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Abstract

In modern call centers, it is common to have multiple classes of customers and

multiple agent pools. In these systems, a Skills-Based Routing (SBR) protocol

matches classes and pools: it defines whether and to whom calls are routed (agents

are assigned).

Call centers consisting of multiple customer classes and agent pools manage

complex SBR protocols, commonly consisting of a large set of routing rules that

evolve over time in a trial and error fashion. In this situation, two problems arise: 1.

It is hard to maintain a reliable documentation of all the existing rules, and 2. Even

when there exists adequate documentation of the protocols, the inter-dependencies

between rules and their influence on routings are not easily understandable.

In this context, we argue that SBR protocol models can be extracted from rout-

ing logs that are recorded during system operations. Such models may guide oper-

ational management of SBR protocols.

The main purpose of this research is then to develop a method to mine routing

protocols in queueing systems. We call our method SBR-Mining. In order to

achieve our goal, we introduce a general model for SBR systems, a mathematical

formulation of routing protocols, a routing data model, a definition of protocol

goodness-of-fit measures and finally, a learning method.

To validate our method, we apply it to three case studies, and show how SBR-

Mining is used to build routing models with more than 90% accuracy, under the

proposed goodness-of-fit measure.

Our SBR-Mining method is described for a general model of routings in a

network. Therefore, applications of the introduced method can be extended to

general Process Mining studies, in order to discover routing protocols of processes

in different business areas.
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Chapter 1

Introduction

During the last century and the beginning of the current one, the service sector

has grown to such an extent that it now exceeds 70% of the economic activities in

Western countries. The service sector covers a wide spectrum of activities, e.g.,

education, professional services, healthcare services, financial services and gov-

ernment services.

In this thesis we focus mainly on telephone call centers, very commonly used

by companies and organizations to communicate with their customers. Indeed,

for many companies, such as airlines, hotels, retail banks and telecommunication

companies, call centers provide the primary link between customer and service

provider. In general, call centers have become a vital part of our service-driven

society. As a result, call centers have also become an object for academic research.

For an extensive review on call centers research, readers are referred to [7] and [1].

In modern call centers, it is common to have multiple classes of customers

and multiple agent pools. The customer classes are differentiated according to

their service needs. The agent pools are characterized by their skills, namely by

the subset of customer classes that they can adequately serve and the quality of

service that they can devote to each such class (skills). An important example of

such large scale service systems are multi-skill call/contact centers. Such centers

are often characterized by multiple classes of calls (classified according to type or

level of service requested, language spoken, perceived value of customers, etc.).

When dealing with the operational management of multi-skill call/contact cen-

ters, one of the main issues to address is defining a Skills-Based Routing (SBR)
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protocol: a set of rules that define whether and to whom calls are routed. These

protocols are usually defined with the objective of minimizing system costs, such

as workforce costs, while providing targeted quality of service (QoS) levels.

Call centers consisting of several customer classes and agent pools manage

complex SBR protocols aimed to prioritize and route customers according to their

classes, the load in the system and the individual customer service history.

In practice, multi-skill call/contact centers define a large set of routing rules

that evolve over time in a trial and error form. These rules are programmed in

advance in the automatic call distributors (ACD), and updated when a new QoS

target is introduced or when an existing protocol fails to achieve one of the existing

targets. In this context, two problems arise: 1. It is hard to maintain a reliable

documentation of all the existing rules, and 2. Even when there exists adequate

documentation of the protocols, the inter-dependencies between rules and their

influence on routings are not easily understandable.

In this context, we introduce an SBR-Mining method, which deduces skill-

based routing protocols from telephone calls data. The proposed method aims to

extract from so-called “event logs”, originated by the ACD, the rules that charac-

terize system routings.

Extraction of information from process logs is widely studied in the Process

Mining research area. Process Mining aims at developing techniques to extract

business process information from their realization logs [32, 33]. The SBR-Mining

method introduced in this work is hence a Process Mining technique, aimed at

learning the protocol that controls process flow.

1.1 Contribution and Structure of the Thesis

Chapter 2 provides theoretical background and surveys some related literature.

Section 2.1 introduces the management levels of queueing systems’ operation: We

describe the role of routing protocols in operations management and their relation

to other management decisions. Section 2.2 surveys routing protocols studied in

the literature in order to identify general structures of protocols to be afterwards

used in our SBR-Mining method. Chapter 2 concludes with Section 2.3 that sur-

veys the Process Mining literature related to protocols learning. We start with an

introduction to Process Mining research, then survey previous applications of Pro-
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cess Mining techniques that study service processes and finally survey the Process

Mining literature that addresses the protocol learning question.

Chapter 3 presents our SBR-Mining method. We introduce a model to describe

the system classes and pools, then formally define routing protocols in SBR sys-

tems and finally describe our learning method.

The SBR-Mining model introduced in Section 3.1 represents the call center

as a network, where customer classes and agent pools are the nodes, and bipartite

edges connect between agent pool nodes and the classes that the agents in the pools

are capable of serving. In this model, the agent and customer nodes share the same

characteristics in the sense that choosing a waiting customer to be served by an

agent that becomes idle is similar to choosing an idle agent to serve an arriving

call/customer.

A key property of the SBR-Mining network is that it does not adopt the com-

mon assumption in SBR literature that states that calls in the same class and agents

in the same pool are statistically identical. In our network, nodes of customers or

agents with different characteristics may exist.

In our SBR-Mining model the routing protocols are defined as functions of the

system state, such as the load, characteristics of waiting customers and number

of available agents. This definition distinguishes between two kinds of selection

considered by the protocol to route a call: the first one is the selection of the agent

pool that will serve the call and the second one is the selection of the agent in the

selected pool that will serve the call. Both decisions exist also in the dual problem

of agent selection: the first selects the customer class to be served by an available

agent, and the second the waiting customer from the selected class that is served.

Section 3.2 presents the SBR-Mining method, which applies machine learning

algorithms to learn the routing protocols. The method defines each routing rule

of each node in the model as a classification problem. Then, applying learning

algorithms the routing protocols are explored.

Following the SBR-Mining method description in 3.2, Chapter 4 illustrates the

application of the method to two real-world databases. The chapter begins with

a description of two real-world study cases and discusses some practical issues in

SBR-Mining applications.

In Section 4.3, we describe some SBR-Mining examples. The first example ap-

plies our method to learn how calls from the same class are prioritized; the second
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one learns the prioritization of available agents from the same pool, and the last ex-

ample illustrates the learning of a protocol that selects which class will be served

first by a specific agent pool. In these examples, we show how our SBR-Mining

method estimates routing protocols that coincide in more than 90% of the routing

samples.

The thesis ends in Chapter 5 with conclusions and suggestions for future re-

search.
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Chapter 2

Theoretical Background and
Literature Review

2.1 Operational Levels of Service Systems

The operations management of a service system is here divided into three levels:

system design, staffing and control [7, 10, 13]:

• Design: The long-term problem of determining the rules that partition cus-

tomers into classes, and servers into pools; this typically includes overlap-

ping skills (i.e. servers that can cater to more than one class of customers,

and customers that can be served by several server pools).

It is important to note that, in addition to call content and agent training,

call classes and agent skills may be defined according to any of a wide set

of attributes. Examples include operational attributes, such as the forecasted

duration of service, and economic attributes, such as by how much an agent

is compensated.

Figure 2.1 introduces some canonical designs that are studied in the liter-

ature. For example, the N-design in the left is composed of two customer

classes (queues), and two agent pools (circles). The lines connecting queues

to agent pools indicate the pools eligible to serve each queue. In the N-

design, the left pool is trained to serve only the left queue and the right pool

is trained to serve both queues.
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N-Model X-Model V-Model Λ -Model M-Model W-Model

Figure 2.1: Canonical examples of service systems design

• Staffing: The short-term problem of determining how many servers are needed

of each type in order to accommodate a given demand. These server types

may be of overlapping skills.

• Control: The on-line problem of matching customer calls with appropriate

servers. System controls are SBR rules for matching waiting calls with idle

servers at event epochs, namely when a call arrives to the system (choose a

server) or completes service (choose a customer).

An optimal operational policy defines a system design, a staffing level and a

control protocol that minimizes the operational costs (usually workforce related

costs) subject to Quality-of-Service (QoS) targets. These three management deci-

sions are all interrelated. For example, the control protocol is constrained by the

agent pools’ skills defined at the design level. Therefore, these problems should be

discussed in conjunction with one another. Yet, because of the complexity involved

in addressing all these three levels jointly, they are typically addressed hierarchi-

cally and unilaterally in the literature [7].

2.2 Control in Service Systems (Skill-Based Routing) 1

This section reviews SBR protocols that are studied in the literature. The protocols

here provide the basis for SBR-Mining in subsequent chapters.
1This review is adapted from Gurvich, Liberman and Mandelbaum [15], with the authors’ ap-

proval.
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Theoretical Model

SBR systems are modeled in the literature as Parallel Service Systems (PSS). In a

PSS model a queue is formed for each customer class and customers leave either

by abandoning the queue or after service completion.

The model is described by a fixed set of customer classes I = {1, . . . , I}, a

set of agent pools J = {1, . . . , J} and the skill sets of each agent pool I(j) ⊆ I.

Similarly to agent skill sets notation, let J(i) ⊆ J be the set of agent pools that

can serve i-class customers.

The SBR literature commonly assumes that customers from a common cus-

tomer class are homogeneous (statistically identical) and independent, and simi-

larly for agents within the same service pool.

Routing Protocols

Routing protocols are usually defined by two types of rules: (1) calls routing,

namely whenever a service ends and there are queued customers, which customer

(if any) should be routed to the server just freed, and (2) agent routing, namely

whenever a customer arrives and there are idle servers, to which (if any) should the

arriving customer be routed.

In the context of call centers, routing protocols are usually non-preemptive

and non-anticipative. Non-preemption means that a customer service may not be

interrupted before its completion with the intention of resuming it at a later time.

Non-anticipation corresponds to the router having at its disposal only information

about the evolution of the system up to the decision time.

Research of routing protocols focuses on finding a protocol that minimizes op-

erational costs under a given system design and staffing. In the following sections,

we review studied SBR protocols, which are grouped into two families: dynamic

index rules and threshold reservation rules.

Dynamic Index Rules

Dynamic index rules originate in the Dynamic Allocation Indices introduced by

Gittins [11]. Gittins describes a multi-armed bandit problem where arms may be

pulled repeatedly in any order, and the result of a pull can be used to influence

the next arm selection. In this model, arms are modeled by independent Markov
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Decision Processes and the current state of a process is used to compute the reward

that can be achieved by the process evolving from that state on, namely, by pulling

an arm in the next step. The Dynamic Index policy consists of choosing at any time

the arm stochastic process with currently the highest index value.

In SBR index rules each call’s queue and each agent’s pool is viewed as a

“bandit arm”, namely as an independent Markov Decision Process. The index

routing protocol is defined by the reward function of selecting each queue or pool.

A special feature of index rules is that, at each decision epoch, the protocol

chooses the customer class (or the agent pool) with the highest index, where the

calculation of the index requires only local information. Namely, to compute a

queue index, only state information that is needed for that queue. Similarly, an

agent pool index depends only on the pool state.

Existing work on index-type protocols capture a queue state through the num-

ber of calls in the queue and the waiting time of the head-of-line call. Equivalently,

an agent pool state is captured by the number of idle agents in the pool and the idle

time of the longest idle agent in the pool.

