
Erlang-S: A Data-Based Model of

Servers in Queueing Networks

David Azriel, Paul D. Feigin, Avishai Mandelbaum.

July 5, 2018

Abstract

Classical queueing theory has typically focused on customers, while server availability has

been taken for granted. However, data accessibility and the emergence of complex service sys-

tems, for example call centers, revealed the need to stochastically model the complex behavior

of servers. In this work, we propose a new model that accommodates such behavior; we call it

Erlang-S, where “S” stands for Servers. Our model assumes a pool of present servers, some of

whom are available to serve customers from the queue while others are not, and the process of

becoming available or unavailable is modeled explicitly. Our focus here is on applying the model

to real systems, specifically call centers. Estimating the parameters of the new model from call

center data is challenging since reality is observed discretely in time, as opposed to its contin-

uous evolution. We thus use an EM algorithm that computes the expected number of relevant

quantities given the discrete-time data. Erlang-S differs from the Erlang-A model, which has

been commonly used for modeling call centers: the latter model assumes that all agents who are

present are in fact available for service. When comparing predictions of the two models against

call center data, we find that Erlang-A generally overestimates queue length and consequently

also the fraction of abandonment, while Erlang-S predicts reality more closely and usefully. Our

conclusion is that it is important to model explicitly server dynamics, in order to obtain accurate

and valuable models of complex service systems.

1 Introduction

Operational models of service systems have been traditionally customer-centric. A case in point

is Queueing Theory, which has been mainly a theory of customers: indeed, its “Queueing” refers

to customers that queue up for service. The emergence of service systems with 100’s of servers,

and the accessibility to their data, has shifted some attention to the servers. A case in point here

1

are many-server queues that are Quality- and Efficiency-Driven (QED), the study of which was

inspired by telephone call centers: Quality indicates that customers enjoy short waits for servers,

and Efficiency corresponds to servers who do not wait long for customers.

The symmetry between the operational roles of customers and servers, as advocated in QED

systems, is the theme of Momcilovic et al. (2017). We demonstrate it in Figure 11, which is based on

call center data. It depicts the topology of “who-can-be-served-by-whom” (customer-queues in the

ellipsoids) or, equivalently, “who-can-serve-whom” (server-queues in the rectangles). In the present

paper, we focus on the servers’ perspective, which is illustrated by the three marked sub-networks

in Figure 1:

• I-topology: A single pool of servers is dedicated to a single pool of customers. This is the

most prevalent topology of queueing models, for example Erlang A,B,C (Gans et al., 2003).

• N-topology: The right server-pool caters to two types of customers, and the left customer

type can be served by the two server pools.

• The left half of Figure 1 is a General complex connected component (G-topology), within which

we marked two I-like sub-networks. These sub-networks motivated the present paper in that

the model we developed, Erlang-S, captures the behavior of Servers in these two I-constructs

(hence the “S” in Erlang-S): a pool of servers catering to a primary queue, that occasionally

becomes unavailable to serve customers due to a multitude of reasons. The rest of the call

center, beyond that primary queue, will be modeled by a state (“black-box”) which agents can

visit and then return. This is in the spirit of Erlang-R, in Yom-Tov and Mandelbaum (2014),

where the focus is on doctors or nurses in an emergency department; there the “black-box”

state represents the rest of the emergency department, where patients spend time between

successive visits to providers. Thus, Erlang-S captures complex server-behavior (available vs.

unavailable to serve customers), in analogy to Erlang-R, which did the same for customers

(available vs. unavailable to be served).

1Figures 1, 2 and 3 were created by SEEGraph, a structure-mining tool at the Technion SEELab, http://ie.

technion.ac.il/Labs/Serveng/. Their underlying data can in fact be animated for further insight: see https:

//www.youtube.com/watch?v=1A6-jzS_scI, where Figures 1-3 appear after 1:42 minutes. (Animation of the overall

flow of customers in a call center starts in minute 0:41.) In addition, each figure has its own animation, accessible

via the link below the figure. (Note that it takes 5 to 30 seconds for the quality of the animations to improve and

stabilize.) Some of this data is open to access and analysis in http://seeserver.iem.technion.ac.il/databases.

Appendix E provides an explanation of the dynamics that animate the data.

2

http://ie.technion.ac.il/Labs/Serveng/
http://ie.technion.ac.il/Labs/Serveng/
https://www.youtube.com/watch?v=1A6-jzS_scI
https://www.youtube.com/watch?v=1A6-jzS_scI
http://seeserver.iem.technion.ac.il/databases

The I-,N- and G- topologies are of increasing complexity. We shall fit Erlang-S to two data sets

corresponding to I and G. The I-like sub-network within the G-topology is of special importance

since, when properly used, it has the potential to serve as a zooming-model of any I-construct,

within a general queueing network. We view this zooming capability as possibly being our most

important practical contribution.

