Tailed Service-Time Distribution upon the
M/GI/s Waiting-Time Distribution. Queueing Systems, 36, 71-87.

Whitt, W. 2004. Efficiency-Driven Heavy-Traffic Approximations for Many-Server Queues
with Abandonments. Management Science, 50 (10) 1449-1461.

Whitt, W. 2005. Engineering Solution of a Basic Call-Center Model. Management Science,
51, 221-235.

84