To denote index rules, let Q(t) = (Q1(t), . . . , QI(t)) be the queue length

vector at time t. Let I (t) = (I1(t), . . . , IJ(t)) be the idleness vector, namely,

Ij(t) is the number of idle agents in pool j at time t. Also, let W h(t) = (W h
1 (t),

. . . ,W h
I (t)) be the head-of-the-line waiting-time vector: W h

i (t) is the waiting time

of the customer that is at the head of the class-i queue at time t (i.e, the customer

that has waited the longest). Finally, let T I
j (t) be the idle time (since last being

busy) of the longest idle agent in pool j.

An index rule is then characterized by functions (fi, i ∈ I, j ∈ J ) and

(gj , i ∈ I, j ∈ J ) so that, upon a call arrival, a class-i call is routed to an agent

in pool

j ∈ argmax
l∈J(i)

⋂
{Idj(t)>0}

gj(Il(t), T
I
l (t)).

Upon service completion, a pool j agent will serve a customer from class

i ∈ argmax
k∈I(j)

⋂
{Qi(t)>0}

fi(Qk(t),W h
k (t)).

Various index rules were studied in the SBR literature. We now introduce some

of these rules:
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• cµ Rule: A simple index rule is defined by the ciµi index, where ci denotes

the waiting cost per unit of time in class i and µi denotes the class i calls

service rate. This static index rule, known as the cµ rule, is shown to be

optimal for minimizing waiting costs in many settings where delay costs are

linear [29].

The Gcµ rule (generalized cµ) extends the cµ rules beyond linear delay

costs, specifically to convex cost functions [2, 17, 23, 29, 34]. This rule

is defined as follows:

fi,j(Qi(t),W
h
i (t)) = C ′

i(W
h
i (t)), i ∈ I, j ∈ J ,

whereCi(·) is a convex cost function for the class-iwaiting time andC ′
i(·) is

its derivative. Note that the cµ and Gcµ protocols define the calls selection

rule fi,j(), but not the agents selection gi,j(): These protocols are usually

studied in the conventional heavy-traffic regime in which there are asymp-

totically no idle servers2

In [23] it is shown that theGcµ rule minimizes both instantaneous and cumu-

lative queueing costs over essentially all scheduling disciplines, preemptive

or non-preemptive, in the heavy-traffic regime. In this work, Ci(·) is an in-

creasing convex function for which C ′
i(0+) = 0 (Further properties of Ci(·)

are listed in the original work).

• Static Index Rules:

In a static index rule, the index values of the queues and the pools are pre-

defined constants. The call-selection problem is solved by assigning fixed

priorities to call classes: an available agent is assigned to the highest-priority

call that the agent is qualified to handle. Similarly, for each call class there

exists an ordered list of qualified agent pools, and arriving calls are assigned

to the first pool in the list that has an available agent.

A prevalent static rule is specified through two non-negative matrices with

integer entries: an I × J matrix M c→s and a J × I matrix M s→c. The entry
2Efficient operation in large call centers leads to maintain high levels of agents utilization, which

renders the function gj() to route arriving calls to idle agents immaterial. Operational regimes of call

centers that focus on high utilization levels are called in the literature efficiency-driven [9].
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M c→s
ij specifies the priority of pool j for class i so that a class-i customer is

routed upon arrival to the pool j that satisfies

j ∈ argmax
j∈J(i):Ij(t)>0

M c→s
ij .

If all servers in J(i) are busy, the customer waits in the class-i queue. Sim-

ilarly, M s→c
ij specifies the priority of class i for pool j, so that when pool-j

agents become available they serve the customer from class i with

i ∈ argmax
i∈I(j):Qi(t)>0

M s→c
ij .

If all queues in I(j) are empty, then these agents remain idle.

Note that the cµ index rule introduced before is an example of a prevalent

static rule.

• Dynamic Ratio Rules:

Ratio rules aim to keep a predefined balance (distribution) of the total system

load among its queues. For that, a ratio rule routes an available agent to serve

a customer from the queue of the class whose queue load exceeds by the most

a predefined proportion of the system load. Similarly, to keep a predefined

balance of the system servers’ idleness among its pools, a ratio rule routes

an arrival call to be served by an agent from the pool whose idleness exceeds

by the most a specified proportion of the total idleness.

Gurvich and Whitt introduce in [16] the Queue-and-Idleness-Ratio (QIR)

rules. QIR rules are defined by two ratio functions r(·) = (r1(·), ..., rI(·))
and v(·) = (v1(·), ..., vJ(·)), whose values define the desired load distri-

bution among queues and pools respectively. r(·) and v(·) values are non-

negative and each vector adds up to 1. Given two admissible state-dependent

ratio functions r and v, QIR is defined as follows.

– A newly available agent of pool j next serves the customer from the

head of the queue of the class (from among those it is eligible to serve)

whose queue length exceeds by the most the specified proportion of the

total queue length:

i ∈ argmax
k∈S=I(j)

⋂
{Qi(t)>0}

Qk(t)−QS(t) · rk(QS(t)).
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Here QS(t) =
∑

k∈S Qi(t).

– Similarly, an arriving customer of class i is routed to an agent of the

pool whose number of idle agents exceeds by the most a specified state-

dependent proportion of the total idleness.

j ∈ argmax
l∈S={J(i)

⋂
{Ij(t)>0}}

Il(t)− IS(t) · vl(IS(t)).

Here IS(t) =
∑

l∈S Ii(t)

QIR Ratio rules constitute an extension of index rules. While index values

are computed using only queue or pool local data, ratio rules compute the

index value using local and aggregate system data.

In [18] Gurvich and Whitt introduce the fixed-queue-ratio (FQR) routing

rule, a special case of QIR where the predefined ratio functions (r and v) are

fixed vectors. In that paper, the authors propose FQR routing protocols to

satisfy diverse Quality of Service (QoS) constraints minimizing labor-related

costs. For example, to satisfy a QoS constraint of the form “the proportion

of customers of class i that wait more than x seconds must not exceed yi”

the optimal routing protocol is an FQR rule whose ratio function v is defined

by the target proportions of each queue, yi, multiplied to their corresponding

arrival rate λi:

r = (
λ1 · y1∑
k λk · yk

, ...,
λI · yI∑
k λk · yk

)

Similarly to cµ Rules, FQR rules are studied in the heavy-traffic regime, in

which the agent selection ratio function v is immaterial.

QIR rules, as introduced above, balance queue loads by setting queue lengths

to predefined proportions. An alternative ratio rule is the Waiting-and-Idleness

ratio (WIR), whose load balance is based on the average waiting time of the

customers in each queue. In [17], Gurvich and Whitt show that, under spe-

cific settings, the QIR rule is asymptotically optimal to minimizing holding

costs and the WIR rule is asymptotically optimal to minimizing delay costs.

Threshold Reservation Rules

Threshold reservation policies specify system states in which calls are not assigned

to idle agents qualified to serve them. In these states, the protocol reserves agents
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to serve future arriving calls from other classes without waiting. Threshold policies

define when agents and calls are prevented from being routed, but do not specify

how agents or calls are routed when the threshold conditions enable them to be

routed. Thus, a complete SBR protocol must be complemented with additional

routing specifications. To formalize the above, let us introduce a threshold reser-

vation policy combined with an index-based selection.

Given non-increasing non-negative integer valued functionsKij(Qi(t),W
h
i (t)),

i ∈ I, j ∈ J , the agent reservation rule induces the following actions upon cus-

tomer arrival and service completions:

• Upon arrival at time t, customers of class i are routed to an agent in pool

j ∈ argmax
J(i)

⋂
{l:Il(t)>Kil(0,0)}

gl(Il(t), T
I
l (t)).

If no such j exists, the customer waits in the class-i queue.

• Upon service completion in pool j, the newly available agent serves the cus-

tomer from the head of the class-i queue, where

i ∈ argmax
l∈I(j)

⋂
{l∈I:Ql(t)>0∧Ij(t)>Klj(Qk(t),W

h
k (t))}

fk(Qk(t),W h
k (t))

If no such queue exists, the agent remains idle.

Thus, class-i customers are routed upon arrival to a type j agent only if the

number of idle servers in pool j exceeds Kij(0, 0). Similarly, type-j agents that

become available serves the customers at the head of the class-i queue only if the

number of idle servers in pool j exceeds a function of this customer’s waiting time

or length of queue.

Gurvich et al. [14] analyze a state-independent threshold policy for the multi-

class single-pool model (a V-design) and shows that this policy asymptotically min-

imizes holding costs under delay constraints. Queue-length based thresholds were

studied in [3], for an N-design system. Such reservation policies are also analyzed

in [8] and [26].

Protocol Review Summary

The previous review introduced the most commonly studied protocol types in the

literature. All the protocols introduced are described by the functions fi, gj and
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Kij , (i ∈ I, j ∈ J ): fi and gj define the dynamic index value of each queue i and

pool j; kij is the threshold function that defines system states in which an arriving

call is not served even if there are idle agents capable of serving it.

We remark that restrictions on the original index functions of using only local

information of the queue state (or pool state) can be relaxed to permit the use of

non-local information (for example, the total number of waiting customers, or the

average waiting time of recently-served customers).

The SBR protocols described here set a FIFO (first in - first out) regime select-

ing calls from the same class and selecting idle agents from the same pool. This

setting is natural under homogeneous customer and agent assumption. Alternatives

to this setting are personalized-queue regimes, where data on individual customers

or agents is used to prioritize waiting calls and idle agents.

In [22], Mandelbaum and Momčilović define the so-called Least Patient First

regime (LPF), where the estimated patience of waiting customers is used to select

the next customer to be routed. In the LPF regime, the customer with the least

estimated time to abandon is served first. In [22] the authors compare the LPF

regime against a FIFO regime, and show that LPF can provide significant lower

abandon rates over FIFO when the durations of overloaded periods are comparable

to (im)patience times.

A personalized regime to route agents is introduced by Mandelbaum and Momčilović

in [21]. In this case, agents that exhibit shorter service times get a higher preference

to serve the next arriving call.

In the next chapter we introduce a routing model combining protocols to select

classes and pools (SBR protocols), and protocols to select same-class calls and

same-pool agents.

13



2.3 SBR-Mining as a Process Mining Study

Our SBR-Mining work could be viewed as a research in Process Mining, which

studies business processes by extracting knowledge from their event logs, com-

monly available in today’s (information) systems.

Next we provide a brief introduction to the Process Mining research field,

which is followed by a review of Process Mining applications in service processes

within call centers. This section concludes with a survey of the Process Mining

literature dedicated to discover routing protocols in business processes.

2.3.1 Process Mining

Process mining is an emerging research discipline that bridges computational in-

telligence and data mining on the one hand, and process modeling and analysis on

the other.

Process mining techniques can be used for process discovery and conformance

checking. Process discovery [32, 33] can be used to automatically construct a

process model reflecting the behavior that has been observed and recorded in the

event log. Conformance checking [24, 31] can be used to compare the recorded

behavior with some already existing process models to detect possible deviations.

Both types of analysis may serve as input for designing and improving business

processes.

Event Logs - Typically event logs contain information about the start and

completion of process events together with related context data (e.g. actors and

resources). Event context data is essential to discover factors that affect activity

realizations in the process. Van der Aalst et al. [30] describe four levels of event

contexts: the instance context, process context, social context and the external con-

text.