 Erlang-S I-topology

 I-like sub-network

 N-topology

 G-topology

 I-like sub-network

Figure 1: Topology of a call center. Server-queues are in the rectangles and customer-queues are in the ovals. (An

animation of the data, underlying the figure, is accessible at http://youtu.be/_eyAXVXZU7o.)

Figure 2 is a daily-activity summary of a server pool, taken from Senderovich (2014). It ac-

knowledges the states of agents who were present on that day: ready to serve (idle); online (busy)

- serving various types of customers; and unavailable for service - due to various activities or en-

gagements (wrap-up, breaks, meetings, . . .). Figure 3 is created from Figure 2 via aggregating the

type-specific cycles of “online–wrap-up” into a single such cycle. Now, one clearly observes that

servers alternate among three states: ready, online and unavailable (the latter aggregates wrap-up,

breaks, meetings and back-office work). The model that we develop here is at the resolution of

Figure 3: this is Erlang-S, with “S” standing for Servers.

1.1 Erlang-S: a simple server network

As discussed in Section 2 below, our motivation comes from data. Data tells us that servers change

their availability status, rather than always stay available as call center models typically assume.

3

http://youtu.be/_eyAXVXZU7o

Servers, Hybrid, Two Agents (ILDUBank)
24 January 2010

Online
Live

Online
General_Banking

Online
Securities

Online
Support

Online
Investments

Online
Shifting

Online
Managers

Online
Consultants

ReadyUnavailable Offline (Meetings, Back-Office)

Unavailable Online (Private Calls, Agent Chat)

Short Break (<= 2 min)

Medium Break (2 min< , <= 15 min)

Long Break (> 15 min)

Logged In

Logged Off

Wrap Up + Paperwork
Live

Wrap Up + Paperwork
General_Banking

Wrap Up + Paperwork
Securities

Wrap Up + Paperwork
Support

Wrap Up + Paperwork
Investments

Wrap Up + Paperwork
Shifting

Wrap Up + Paperwork
Managers

Wrap Up + Paperwork
Consultants

Figure 2: Paths of agents in a call center, focusing on ready→ online→ wrap-up, separately for each customer-type.

The light-blue rectangles indicate online service and wrap-up. The orange ones correspond to breaks. (The underlying

data is animated in http://youtu.be/DHvObpKjYrQ.)

The creation of the model, that is the way servers become available or unavailable, is again based

on data. We now elaborate on these dynamics.

According to Erlang-S, the number of servers that are present in the system is fixed over time.

However, a server can either be available or unavailable, which does vary over time. Available servers

serve customers from the queue, or they are ready to serve an arrival if the queue is empty (they

cannot become idle if there are customers queueing); unavailable servers do not serve customers.

Servers change their availability status in the following three ways:

1. Upon end of service, the (available) server can remain available or become unavailable.

2. Upon arrival of a customer, one of the unavailable servers can become available (and hence

busy).

3. At a certain rate, an unavailable server can spontaneously become available.

The above three options were all observed in our data, and each can be given realistic interpretations.

As already noted, a server that ends a service can become unavailable (Option 1) for its queue due

to turning to serve a customer from another queue (Figure 1), or doing wrap-up work, going on a

4

http://youtu.be/DHvObpKjYrQ

Figure 3: Snapshot of paths of agents in a call center, where states are aggregated into: ready, online, wrap-

up, on break, and other miscellaneous unavailable states (in meetings, on private calls, ...). Each colored circle

traces the activities of a specific agent. For technical reasons, the number of colors that is available for display is

bounded by 50; hence, some customers in the graph may have the same colors. (The underlying data is animated in

http://youtu.be/H-wMFSl95KU.)

break or to a meeting (Figure 3). An arrival can change an unavailable server to being available

(Option 2) if, for example, it is a VIP arrival. Finally, a server could spontaneously become available

(Option 3) after returning from a break.

Another phenomenon that we observed in our data is that servers tend to become more available

as the system becomes increasingly loaded. Such phenomena are captured by the parameters

of Erlang-S, that measure the “availability” of servers. However, estimating these parameters is

challenging. Indeed, call center data typically has a time resolution of seconds and therefore already

for a moderate-size call center, multiple events can occur simultaneously (during a single second2).