Let us illustrate these context levels in a service process provided by a call

center to serve class i calls. The instance of the process is the call, and the instance

context data includes the call and the customer attributes. The process context data

refers to the data related to the class i queue and its service resources (agent pools

qualified to serve class i calls). The process context data may include the queue

length and the number of available agents. The social context considers all the

process external factors directly related to the service process, such as the queue
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state of the other classes that may compete for common resources. Finally, the

external context captures factors that are part of an ecosystem that extends beyond

the call center sphere, such as weather or seasonal effects.

Process Mining techniques tend to look at process instances in isolation, and

only a few studies in the area exploit context data. For examples of context-data

applications we refer the reader to Werf et al. [35] and Folino et al. [6]. In [35]

a context-aware approach is developed to check compliance in a publication re-

view process; Folino, Guarascio, and Massimo [6] describe a general predictive-

clustering computation scheme, meant to detect different context-related execution

scenarios.

2.3.2 Process Mining of Service Processes in a Call Center

It is natural to see service to customer calls as business processes, where it is re-

quired to serve a customer call a set of coordinated activities. For example, a

customer enters the call center through the IVR (Interactive Voice Response); then

the call is transferred to the queue and subsequently to the agent; it could go back

to the IVR, or to another queue or agent, etc.

Process mining techniques are valuable in discovering service processes. In

the last several years the SEE3 Laboratory at the Technion has conducted research

projects that adopted Process Mining techniques to call center operations [5]. As

part of these projects a semi-automatic process discovery package (SEEgraph) was

developed, enabling users to produce real time flow graphs and animations.

Figures 2.2, 2.4 and 2.3 are snapshots of animations of the flow in a call center

service process4. These figures illustrate some different perspectives of analysis of

such processes.

Figure 2.2 represents the customer process perspective—the calls’ flow. This

figure depicts the paths that customers travel within the service system. In our

example there are three types of call activities: IVR service, Customer Queue (wait

to be served by agent) and Customer Service (service by an agent). The activities

are represented in the graph by rectangles and are connected by edges that indicate
3SEE = Service Enterprise Engineering
4The snapshots are taken from SEEgraph animations which are available in

Youtube SEE Lab - Technion channel https://www.youtube.com/channel/

UCrIlkmNOOGwbNZ1lsUqh8Qw

15

https://www.youtube.com/channel/UCrIlkmNOOGwbNZ1lsUqh8Qw
https://www.youtube.com/channel/UCrIlkmNOOGwbNZ1lsUqh8Qw


where a customer may flow. The circles in the edges represent customers in the

system at the snapshot time.

Call Flow in Call Center
12 August 2012

Figure 2.2: Customer Process - a snapshot of the customer flow in a call center of

an Israeli bank, 12 August 2012. Available at https://www.youtube.com/

watch?v=-ik5kA7aLGg

Dually to the customer flow, Figure 2.3 depicts the agent flow. The agent activi-

ties in this example are: Business Line (service to customer), Agent Ready (waiting

for customers), Paperwork, Idle, Break, Non-Business Line (phone call by an agent,

who does not serve a customer).

Figure 2.4 is a Process Mining representation of the SBR design and the rout-

ings in a call center. This graph represents the queues and the agent pools; the

edges represent the pool skills and the call flows (routings) from the queues to the

pools.

The flow diagrams, like the ones in the previous examples, are useful to analyze

the design of the process (activities and edges), and the control realization (agent

and call flows). In this SBR-Mining work, the flow realizations data are used to
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Agents Flow in Call Center
12 August 2012

Figure 2.3: Agents Process - a snapshot of the agent flow in a call center of an

Israeli bank, 12 August 2012. Available at https://www.youtube.com/

watch?v=-ik5kA7aLGg

learn how the flow varies under different system conditions.

Recent works applied Process Mining techniques to study call center service

processes. Senderovich et al. compared in [28] Process Mining and queueing-

theoretic techniques to predict delays in service processes. Here the authors demon-

strate how queueing theory gives rise to delay predictors that can be used to im-

prove the common Process Mining predictors based on system state regression.

Another work in the same spirit compared different approaches to predict agent

schedules to calls [27]. This work studied the performance of queueing theory

scheduling protocols and machine learning algorithms to predict agent schedules.
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Skill-Based Routing (ILTelecom)
9 March 2008

Figure 2.4: Skill-based Routings - a snapshot of the routing of calls to agents in

a call center of an Israeli telecom, 9 March 2008. Taken from video at https:

//www.youtube.com/watch?v=1A6-jzS_scI, minute 1:41.

2.3.3 Discovering Control Protocols from Data Logs

While several Process Mining algorithms were developed for discovering instances’

flow of business processes, less attention has been paid for discovering control pro-

tocols. Such protocols specify the conditions for each task in the process to be

executed, including ordering tasks and assignment of resources.

Process Mining refers to protocol discovery as “decisions mining”. Existing

studies of this problem aim to discover routing conditions in branching points,

where an instance can be routed to different activities.

A Process Mining tool to mine decisions in branching points can be found in

ProM, an extensible framework that supports a wide variety of Process Mining

techniques. This tool, developed by Rozinat and van der Aalst [25], defines each

branching point as a classification problem, whose classes are the point branches,

and the prediction features are instance attribute variables defined by the user. To

build a classification model, ProM applies a decision tree algorithm.

In ProM the user defines the features used in the classification learning. To

extend the set of features evaluated in the decision mining problem. Leoni et al. [4]
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use a specification mining tool (Daikon) to automatically create and evaluate fea-

tures that are equalities or inequalities involving arithmetic expressions on multiple

variables.

The ProM decision miner tool can be applied to learn call routing protocols,

but it is limited to process only instance context data. When tasks (calls) are routed

to limited resources (agent pools), the process and social context play an essential

role in the process routing decisions, rendering the ProM tool inappropriate.

Process and social context data is used by Senderovich et al. [27] to mine agent

schedules to calls. Here various methods are compared to predict agent allocations

to queues of customers, i.e., how to select a certain customer class. The problem

is formulated as a classification problem as in ProM, and different predictor per-

formances are compared: (1) queueing-theory based predictors (i.e., longest queue

first and most delayed customer first) and (2) machine learning based predictors

(LDA, MLR, Decision trees, and Random forest). This work shows that in the

studied case the decision tree based learning achieves the best results.

The work in [27] focuses on learning protocols for the selection of a customer

queue to be served first, but it does not learn the rules to select the waiting customer

within the selected queue that will be served. We are not aware of any decision

mining work that deals with learning selection among customers of the same class.
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Chapter 3

SBR-Mining - A Method For
Mining Routing Protocols

In the following chapter we first introduce a model to represent the SBR problem,

as described in Section 2.2. We then develop a method for learning the routing

rules from event logs of service agents and customer calls.

The proposed method is presented under the usual notation for scheduling net-

works, enabling a general view of the problem and application of the method in

areas other than call centers, for example in data processing by web servers or

scheduling patients in hospital emergency rooms.

Section 3.1 introduces a general network model for the problem. Section 3.2

describes the steps of our proposed method for learning routing protocols in the

queueing network.

3.1 Model Description

3.1.1 SBR System Design in SBR-Mining

The SBR design of a system is defined as the partition of customers into classes

and agents into pools. In the literature, it is usually assumed that calls and agents,

in their corresponding pools, are independent and statistically identical. Under

this assumption, the SBR literature assumes that calls and agents, within a class

or a pool, are routed via FIFO; research then focuses on designing protocols to

prioritize between system classes and pools, namely, to select which queue will be
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served next, or which agent pool will serve the next call.

In reality, the situation of having FIFO classes and pools does not exist. Such

protocols would prioritize customers by their waiting-time and agents by their idle

times. Instead, it is common to find protocols that consider customer attributes,

such as their waiting time for previous service interactions, predefined priority

classifications, or measures related to the expected revenue from each customer.

We shall refer to the latter (unrealistic) design as ”iid-within-pools-and-classes”.

Such designs would be typically difficult to fit to real-systems.

In our data-based approach, we shall start with a specific (real) SBR-Design.

In such a specification, customers within a class are potentially served by the same

group of agent-pools; and agents within a pool potentially serve the same group

of classes. (Note that in such a specification, there are no iid assumptions within

a class or a pool.) To recapitulate, our SBR-Mining approach is based on a given

design of the real system studied. From the given design, the model identifies

which groups of calls and agents share the same routing paths. Thus, SBR-Mining

does not adopt the idd assumption.

In SBR-Mining, we learn the protocols to prioritize calls and agents within their

classes and pools. If it is recognized that a partition is composed of two or more

groups of customers (or agents) with different properties and different priorities,

we can redefine the system partition separating the original class (or pool). For

example, if we find that a given class includes VIP and Regular customers, and

VIP customers are always served before Regular customers, we can redefine the

design separating the customers into two new classes.

3.1.2 Inter-Queue Topology as a Network

Network notation is commonly used to describe call center processes. Senderovich’s

thesis [27] describes various call center processes using networks. Then the SEE-

Graph package provides a variety of network schemes to semi-automatically gen-

erate diagrams from event logs, emphasizing distinct aspects of system operations

(see the SEEGraph examples in 2.3.2). The network notation proposed here fo-

cuses on the study of routing protocols.

In our SBR network, agents and calls are treated as similar items. We argue

that the flow paths in the system of agents and calls are abstractly identical for the
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SBR routing problem—both of them follow similar three main states: waiting to

be routed, in service, and other states (see Figures 2.2 and 2.3). Furthermore, both

agents and calls may leave the waiting state for beginning a service but also for

flowing to other states. From now on the term item will be used as a general term

for a call or an agent waiting to be routed.

In a similar manner to the SBR flow representation in Figure 2.4, queues and

agent pools are defined as vertices, consisting of waiting calls or available agents

respectively. The reason to look at waiting calls and available agents is that there

are items that can be routed by the protocol. Note that an agent vertex here consists

of only the available agents in a class, which differs from the agent pool term that

refers to all the agents in a class, including available and unavailable ones.

The equivalence between calls and agent routings leads one to consider the call

center queueing network as an undirected graph: the edges connect agent vertices

with call vertices in the same way the arrows do in Figure 2.4, connecting call

queues to pools of agents who can serve the calls.

Formally, a network is an undirected graph (V,E), where the set of vertices

V consists of the union of the customer classes set I and the agent pools set J
defined in Section 2.2; the set of edges is described by a symmetric matrix Ev1v2 ,

where Ev1v2 = 1 if routings from vertex v1 to vertex v2 and vice versa are possible

under the system design. Otherwise Ev1v2 = 0. If v1 = v2 then Ev1v2 = 0. In

addition, let V v be the set of neighboring vertices of vertex v, namely the set where

v items can be routed: V v = {v′|v′ ∈ V ∧ Evv′ = 1}.
Figure 3.1 illustrates the network representation of an N design. In this exam-

ple, V = {1, 2, 3, 4}, and E =
( 0 0 1 1
0 0 0 1
1 0 0 0
1 1 0 0

)

Agents 
Pool 1

Agents 
Pool 2

Queue 1 Queue 2

3 4

21

Figure 3.1: N design as a network, which consists of four vertices and three edges.

The network schema is useful to describe a model for the network routing
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protocol below. However, the studied system is based on the network, but is not

reduced to it. The network routing rules are learned based on logs of all the item

events in the system, including events in the queueing network and events outside

the queueing network (e.g. recorded messages).

3.1.3 Routing Protocols

A routing protocol evaluates at each point in time whether any, and if so which,

items are to be routed. The protocol evaluations can lead to routing waiting cus-

tomers or idle agents to service, or to the decision that no routing is to be executed.

These evaluations answer two questions:

• Should any item be routed at time t?

• Given that an item is to be routed at time t, which items are routed?

Our model assumes that routing protocols have No Induced Idle Time (NIIT).
This means that there will never be a waiting item in a vertex, while a compatible

item is waiting in the network. Specifically, in the call center network this means

that there will never be a waiting call in queue, jointly with a skilled agent available

to serve this call.

Routings in our model are also non-preemptive, as defined previously—a cus-

tomer service is not interrupted to serve another customer.

NIIT and non-preemption define exactly when the protocol executes routings:

whenever an item arrives and there is an available compatible item in any neigh-

boring vertex. Therefore, the question “Should any item be routed at time t?” has a

definite answer by the NIIT assumption. Our work focuses on the second question,

“Given that an item is to be routed at time t, which items are routed?”. It is possi-

ble to also study routing protocols that do not require NIIT, but these protocols are

beyond the scope of the current work.

In addition, we assume that the item arrivals to each vertex are independent

random processes with continuous interarrival distributions. Therefore, since no

more than one item arrives at each point in time t, no more than one item can be

routed at time t.

A central characteristic of our SBR-Mining approach is that it does not assume

that items that enter the same vertex have the same priorities; in our approach VIP
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and regular customers could be in the same vertex. It is assumed that the vertices

group items with the same feasible routing paths (connections) but not necessarily

with the same priorities.

Upon the arrival of an item to vertex v at time t, the routing protocol processes

the available data about the system state and the arrived item to define whether and

how this item has to be routed. Let xt be the system “state” at time t, a description

of the information available at time t, including data on a possible arrival at this

point in time, and let d be a routing decision at time t, which can be an empty set

if no routings are executed, or a pair of matched items (i, j), when i is the arrival

item at this time and j is a waiting item selected to enter service.

The following paragraphs define the network routing protocol in the introduced

model, and describes how it is decomposed into simpler vertex protocols.

Definition of Network Routing Protocol. A network routing protocol is a func-

tion R : X→ D that maps system states x ∈ X, to routing decision d ∈ D.

Furthermore, item routings can be divided into two routing levels:

1. Inter-vertex Routing: this is the selection of the vertex where the arriving

item is to be routed.

2. Intra-vertex Routing: refers to the selection of the specific item from the

vertex determined by the inter-vertex routing, which is to handle the arrival

item.

Before formalizing these definitions of routing protocol, we illustrate the defi-

nitions above in the call center network. Suppose that a new call arrives to a queue.

If there are available agents who can handle the call, according to the NIIT as-

sumption the call is routed immediately (service routing). The inter-vertex routing

defines which agent pool will serve the call, and the intra-vertex protocol selects

an available agent from the selected pool to serve it.

Inter-vertex Protocol definition. The vertex v inter-vertex protocol is a function

F v : XV v → V v: its argument is a system state x ∈ XV v
for which at least

one of the vertices in V v is not empty, and its value is a vertex v′ selected by the

protocol to route the arriving item. The inter-vertex protocol has the property that

F v(xt) ∈ V v
t , with V v

t being the set of nonempty vertices in Vv at time t.
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In SBR-Mininig, inter-vertex protocols are described through preference score

functions, which gives score values to the vertices that can be routed, the routed

vertex being the one with the higher score value. Formally, a preference score

function is a function Pv : (XV v
, V v)→ R, for which:

Fv(xt) ∈ argmax
v′∈V v

t

Pv(xt, v
′).

Preference score functions are learned from data, and through these learned func-

tions the inter-vertex protocol is characterized.

The preference score function here is equivalent to the index functions intro-

duced in the previous chapter, but without the restriction of using only local data.

The Intra-vertex Protocol defined below is also formulated through a performance

score function.

Intra-vertex Protocol definition. Letting Xv be the set of system states for which

vertex v is not empty, and Iv the set of items that visit vertex v during the studied

period1, the vertex v intra-vertex protocol is a function fv : Xv → Iv, which

processes the system state information x ∈ Xv to select an item from Iv to enter

service. The intra-vertex protocol of vertex v has the property that fv(xt) ∈ Ivt ,

where Ivt is the set of items at vertex v at time t.

Similarly to the preference score functions described for learning inter-vertex

protocols, intra-vertex protocols are described by preference score functions de-

noted pv : (Xv, Iv)→ R, for which:

fv(xt) ∈ argmax
i∈Ivt

pv(xt, i).

Let us formulate the network routing protocol R : X→ D as a composition of the

intra- and the inter-vertex definitions. For that, let Ai be the arrival time of item i

to its vertex. Then we have

R(xt) =


(i, fv′(xt))|v′ = Fv(xt), ∃v ∈ V, i ∈ Iv|t = Ai ∧ |Ivt |.

|V |∑
v′=1

Ev,v′ > 0

∅, otherwise.
1The Iv notation should not be confused with the notation for idle agents in Section 2.1.
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3.2 Method

In this section, we describe our method to learn the routing protocols of a call

center from its event logs. Chapter 4 presents an application of the method to two

call center databases.

Call centers typically use simple and intuitive SBR protocols. Therefore, our

method is specially designed to find simple and intuitive routing rules. To achieve

this purpose, the method details an interactive trial-and-error analysis where a hu-

man analyst formulates and evaluates routing rules and arguments. A different ap-

proach to learn routing protocols would be to define a wide set of possible routing

rule arguments and building an algorithm to automatically discover the protocol

and its arguments. Such an approach, however, is likely to lead to protocols that

are complex, not intuitive, and hence will differ from the real protocol. Let us

remark that the latter automatic discovery approach can still be considered a trial-

and-error approach, where only one trial iteration is done. Our model and method,

as described in this section, still have a significant value for this approach as well.

Our method assumes that there exists a routing protocol R : X → D, and that

the system state description processed by the protocol is a function of the event

logs in the studied database. Network protocol learning consists of learning the

intra-vertex and inter-vertex routing functions of each vertex.

An algorithm to learn vertex routing protocols is introduced below. This algo-

rithm aims to discover the two preference score functions pv(xt, i) and Pv(xt, v
′),

which describes the vertex protocols. The function argument xt was defined to be

a general system state description which includes all the available data at time t.

In fact, to characterize a specific vertex routing protocol, this argument must be

specified as it serves as the system state variable. Let xpv and xPv be specified vec-

tor state descriptions used respectively by the pv(xt, i) and Pv(xt, v
′) preference

functions. Our learning algorithm aims to learn the preference score function and

its corresponding system state parameter xpv and xPv .

The complexity in discovering routing rules lies in discovering the state vectors

xpv and xPv . This complexity is originated by the fact that these vectors can be

composed of a wide set of measures and variables, such as item attributes, queue

load measures, etc. Note that also simple measures, such as the waiting time of

items, can be defined in different ways. For example, the waiting time could be the
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time in queue, or the time since the entry to the call center, including VRU time.

The fact that routing protocols are simple and system state vectors can be de-

fined in several different ways, makes the task of discovering the state vector the

central challenge in SBR-Mining.

3.2.1 Description of the Algorithm

The learning algorithm is essentially similar for the inter- and the intra-vertex pro-

tocols. We now introduce a general description of the algorithm, followed by spec-

ifications for each type of protocol learning.

The proposed method, that works in a trial-and-error approach, is a cyclic al-

gorithm composed of three steps: (i) protocol formulation, (ii) protocol testing and

(iii) exploration that seeks new protocol formulation:

• Formulation: Consists of defining a preference score function for the stud-

ied vertex (pv or Pv) and defining its concrete system state description vector

(xpv or xPv respectively).

• Protocol Test: Tests the preference score function goodness-of-fit to data-

logs. For that, the system logs are processed to find routing decisions exe-

cuted by the studied protocol and to compute how well those routings fit the

formulated score function.

• Exploration: Aims at learning how the formulated protocol can be im-

proved. It tests the capacity of new state variables to explain the difference

between the routings observed in logs and the routings defined by the for-

mulated protocol. Variables that explain differences in routings are included

in the new formulated protocol.

To test system state variables, descriptive models of the routing fit are de-

veloped, where the explaining variables are the system state variables to be

tested. Then, these models are used to analyze how the variables explain the

routing fit and to select one of the tested features.

3.2.2 Learning of Intra-vertex Protocol

Intra-vertex protocols refer to the decision of which item in the studied vertex will

enter into service next. The learning method for this kind of protocol is detailed
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below.

Intra-vertex protocols could be classified into two categories: (i) homogeneous

item protocols, distinguishing items only by the arrival-to-vertex time stamps, e.g.

FIFO (First In, First Out) or LIFO (Last In, First Out), and (ii) heterogeneous

item protocols, where the selection of items is based on vertex external data, such

as item expected revenue, time spent by the item in previous vertices, or item class.

Common homogeneous item protocols are easy to be recognized recognize via

data analysis. In homogeneous vertices, the natural protocol to be used is FIFO.

Heterogeneous item protocols are harder to detect from data since these may be

based on item value measures that are not included in operational databases, or

based on complex computations of the items’ history in the system.

In some cases, heterogeneous protocols differentiate between items by some

categorical attribute, such as item quality group (regular, VIP,..) or previous service

type. In these cases we propose to split the heterogeneous vertex into one-category

vertices, which group homogeneous items.

Formulation

The intra-vertex protocol function fv is described through a preference score func-

tion pv, for which

fv(xpvt ) ∈ argmax
i∈Ivt

pv(xpvt , i).

The learning method introduced below studies the intra-vertex protocol through

its preference score function. Note that the general xt symbol used in the orig-

inal protocol definition is here replaced by the specified system state vector xpvt ,

which reduces the general system state description to a vector that contains only

the system state variables that define the intra-vertex routings.

In the formulation step, a preference score function pv and its xpvt argument are

formulated to be tested and to be improved after an exploration cycle.

Testing

The purpose of the testing step is to quantify how well the routing protocol fits the

routings derived from the event logs. The goodness-of-fit measure enables com-

parison between formulated protocols and a general quantification of the learning

process results.
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To define how well a routing protocol fits the data, we use the skips and slips
concepts, defined in [12]: “if item i enters the vertex before item j enters the

vertex, but item j leaves the vertex before item i, then item j skips item i and item

i experiences a slip from item j”.

The skips and slips in [12] are defined as violations of the FIFO protocol.

Hence, many skips and slips suggest that the FIFO protocol does not fit the routing

derived from the system logs. Below we generalize these concepts that are appli-

cable not only for testing the FIFO protocol, but also any intra-vertex protocol.

Skips and Slips definition. Suppose that at time t items i and j wait in vertex v

and one of these items is routed; suppose also that item i has a lower preference

value than item j. Denote by ri (rj) the time when item i (j) enters service. Then

skipstij indicates whether item i is routed before j (i skips j) or formally:

skipstij = 1{ri=t}, ∀{i, j ∈ Ivt ∧ pv(xpvt , j) > pv(xpvt , i) ∧ t = min(ri, rj)}.

Accordingly, slipstij is defined by

slipstij = skipstji.

Due to the symmetry between skip and slip indicators, the following steps will

be described through the skip indicators, but slips could be used as well.

Skip indicators are defined for skip opportunities, namely, situations when

two items wait in queue at the same time and one of the items is routed before the

other. The indicator values indicate whether the first item selected from the queue

is not the item with the higher priority defined by the tested protocol.

Skip opportunities are observations of the system routing protocol; the set of

skip opportunities form the SBR-Mining learning sample. Note that when an item

is selected to leave the queue, a skip opportunity observation is registered for each

waiting item. Therefore, routings executed when the vertex is highly loaded are

represented by more observations in the sample than routings executed when the

vertex is lightly loaded. This sampling approach increases the weight of routings

executed during heavily loaded periods, focusing the learning process on these

routings.

To illustrate the concepts introduced above, consider a case where we are test-

ing the FIFO protocol in a queue with 100 waiting items and no new arrivals. For
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this example, the items in queue are denoted by index i = 1, 2, 3, ..., 100 according

to their arrival order (i = 1 is the first item to join the queue). In this example, the

last item to join the queue, item 100, is routed first, and afterwards all the items are

routed under a FIFO protocol.

When item 100 is routed, 99 skip opportunities are generated, and their skip

value is 1, indicating that skips actually occur: skipsr100100,i = 1,∀1 ≤ i ≤ 99. The

second item to be routed is item 2, generating 98 skip opportunities, whose skip

value is 0: skipsr1i,1 = 0,∀2 ≤ i ≤ 99. In the same way, the routing of item 2

generates the indicators skipsr2i,2 = 0,∀3 ≤ i ≤ 99; and so on, until item 99 is

routed last.

Goodness-of-Fit based on Skips and Slips - In the sample of skip opportu-

nities, each skip value indicates if the evaluated protocol fits the corresponding

routing observation.

The skip values are aggregated to compute general goodness-of-fit measures.

There are various ways to do that, from which we chose two goodness-of-fit mea-

sures.

The first measure is the skipping items rate, which measures the number of

items that skip relative to those that had skip opportunities:

|{i : i ∈ Iv ∧
∑

j,t skips
t
ij > 0}|

|Iv|
.

The second measure proposed is the skip rate—the rate of skip opportunities

where a skip occurs: ∑
i,j,t|i>j skips

t
ij

|{(i, j)|∃skipstij}|
.

Let us demonstrate these measures using our previous example. In that exam-

ple, we get a sample of 4950 skip opportunities, from which only 99 skips occur,

so the skip rate is 99/4950 = 2%. The skipping item rate is 1/99 = 1.01%, since

from the 99 items that had the opportunity to skip, only one skipped.

Exploration

The exploration step is the part of the trial-and-error method where errors are ana-

lyzed to formulate an improved protocol. In this part, the analyst studies the errors
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of the protocol evaluated in the last iteration, namely the observations of skip op-

portunities for which the skip indicator value is 1. The exploration consists of find-

ing explanatory variables for skip values. The idea is that system state measures

correlated with the skip values can be used to formulate a new improved protocol.

To analyze the protocol errors, the analyst builds descriptive models of skip

values, where system state variables describe the skip values in the sample. The

purpose of the descriptive model is to recognize relations between system state

variables and the errors in the protocol. Using these relations, the analyst can

formulate a new protocol to be tested in a forward iteration.

To build descriptive models of the skip values, different machine learning al-

gorithms can be used. We recommend the use of algorithms that lead to simple

and comprehensive models, since our method aims to find simple routing proto-

cols. Decision tree algorithms, such as Cart [19, Chapter 9], can be appropriate

for this purpose. In addition, in [27] it was shown that decision trees are good in

identifying routing protocols.

When the model recognizes categorical attributes of items as good explaining

variables of skips, the vertex can be split into new vertices according to the rec-

ognized attribute. This simplifies protocol analysis, and creates a more detailed

description of the different groups of items in the system.

The learned relation between state variables and the protocol errors are imple-

mented splitting the vertex items, if necessary, and formulating a new preference

score function. The need for a new learning cycle is determined by two criteria—

the goodness-of-fit reached and the discovery of new insights in the exploration

phase.

To conclude the learning description of the intra-vertex preferences and topol-

ogy, Figure 3.2 illustrates how an N network is further decomposed after finding

that Vertex 2 in fact groups two different item classes. These 2 groups could be

identified after finding that items who skip share a characteristic that other items

do not, for example, a customer VIP or regular classification. In the N network

case in Figure 3.2, Vertex 2 in the original design is split into two new vertices,

Vertex 2a and Vertex 2b, and the intra-vertex protocols are studied over a new

network consisting of 5 vertices.
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Algorithm 1 Intra-vertex Preferences Learning and Design Evaluation

1: Define an intra-vertex score function pv and its system state vector xpvt (as in

Section 3.2.2, Formulation Part).

2: Compute skip variables for the sample of skip opportunities. Evaluate

goodness-of-fit measures (as defined in Section 3.2.2, Testing Part).

3: Build descriptive models of skip indicators and analyze skip explanatory vari-

ables (as described in Section 3.2.2, Exploration Part).

Evaluate if the vertex can be forward decomposed into different item classes

and can be split into new vertices. In this case return to Step 1 for each one of

the new vertices.

4: Based on the insights from the analysis, define a new intra-vertex score func-

tion pv and vector xpvt (as in Section 3.2.2, Formulation Part) and return to

Step 2. If no insights are reached, stop the learning process.

3 4

21

3 4

2a1 2b

Figure 3.2: Example of a vertex split in an N -design network. Here vertex 2 is

split into vertices 2a and 2b .

3.2.3 Inter-vertex Protocol Learning

The previous section introduced an algorithm to evaluate the network topology and

to learn intra-vertex protocols. This section describes an algorithm for learning

inter-vertex protocols, that select the vertices to which items are routed.

Figure 3.3 illustrates how the network from Figure 3.2 is decomposed into five

inter-vertex functions: one gets three I-design networks (the vertex is connected

to only one vertex) and two V -designs (the vertex is connected to 2 or more ver-

tices). In I-networks the routing is trivial while in V networks the routing is a

classification problem.

Denote by v the vertex whose inter-vertex protocol is studied. Recall that Vv
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Figure 3.3: Network decomposition to inter-vertex routing protocols. The network

in Figure 3.2 is decomposed into five different networks, each one with its own

inter-vertex routing protocol.

was defined in Section 3.1.2 to be the set of vertices neighboring v, namely the

vertices that can be selected by the v inter-vertex protocol. Recall also from Section

3.1.3 that the v inter-vertex protocol was defined as the selection of vertices in Vv,

where items from v are routed.

From an abstract point of view, the inter-vertex protocols are similar to the

intra-vertex ones. We can look at vertex v as a meta-vertex which groups meta-

items (v neighbors) that wait to be routed. Under this view, the inter-vertex proto-

col, as the intra-vertex one, routes one item selected from a group of waiting items

that are in the vertex at the routing time.

In general the algorithm to learn inter-vertex protocols is similar to the algo-

rithm described to learn intra-vertex protocols. Nevertheless, there exist differences

between both types of protocols that must be considered in the learning process.

The comparison below is somewhat general and may not apply to every studied

protocol, but it is useful in order to introduce the differences between the algorithm

approaches. Later on we mention how protocols with different characteristics can

be handled.

The first difference between intra- and inter-vertex protocols is that, while the

intra-vertex protocol is expected to route homogeneous items, the inter-vertex pro-

tocol aims to distinguish between the vertices in Vv and to prioritize some classes

of waiting items.

The second difference is in the number of different items routed by each type

of protocol. Informally, we can say that an inter-vertex protocol always routes the

same group of a few meta-items (vertices), while intra-vertex protocols commonly
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route several different items (tens to a few hundred agents in agent vertices or

several thousands of calls per day in call vertices).

These two differences do not affect the general structure of the trial-and-error

algorithm, but do affect the algorithm approaches: while, in the intra-vertex algo-

rithm, we learn preference functions of general items i; in the intra-vertex protocol

we learn preference functions of specific meta-items, the vertices in Vv2. Below

we detail the learning algorithm for the inter-vertex protocols.

Formulation

The first step of each trial-and-error cycle is formulating the routing protocol Fv()

and its parameters. The inter-vertex function was described by a preference score

function Pv and a system state vector xPv
t :

Fv(xPv
t ) ∈ argmax

v′∈V t
v

Pv(xPv
t , v′).

The protocol tested in the trial-and-error method is defined through its prefer-

ence score function. In this step the preferences function Pv and its system state

parameter xPv are formulated.

Since we expect that an inter-vertex protocol will give different priorities to

the vertices in Vv, the formulated preference score function is likely to include

indicators for each vertex that can be routed. These indicators are multiplied by

expressions to increase or decease the score values of each vertex in a different

way. For example, consider a preference score function for vertex v, for which

Vv = {1, 2}, and its routing protocol routes vertex 2 only; in vertex 2, there are

always more than 6 items. Here we define indicators for vertices 1 and 2, 1{v′=1}

and 1{v′=2}, and formulate the preference score function to be: Pv(xPv
t , v′) =

1{v′=1} + 2.1{v′=2}.1{|I2t |>6}.

Test

In the test part, the goodness-of-fit of the formulated protocol is evaluated. Due

to the preference score computation may be different for each vertex in Vv; the
2Our inter-vertex algorithm aims to learn routing protocols that route the same few items all the

time. Learning inter-vertex protocols of vertices with several neighbors could be convenient applying

the intra-vertex algorithm, and in the same way, intra-vertex protocols that deal with a few returning

items, like small agent pool vertices, could be learned using the inter-vertex algorithm.
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testing part aims to provide goodness-of-fit measures for routing observations of

each vertex. Such measures may indicate which vertices’ score computations could

be improved in forward iterations.

For inter-vertex learning vertex skips and slips concepts are defined. In contrast

to the skips and slips indicators defined for learning intra-vertex protocols, which

are defined for general items i, j ∈ Iv, the vertex skips and slips defined here are

defined for specific vertices in Vv.

Skips and Slips definition. Suppose that at time t vertices vi and vj are in V t
v ,

and an item from one of the vertices is routed; suppose also that vertex vi has a

lower preference score Pv() than vertex vj . Denote by rtvvi ∈ {0, 1} a variable

that indicates if at time t an item was routed from the studied vertex v to vertex vi.

We define skipstvij to be an indicator which indicates if vertex vi skipped vj at time

t, or formally:

skipstvivj = 1{rtvvi=1}, ∀t, ∀vi, vj ∈ V t
v |Pv(xPv

t , vj) > Pv(xPv
t , vi)∧max(rtvvi , r

t
vvj ) = 1.

Accordingly, slipstvivj is defined by

slipstvivj = skipstvjvi .

Skips and Slips based Goodness-of-Fit - The goodness-of-fit of the inter-

vertex protocol is expressed by aggregation of the skip values defined above. Sev-

eral measures could be defined to be these goodness-of-fit vector values. Here we

use the skip rate measure defined in the intra-vertex routing learning. The sec-

ond measure used in the intra-vertex protocol, the skipper rate, is not relevant for

protocols that route only a few vertices.

We propose to measure the fitting separately for observations of each routed

vertex, then the analyst can focus the exploration on the vertices with the worst

fitting. For example, the goodness-of-fit can be expressed by a vector of size |Vv|
composed of aggregations of the skip values of each vertex in Vv. When |Vv| > 2,

it may be informative to compute also the goodness-of-fit of each pair of vertices.

Exploration

The exploration step to improve the formulated preference score function is similar

to the exploration described in the intra-vertex protocols learning algorithm. It
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builds descriptive models to relate new system state variables to the protocol error

indicators, namely the skip values.

In the inter-vertex protocols learning, the goodness-of-fit vector provides infor-

mation about the vertices for which the preference function shows a worst fitting.

These are the vertices where the exploration should focus on ??. Then, the sam-

ple of skip opportunity observations processed to build the descriptive model is

composed by only the observations related to the explored vertices.

In an exploration step various skip opportunity samples and explaining vari-

ables can be analyzed through different models. These models are analyzed to

recognize which variables explain better the protocol errors and the insights from

the model analysis; then a new routing protocol is formulated.

The algorithm ends in one of two cases—when the formulated protocol fitting

to routing logs is satisfactory or when exploration models do not lead to insights

that can be used to improve the formulated protocol.

Algorithm 2 Inter-Vertex Protocol Learning

1: Define an inter-vertex score function Pv and its parameters xPv
t . (as in Section

3.2.3, Formulation Part).

2: Compute skip variables for the sample of skip opportunities. Evaluate

goodness-of-fit measures (as defined in Section 3.2.3, Testing Part).

3: Build descriptive models of skip indicators and analyze skip explanatory vari-

ables.

The analysis may be done separately for different subsets of skip opportunity

observations (as described in Section 3.2.3, Exploration Part).

4: Based on the analysis insights, define a new inter-vertex score function Pv and

vector xPv
t (as in Section 3.2.3, Formulation Part) and return to Step 2. If no

insights are reached, stop the learning process.
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Chapter 4

Application - SBR Mining in Real
Data

In this chapter, we apply our SBR-Mining method in three case studies. The chap-

ter begins by describing the studied systems and their databases. It is followed by

a short discussion of practical issues in call log processing that aims at learning

routing protocols. At the end of the chapter, three examples of protocol learning

are described, using the SBR-Mining method.

4.1 Data Description

For our analysis, we use databases from two large call centers. The first belongs

to an American bank (USBank), with approximately 1000 service agents at peak

hours. The second one is from an Israeli telecom company (ILTelecom), with

around 400 agents at peak hours.

The databases originated from the ongoing Data MOCCA1 research project,

conducted at the SEE2 Center at the Technion. (For more information on the SEE

Center and the DataMOCCA project see [5]).

Call center data is stored by the Automatic Call Distributors software (ACDs),

which stores raw data containing the history of calls. Tables 4.1 and 4.2 describe

the number of incoming calls recorded in our studied databases.
1Data MOCCA = Data MOdels for Call Center Analysis
2SEE = Service Enterprise Engineering
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USBank Total Total Weekdays Average per Weekday

Total # of arriving calls 218,047,488 181,032,004 271,006

# calls requesting agent service 41,646,142 37,036,994 55,445

Table 4.1: Call summary for USBank, March 2001–October 2003

ILTel Total Total Weekdays Average per Weekday

Total # of arriving calls 16,583,207 12,971,371 205,040

# calls requesting agent service 2,999,191 2,740,649 43,438

Table 4.2: Call summary for ILTelecom, January–March 2008

The flow of calls and their SBR design is detailed below, followed by a de-

scription of the call logs used to learn the routing protocols.

Call Flow - The customer-originated call enters the Call Center system at a

particular node, usually via a VRU—Voice Response Unit. In some applications,

the call may also enter via an Information Announcement, via the Call Center

voice messaging system or even directly to an agent service group. As described in

Tables 4.1 and 4.2, most of the calls are in fact self-service transactions conducted

or information received at the VRU, Announcement or Message stages.

At the next stage, for the customers who desire to speak to an agent, the call

is transferred to be served by an agent who is capable of performing the desired

service (has the required skills). The customer then either waits until an appropri-

ately skilled agent becomes free, or else the customer abandons the call center. At

completion of service by the agent, the call either ends, or has a continuation. In

the latter case, in the database, the original call is divided into the first customer

subcall which ends when the first service was completed, plus the remainder of

the call, which may be divided into further subcalls. Figure 4.1 illustrates the calls

flow in a USBank during an average weekday.

System Design - The system design is the partitioning of customers into classes

and the servers into pools; each pool has a predefined set of skills. Our method

to learn routing algorithms uses the system design to learn separately the routing

protocols of each pool and class.

The ILTelecom system design is depicted in Figure 4.2. The design repre-

38



Weekdays, May  2003 

Entries 

Exits 
Abnormal 
Termination 

278843.6 

2
4

2
6

8
3
.

6
 

VRU 

10824.1 

1
1

2
6

.8
 

Announce 

10395.7 

1
3

6
1

.4
 

Message 

5557.5 
Direct 

59357.6 

4
8

5
 5

0
8

6
1

.4
 

7804.3 Offered 
Volume 

Handled 

Abandon 
Short 

Abandon 
Cancel 

Discon 
nect 

Continued 

Figure 4.1: Flow Diagram of incoming calls, in a USBank during the weekdays of

May 2008 (mean values).

sentation includes the customer classes (green ellipses), the agent pools (orange

rectangles) and the number of calls from each class served by each agent pool (ar-

rows connecting queues and pools). This graph is automatically produced from the

call logs by the SEEGraph package.

The ILTelecom call center consists of 19 customer classes (queues) and 16

agent pools. Some customer classes, such as the various Private and Business

classes, can be served by various agent pools. While other customer classes, like

Technical and Financial classes, are served by a unique dedicated pool of agents.

Similarly, some agent pools serve various customer classes and others serve a

unique class.

The USBank SBR-design is illustrated in Figure 4.3. In this case the original

database does not contain the partition of agents into pools. The design is hence

taken from [20], which created it via an agent clustering algorithm. The USBank

design has 9 customer classes and 11 agent pools. As can be viewed in the graph,

most of the incoming calls are from the Retail class. Six agent pools serve Retail

customers, some of them exclusively dedicated to serve them; and some others are
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Figure 4.2: ILTelecom call center design - based on data from the 6 of February

2008. Graph produced by SEEGraph.

dedicated to serve other classes and serve the Retail class as well. Five pools do

not serve Retail customers and are dedicated to other customer classes.

Data Logs - The studied databases include logs for agent and customer activ-
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Figure 4.3: USBank call center design - based on data from the 7 of May 2007.

Graph produced by SEEGraph.

ities in the system. Each log record describes an activity and includes information

about the agent or the customer involved in the activity.

For example, for a standard customer call, a log is stored for the customer

interaction with the VRU, and another log for the customer interaction with the

agent. If after receiving service by an agent, the customer is routed to receive

another service, this will be stored by additional logs. Customer logs include the

following fields:

• Identifiers - call ID, customer ID, subcall number (enumerates the service

interactions in the same call).

• Service class.
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• Answer party type - e.g. agent, VRU, information announcement, etc.

• Answer party ID - e.g. VRU or agent ID.

• Customer node origin - physical or logical system component that processes

the activity. The USBank system consists of different nodes that process

calls from different geographical sites.

• Timestamps of the entry to queue, entry into service and end of service.

• Segment component durations - talk time, queue time, hold time, wrap-up

time, etc.

• Exit reason - end of service, abandon, transfer or error.

Agent event logs describe agent activities, such as customer service and breaks.

Below is a list of the main fields stored in agent logs:

• Identifiers: Agent ID.

• Agent pool.

• Activity - shift beginning/end, customer service, break, etc.

• Agent node origin: refers to the system component assigned to process the

agent activities.

• Timestamps of the event, specifically beginning and end.

• Served party ID - customer ID, call ID, call log number.

In fact, the original logs’ database includes a significantly more detailed de-

scription of the events. The logs’ description here presents the main structure of

the logs and the main field processed in our examples.

4.2 Data Challenges in SBR-Mining

In SBR-mining, some practical issues must be considered regarding the routings

executed in the system and their log storage process. This section discusses two

practical aspects that affect the derivation of meaningful results: The first one is

the existence of one unique deterministic protocol during the studied period. The

second practical issue discussed is quality of the data logs.
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Routing Protocols—Existence and Stability

The described algorithm assumes that during the defined study period, all the rout-

ings are determined by one unique deterministic set of rules. SBR-Mining aims to

discover this rule set.

In general, routing protocols defined in ACD systems are a stable setting of call

center operations. The definition of new protocols imply deep analysis, research

and ACD system programming, and therefore these are not changed frequently.

Nevertheless, protocol definitions usually include some constants that may be re-

calibrated once in a while, like thresholds or the queue distribution in a QIR rule.

These protocols’ parameters affect the items’ preference scores, and therefore

the preferences of items’ classes. Since changing these parameters is simple, they

are commonly tuned by a trial-and-error approach. When these changes in the

routing protocols are not stored in the database, the SBR-Mining results can be

strongly affected.

To reduce the probability of analyzing routings generated by different proto-

cols, it is preferable to learn protocols in data of short periods. In addition, to

analyze the stability of routing protocols over time, inferred protocols from differ-

ent periods of data can be compared.

Another reason for heterogeneity in the routings studied is that some routings

are defined in real time by human operators, in order to route a specific call to a

specific agent. The flexibility given by manual routings enables the system opera-

tors to deal with special situations which the programmed protocols fail to manage

properly, for example when a customer asks to be served by the same agent that

served him the last time he called.

This SBR-Mining work aims to learn only the ACD protocols, and not manual

routings. In large call centers it is expected that only a small part of the routings

executed in the system are done so manually.

Therefore logs of routings defined manually are undesired in the learning database,

and should be separated from the ACD routings dataset. Nevertheless, usually rout-

ing logs do not state whether a routing was executed by the vertex protocol or by

an operator, in which case the logs cannot be separated.
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Data Quality

SBR-Mining leans on the quality of the database processed to infer the routing

protocols. The desired database would include all the information processed by

the ACD to route items, and a complete description of the items’ flow.

One of the main qualities desired in the data is completeness, namely, the pres-

ence in the logs of all the information processed by the routing protocol. If event

information that determines the preference score functions is missing, the method

might fail to find good fitting protocols.

The second quality desired in the database is accurateness, specially of the

timestamps. Inaccuracy in queue entry and exit timestamps may lead to incorrect

skip samples, altering the train data.

The timestamp resolution has to be considered as well; when two events have

the same timestamps it is not possible to learn whether one of the events’ items had

a bigger preference score.

In the studied cases, the timestamp resolution is one second, and there are

pairs of items with similar timestamps. In these cases, we ignore the skip samples

between the pair of items with the same timestamps.

4.3 Learning Routing Protocols—Three Examples

4.3.1 Intra-Vertex Protocol Learning (1) - Customer Vertex

We now use our intra-vertex algorithm to learn the routing protocol in the ILTele-

com Business queue.

In Section 4.1, the ILTelecom system is described, and Figure 4.2 shows a

realization of the system SBR flow. Figure 4.4 below shows the customers vertex

studied in this example, and its neighboring vertices in the assumed design. Here

we learn its intra-vertex protocol.

Iteration 1 - Step 1 - Define an intra-vertex score function pv and its system

state vector xpvt (as in Section 3.2.2, Formulation Part).:

We begin by studying skips under the FIFO protocol, where the preference score

of a waiting item is its waiting time:

xpvt = wi(t),
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Figure 4.4: The graph represents the vertex of Business class customers studied in

this example, and its SBR design.

pv(xpvt ) = xat = wi(t),

where wi(t) is the waiting time of item i at time t (i ∈ Ivt ).

Iteration 1 - Step 2 - Compute skip variables for the sample of skip opportuni-

ties. Evaluate goodness-of-fit measures (as defined in Section 3.2.2, Testing Part)..

In this example, the goodness-of-fit is evaluated through the measures introduced

in Section 3.2.2: the skipping item rate - the percent of items in the sample that skip

out of those that could skip, and the skip rate - the percent of skips executed out of

the number of skip opportunities in the sample. The skipping item rate value for

the FIFO protocol is 23%, and the skip rate value is 9%. Clearly, the protocol in the

sample differs from FIFO. Exploration is necessary to recognize routing patterns.

Iteration 1 - Step 3 - Build descriptive models of skip indicators and analyze

skip explanatory variables (as described in Section 3.2.2, Exploration Part).

Evaluate if the vertex can be forward decomposed into different item classes and

can be split into new vertices. In this case return to Step 1 for each one of the new

vertices..

To explore the reasons for the skips, we now test the following explaining vector:

xt = (w1(t), w2(t),∆Wi,j(t), sub calli, sub callj , entry typei, entry typej),

where index i refers to the customer that can skip the other customer (j). The

variables in the vector are the waiting time - wi(t), the difference between the

waiting times - ∆Wi,j(t) = wi(t)−wj(t), the customer service number - sub calli,

and the entry type - entry typei (a categorical value indicating the answer party

type: VRU, Announce, Message, Directly).
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To build the model, we use a decision tree algorithm [19, Chapter 9], since

it builds interpretable models and, as was shown in [27], decision trees are good

in identifying routing protocols. Some different values were tried for the meta-

parameters running the algorithm, such as pruning criteria, minimum leaf size to

split, etc.

Figure 4.5 shows the created decision tree model. The first variable splitting

the tree is the customer subcall counter, indicating that customers that had previous

service iterations in the system are prioritized to be served first. In addition, the

model shows other splits based on waiting time variables.
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Figure 4.5: Decision tree model to explore violations of the FIFO protocol.

Iteration 1 - Step 4 Based on the insights from the analysis, define a new intra-

vertex score function pv and vector xpvt (as in Section 3.2.2, Formulation Part) and

return to Step 2. If no insights are obtained, stop the learning process.

Since in the previous step it was found that customers which had previous service

iteration tend to skip customers in the queue, we now formulate a vertex score

function that boosts the score of customer proportionally to the number of previous

service iterations. Formally,

xpvt = (wi(t), sub calli),

pv(xpvt ) = wi(t) + sub calli ·KSC ,
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where wi(t) and sub calli are as defined earlier and KSC is a constant that repre-

sents the score added to a call for each previous subcall.

The KSC value is to be selected so as to minimize the skip rate. Chart 4.6

shows that the number of skips decreases as the KSC value grows, converging to

the minimum number of skips when the KSC exceeds 220.
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Figure 4.6: Goodness-of-fit of the vertex preference score function as a function of

the subcall score constant KSC .

Iteration 2 - Step 2 - Compute skip variables for the sample of skip opportuni-

ties. Evaluate goodness-of-fit measures (as defined in Section 3.2.2, Testing Part).

To evaluate the goodness-of-fit of the Vertex preference score, we compute the

measures defined in the first iteration. The new protocol goodness-of-fit values

are 19% for the skipping item rate and 4% skip rate. While the goodness-of-fit

was significantly improved, we still continue the algorithm to seek a protocol with

better goodness-of-fit values.

Iteration 2 - Step 3 - Build descriptive models of skip indicators and analyze

skip explanatory variables (as described in Section 3.2.2, Exploration Part).

Evaluate if the vertex can be forward decomposed into different item classes and

can be split into new vertices. In this case return to Step 1 for each one of the new

vertices.

In this iteration we build a model using the explaining variables defined in the

previous iteration, xpvt = (wi(t), sub calli), and the decision tree algorithm.

In the derived decision tree (Figure 4.7), the waiting time of Customer 1, the
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customer with the lowest preference score value, is the first split variable. Its right

branch shows that 976 skips were executed by customers that did not wait in the

Business queue, skipping customers with the same sub call value. The left leaves

of the tree are all split by waiting time variables.
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Figure 4.7: Decision tree model to explore violations of a protocol with preference

score function: pv(xpvt ) = wi(t) + sub calli · 220.

Figure 4.8 illustrates skips as a function of the waiting time of pairs of cus-

tomers in skip opportunities, customers i and j, where index i refers to the cus-

tomer with the lower waiting time, and j to the other. The graph shows that several

skips occur when the difference between customer waiting times is small, or im-

mediately when the skipper customer arrives to queue (waiting time of customer i

equal to zero). The skips that occur between customers with a small difference in

the waiting time might be the result of inaccurate timestamps used by the routing

protocol that generates the logs.

Iteration 2 - Step 4 - Based on the insights from the analysis, define a new intra-

vertex score function pv and vector xpvt (as in Section 3.2.2, Formulation Part) and

return to Step 2. If no insights are obtained, stop the learning process.

To explore the skips where a customer skips immediately after arriving to

queue, we explored variables based on the path of the customer since entry to the

system and variables with information about the agent pools, such as which pool

served the skipped call and the number of available agents in each pool. Unfortu-

nately, this analysis did not lead to better score functions.
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Figure 4.8: The graph represents customer waiting times from a sample of observed

skip opportunities. Each blue/red point in the graph represents a skip opportunity.

If no improved score functions can be found, the vertex learning process is

stopped at this step. We found that the intra-vertex protocol prioritizes customers

according to the number of previous service interactions; the preference score func-

tion found is pv(xpvt ) = wi(t) + sub calli · 220. Comparing the initially assumed

FIFO regime with the fitted protocol, we see that the goodness-of-fit was improved

from a 9% skip rate and 23% skippers to a 4% skip rate and 19% skippers. to

explain this modest improvement, recall that the initial protocol provided a good

fit to start with.

4.3.2 Intra-Vertex Protocol Learning (2) - Agent Vertex

This example shows how the intra-vertex algorithm is used to learn the routing

protocol of an agent vertex. In this case, the vertex is recognized to have two

classes of agents which are split into two new vertices.

The example is computed on the EBO agents’ pool of the USBank system. In

Section 4.1, the USBank case is described, and Figure 4.1 shows a realization of

the system’s SBR flow3. Figure 4.9 shows the agent vertex studied in this example,

and its neighboring vertices in the initial design. Here we study the learning of its

intra-vertex protocol.
3Note that the EBO agents’ group is called Retail Agents’ Group 9 in Figure 4.1, extracted from

SEEgraph.
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Figure 4.9: The graph represents the vertex of EBO agents studied in this example,

and its initial assumed SBR design.

Iteration 1 - Step 1 - Define an intra-vertex score function pv and its system

state vector xpvt (as in Section 3.2.2, Formulation Part):

As in the previous example we begin studying skips under a FIFO protocol, for

which the score function is the items’ waiting time.

xpvt = wi(t),

pv(xpvt ) = xat = wi(t),

where wi(t) is the waiting time of item i at time t. (Recall that waiting time for an

agent is in fact idle-time: the time waiting to serve a customer).

Iteration 1 - Step 2 - Compute skip variables for the sample of skip opportuni-

ties. Evaluate goodness-of-fit measures (as defined in Section 3.2.2, Testing Part).

Goodness-of-fit is evaluated through the same measures defined in the previous ex-

ample. The FIFO protocol skipping item rate is 35% and the skip rate is 24%. The

values indicate a poor fitting of the FIFO protocol.

Iteration 1 - Step 3 - Build descriptive models of skip indicators and analyze

skip explanatory variables (as described in Section 3.2.2, Exploration Part).

Evaluate if the vertex can be forward decomposed into different item classes and

can be split into new vertices. In this case return to Step 1 for each one of the new

vertices.

To explore skips, the following explaining vector is defined:

xt = (wi(t), wj(t), nodei, nodej).

Index i refers to the customer that can skip the other customer (j). The vari-

ableswi, wj are the agents waiting, namely idle, time when the first agent is routed.
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The variables nodei, nodej are categorical variables indicating the agent nodes.

A decision tree model built for those explaining variables is illustrated in Fig-

ure 4.10. The first split is executed on criterion wi > 0.5, creating two branches

with skip rate 53% for observations that satisfy the constraint and 22% for the oth-

ers. The succeeding splits are based on the node variables, showing a significantly

higher skip rate when the agents originate from different nodes.
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Figure 4.10: Decision tree to explore violations of a FIFO protocol.

The splits by the node variables suggests that the protocol routes agents from

different nodes as different agent classes. Let us split the EBO vertex into two ver-

tices, one for EBO agents in Node 1 and one for EBO agents in Node 2 (see Figure

reffig:EBOExampleGraphSplit). Then new vertices’ protocols will be learned.

Retail Calls 
Queue

EBO
 Calls 

Queue

EBO Agents 
Group
Node 1

EBO Agents 
Group
Node 2

Figure 4.11: The graph represents the split vertex of EBO agents into two new

vertices—one composed by the EBO agents in Node 1 and the other by the EBO

agents in Node 2.

Iteration 2 - Step 1 - Define an intra-vertex score function pv and its system

state vector xpvt . Compute skip variables for the skip opportunities sample:

51



Here we formulate the FIFO preference score function for both new vertices.

xpvt = wi(t),

pv(xpvt ) = xat = wi(t).

Iteration 1 - Step 2 - Compute skip variables for the sample of skip opportuni-

ties. Evaluate goodness-of-fit measures (as defined in Section 3.2.2, Testing Part).

The goodness-of-fit values for the FIFO protocol in the EBO pool in Node 1 are

skipping item rate 7% and skip rate 4%. For the pool in Node 2 the skipping item

rate is 3% and skip rate 5%.

The FIFO protocol goodness-of-fit was improved from 35% of skipping agents

and 24% of skips in the original vertex to 3–7% and 4–5% respectively in the new

ones.

The application of our intra-vertex method led to the recognition of two dif-

ferent classes of agents in the original design definition. Once these classes were

identified, their splitting into new vertices enables a better understanding of the

protocol.

4.3.3 Inter-Vertex Protocol Learning

This example shows how the inter-vertex algorithm is applied to learn the protocol

of an agent’s vertex of the ILTelecom system (see description in Section 4.1). In

this example, we learn the inter-vertex protocol of the vertex composed by the

agents dedicated to serve customers of the class called Business AT (VIP Business

calls). Figure 4.12 shows the SBR flow of the Business AT agents’ vertex. As it

is illustrated in the figure, agents from this vertex are routed to serve Business AT

calls, and also regular Business calls. In this example, we learn the protocol that

determines to which call vertices the Business AT agents are routed.

Iteration 1 - Step 1 - Define an inter-vertex score function Pv and its parame-

ters xPv
t . (as in Section 3.2.3, Formulation Part).

In the first iteration, we test a protocol which routes the agents to the vertex with

the longer queue length:

xPv
t = (LqAT , LqBUS ),

Pv(xPv
t , v

′
) = Lqv′ .
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Figure 4.12: The graph represents the SBR flow of Business AT agents in the

ILTelecom system.

Iteration 1 - Step 2 - Compute skip variables for the sample of skip opportuni-

ties. Evaluate goodness-of-fit measures (as defined in Section 3.2.3, Testing Part).

To evaluate the goodness-of-fit, we classify the sample observations into two sets:

one for the skip opportunities where the Business Vertex has a higher score value

and the AT vertex may skip it, and the other for the observations where the AT

vertex has a higher score value and the Business vertex may skip it. The skip rate

in the first set is 49%, showing that the AT Vertex skips the Business one under the

tested protocol. In contrast, the skip rate of the second set is 2%, showing that the

Business vertex does not skip AT. Clearly, further exploration is necessary to find

how the score of the AT vertex is to be boosted.

Iteration 1 - Step 3 - Building descriptive models of skip indicators to analyze

skip explanatory variables.

The analysis may be done separately for different subsets of skip opportunity ob-

servations (as described in Section 3.2.3, Exploration Part).

This exploration iteration focuses on the AT vertex skips. The selected sample

is then the set of routing observations where the Business vertex has a higher pref-

erence score value, and its label is Skipst
AT,BUS

indicating if the AT vertex skips

the Business one or not.

Now, to find how we can formulate a new protocol that reduces the number of

AT vertex skips, we seek to build a model where system state variables describe

these skip values. To this end, we define a set of variables that we consider to be

possible descriptive variables of the skips. The entries in the system state vector

xt are the number of items in each vertex (LqAT and LqBUS), the mean waiting
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time of items in the vertices at the routing time (EWAT and EWBUS), and the

maximum waiting time in the vertex (WAT and WBUS):

xt = (LqBUS , LqAT , EWBUS , EWAT ,WBUS ,WAT )

A decision tree algorithm was run to build a model describing the skip values

through the defined vectors xt. Figure 4.13 illustrates the computed tree, which

consists of several splits based only on the maximum waiting time variables WBUS

and WAT . It seems from the tree that the waiting time is one of the protocol pa-

rameters.
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Figure 4.13: Decision tree model to explore violations of a protocol which routes

the longer queue first.

Figure 4.14 plots the maximum waiting time in each vertex on the selected

sample, and which vertex was chosen by the routing protocol. It can be seen in the

plot that there exists an acceptable separation between AT and Business entries in

terms of the waiting time variables. The plot shows four different areas, visually

separated by straight lines. The first area is when the waiting time of the Business

head of queue is under about 75 seconds. In this case only the AT vertex is selected.

The second area is when the Business waiting time is between 75 to 150 seconds.

In this case there exists a diagonal line separating areas where the Business or the

AT vertex is selected. In the third area, the Business vertex head of queue waits

above 150 seconds and below 200. In this case, the AT vertex is selected if its head

of queue waiting time is above 100 seconds. In the last area, for higher waiting
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times in the Business vertex, the selected vertex is determined by a diagonal line.

In addition to the four areas, it can be noticed that the slopes of the lines in the first

and third areas are close to zero while in the second and fourth line it is close to

one.
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Figure 4.14: The graph represents the routing as a function of the waiting times of

the AT and Business items in the head of the queues. Each point in the graph rep-

resents a routing instant, whose (x, y) values are the waiting times in the Business

and AT queues respectively, and the color of the point indicates which queue was

routed. Red points are Business routings and blue ones are AT queue routings.

In the exploration process, we learned that the maximum waiting time in each

vertex is a good explaining variable of the routing decisions. In addition we learned

how these variables are compared by the routing protocol. Below we apply the

exploration insights to formulate a new protocol score function.

Iteration 1 - Step 4 - Based on the analysis insights, define a new inter-vertex

score function Pv and vector xPv
t (as in Section 3.2.3, Formulation Part) and return

to Step 2. If no insights are obtained, stop the learning process.

We formulate a general preference score function where the four areas detailed

above are defined by three constants, K1,K2,K3, whose values are the axis x

lengths of the first three areas. Then, the protocol is formulated as:

xPv
t = (WAT ,WBUS ),

pv(xPv
t , v

′
) = Wv′ + Iv′=AT · (K1 + IW

v
′ >K2

· (K3 −K2)).
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The exact values for the area lengths are computed to minimize the total num-

ber of skips in the sample. After numerical computation we found the optimal

values: K1 = 63, K2 = 92 and K3 = 494.

Iteration 2 - Step 2 - Compute skip variables for the sample of skip opportuni-

ties. Evaluate goodness-of-fit measures (as defined in Section 3.2.3, Testing Part).

The skip rate of the AT vertex was reduced from 49% to 10% and the skip rate

of the Business vertex was increased from 2% to 9%. The growth of the Busi-

ness skips is expected under the new score function since it boosts the score of

the AT vertex. The skip rates values are still high. In an additional exploration

iteration we did not find new explaining variables to formulate a new protocol. We

analyzed different variables, including the subcall number of customers in queues,

total waiting times of items in previous subcalls, etc.

4.3.4 Results Summary

In our three examples, we identified some structures of routing protocols. In all

cases, we found that the routing protocols are based on customer waiting times,

but they are not pure FIFO policies.

In the example of ILTelecom intra-vertex, we found that the previous path of

the customer influences its priority (previous subcalls), and in the USBank EBO

agent vertices we found that agents are prioritized according to their geographi-

cal location (node). In the example of ILTelecom inter-vertex, where we studied

how Regular and VIP Business customers are selected to be served by Business

VIP agents, we found that the VIP customers are prioritized according to an index

function of the customer waiting times.

Note that the initial goodness-of-fit value in the inter-vertex example is higher

than the values in the intra-vertex examples. This difference is explained by the

fact that in the first iteration of the learning process, the formulated score function

usually ignores special attributes of items or vertices that can be selected. This kind

of protocols, usually fit better real intra-vertex protocols that route homogeneous

items, and do not fit well inter-vertex protocols that differentiates between specific

vertices.
4The optimal K values were found computing the skip values of the formulated score function,

for each set of K1,K2,K3, for which 0 < K1 < K2 < K3 < 300. The skip values were computed

in the sample of all the routing observations of the studied inter-vertex protocol.
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In the three examples, the goodness-of-fit of the initially assumed protocols was

improved by our learning method, but also after several learning iterations there

still remained differences between the routing data and the estimated protocols.

We relate these differences to the issues described in Section 4.2, specifically

data completeness and manual routings. The fact that most of the differences be-

tween the estimated protocols and the routing samples is when one of the items

is served without waiting, which leads us to believe that these items have special

attributes that are not stored in their logs, or they are manually routed.

Our results of the method application are summarized in Table 4.3 below:

Example Initial Skip

Rate

Initial

Skipper

Rate

Final

Skip Rate

Final

Skipper

Rate

Example 1 - ILTelecom,

Intra-Vertex Protocol (1)

9% 23% 4% 19%

Example 2 - USBank,

Intra-Vertex Protocol (2)

24% 35% 3-7% 4-5%

Example 3 - ILTelecom,
Inter-Vertex Protocol
Note: results are computed for AT and

Business call vertices respectively.

49%, 2% - 10% , 9% -

Table 4.3: Results Summary of SBR-Mining Application examples.
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Chapter 5

Conclusions and Future Research

5.1 Conclusions

We developed a method for learning routing protocols in skill-based call centers.

Specifically, the method consists of a general model for SBR systems, a mathemat-

ical formulation of routing protocols, a routing data model, a definition of protocol

goodness-of-fit measures and finally, the learning method.

The SBR-Mining model is a network of agent pools and customer classes, as-

suming that the system design is known before the protocol learning. However, let

us delve into the meaning of system design in the SBR-Mining context.

In the literature, design is characterized by groups of statistically independent

and identically distributed items. From this characterization, we could derive two

attributes of the design: 1. items in the same group can be routed to the same set of

vertices, 2. there are no different priorities between items within the same vertex.

In contrast to the common definition of SBR design, in real systems the design

is commonly defined to adhere to the first of those attributes, but not the second.

Therefore SBR-Mining assumes that the given SBR design defines the network

flow, but not the priorities between items in each vertex. As part of the learning

method, the homogeneity in the vertices is tested, and when it is found that one of

the vertices is composed of more than one priority class, the vertex is split into new

vertices and the network is updated.

One of the principal characteristics of our model is the duality between agent

and customer vertices, which enables the use of the same learning method for both
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kinds of vertices. This duality is present in the model and in the learning method

structure, but in its application the differences between agent and customer routings

must be considered: agent and customer event logs are different, their paths in

the system are different and therefore the variables and protocols studied in the

learning process must be different.

The mathematical formulation of the protocol is a function composed of intra-

and inter-vertex protocols, and the protocol parameters are variables describing

system states. We argued in Section 3.2 that the routing protocol functions are

expected to be simple and intuitive, and that the challenge of SBR-Mining is in

discovering the system state parameters. This argument is supported by the exam-

ples in Section 4, where we found simple routing protocols that explain more than

90% of the routing samples.

One of the challenges in developing our SBR-Mining method was the definition

of the data model. Routings are selections of items to be routed, where the group

of items that can be routed varies in time (and also in size). Therefore the definition

of the routing sample structure is not straightforward. Previous work on learning

routing protocols dealt only with inter-vertex protocols, where the group of vertices

that can be routed is fixed.

The introduced data model defines a routing sample as a competition between

a pair of items (or vertices) that wait at the same time to be routed by the same

routing protocol. When one of the competing items is routed by the protocol, a

routing decision is sampled. To learn the fit of the routing samples to estimated

protocols we used the skip variables, which indicates whether the routing sample

coincides with the estimated protocol selection.

To learn the routing protocols, our SBR-Mining runs classification algorithms

to build a descriptive model of the skip variables, as a function of explanatory fea-

tures that describe the competing items and the system state at the routing time.

The method in Section 3.2 states that any classification algorithm could be applied

in this stage, but in three case studies in Section 4.3 we found decision trees the

most useful algorithms. The advantages of this algorithm is that it builds inter-

pretable models from which it is simple to understand how the feature values lead

to the model results.

Finally, SBR-Mining models the SBR protocol and suggests a learning method.

The main limitation of the method is its iterative trial-and-error approach, as it
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requires analysis of results in each learning iteration. These iterations could be

perhaps, after some learning, executed automatically, having predefined sets of

routing algorithms to test. The problem with such an automatic approach is that

the predefined set of routing protocols must be adapted for each call center system

according to its service process and design, and such an adaptation could require a

similar analysis to that done in the iterative SBR-Mining method.

We applied our SBR-Mining method in 3 case studies. In all the cases, we

learned routing protocols that improved the goodness-of-fit measures in compari-

son to the initially assumed protocols. Nevertheless, in all the cases, the learned

protocols failed to describe all the routing samples. We offer two possible explana-

tions for those differences: 1. There are features of routed items that are not stored

in the studied logs, and 2. Manual routings executed by system managers, in order

to respond to ad hoc system or customer requirements.

5.2 Future Research

Interesting worthwhile extensions are possible in the following directions:

• Development of Automatic SBR-Mining Methods
The trial and error approach applied in this thesis could be extended to an

automatic algorithm. Previous works in this field [4, 25] were limited to

inter-vertex algorithms, used user-defined routing explanatory features and

in some cases ignored process context data. An automatic algorithm may

be able to deduce system-state variables from data logs, and apply machine

learning algorithms to explain routing decisions. Such an algorithm could be

based on the routing data model introduced in this work.

• Skip Applications in Process Mining Conformance Analysis
A main focus of Process Mining is conformance analysis, which compares

estimated process models with real process logs. Interesting future work

could be to study applications of the skip measures in conformance analysis

of routing and prioritization protocols. At present, there is a scarcity of Pro-

cess Mining literature that studies protocol conformance. The skip variables

could be the base of future research in this area.
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• SBR-Mining Method without the NIIT assumption
Our protocols learning assumes NIIT protocols, and therefore it does not

learn how the protocols define the time when a routing must be executed.

Extensions of SBR-Mining to protocols that do not satisfy NIIT could be

investigated.

• Estimated Protocols in System Simulations
Another interesting research direction is the application of system simula-

tions in SBR-Mining. This application could compare real system perfor-

mance, measured through QoS measures, and the system performance under

estimated protocols. Such comparisons would enable measurement of es-

timated protocols goodness-of-fit under system targeted QoS measures. In

addition, simulations based on estimated protocols could be used in the study

of process performance under different “what-if” scenarios.
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