It follows that the underlying process is not observed fully and a methodology that deals with

this is required. Here we use the EM algorithm of Bladt and Sørensen (2005) for inference in the

framework of discretely observed Markov jump processes (see Section 3.1). A formal description of

2A vivid demonstration appears in the following video http://youtu.be/lU3ZKy4Dnlg, which records the evolution

of a US Bank call center in 1-second steps. The data from this call center is publicly available in http://seeserver.

iem.technion.ac.il/databases

5

http://youtu.be/H-wMFSl95KU
http://youtu.be/lU3ZKy4Dnlg
http://seeserver.iem.technion.ac.il/databases
http://seeserver.iem.technion.ac.il/databases

the Erlang-S model is given in Section 2.2.

1.2 Literature review

In recent decades, call centers have become an important part of service systems; the number of call

centers in the United States alone was estimated in 2008 to be over 47,000, employing 2.7 million

agents (Aksin et al., 2007). Call centers are generally complex systems that have attracted ample

research; see e.g., the review papers of Gans et al. (2003) and Aksin et al. (2007). Brown et al.

(2005) describe an empirical analysis of a call center which gives rise to statistical analysis of its

arrivals, services, and patience of customers.

We now describe several studies that focus on servers. Gans et al. (2010) study call centers

with multiple types of agents, each with its own service time distributions. The heterogeneity of

agents is caused in part by the agent learning-curves; that is, experienced agents behave differently

from beginners, which has operational consequences if ignored. Ward and Armony (2013) also

study heterogeneous servers and introduce a routing policy that assigns customers to servers so as

to minimize customer holding costs subject to fairness (fair allocation of idleness among servers);

along the way, they establish asymptotically ASTA and Little’s law from the viewpoint of servers.

Kc and Terwiesch (2009) investigate healthcare systems and demonstrate empirically that service

rate is accelerated as load increases. This phenomenon is modeled in Delasay et al. (2016), who

enrich Erlang-C with the feature that service rate is state-dependent, such that it increases with

system overload; their model differs from ours in that servers are always available and abandonment

is not acknowledged. Adaptation of service-rate is consistent with our findings in call centers, which

show that agents tend to become more available as system load increases; see Section 3.2.

Sun et al. (2007) study wireless networks where the capacity changes stochastically with time

and system load. They demonstrate that this stochastic variation can have a major impact on

different performance measures such as call blocking probability and queueing delay.

It will help to put Erlang-S in perspective, relative to some existing Erlang models. Erlang-

C (M/M/n) is a simple queueing model that ignores caller abandonment and thus it is typically

inappropriate for modeling call centers. On the other hand, the Erlang-A model (M/M/n +M),

which can be traced back to Palm (1957), accounts for customers’ impatience while waiting. Brown

et al. (2005) argue that “using Erlang-A for capacity-planning purposes could and should improve

operational performance. Indeed, the model is already beyond typical current practice (which is

Erlang-C dominated), and one aim of this article is to help change this state of affairs”. A survey

6

of Erlang-A and its application to call centers is given in Mandelbaum and Zeltyn (2007).

The Erlang-R model was introduced by Yom-Tov and Mandelbaum (2014), with “R” standing

for Reentrant customers. It was motivated by healthcare systems, in which patients often go through

a repetitive service process, alternating between being available and unavailable for service. The

Erlang-S model, presented here, can be thought of as Erlang-A in which servers enjoy Erlang-R

features: they leave the system (become unavailable) and then return.

Our model is, in fact, a vacation model of servers (Tian and Zhang, 2005), but it differs from

these models in that it describes how servers go on vacation and come back, based on data. Also,

previous similar models have lacked impatient customers, and their parameter estimation has not

been of concern. The closest model to ours is in Takagi and Taguchi (2014), where servers have

after-call work, thus becoming unavailable after each service completion. The latter model is a

special case of ours, in that Erlang-S is richer in options for when servers become available or

unavailable.

1.3 Contributions and contents

Data tells us that agents change their tendency to be available according to system needs. Con-

sequently, considering only the average number of available agents as, for example, when fitting

Erlang-A to data, leads to overestimation of the queue length and the abandonment rate. Other

versions of Erlang-A that model servers’ unavailability by prolonging or adding extra service time,

could work fine for simple sub-networks (I-topology) but they do not for more complicated ones

(e.g., I-sub-network within a G-topology). Overall, when comparing predictions of the two models

against real data, Erlang-S predicts reality more closely and usefully, and it is the only model that

does so uniformly against all (reasonable) alternatives.

Moreover, queueing models typically require, as an input parameter, the number of agents N

that are present. However, data on N originates in server-logs, which are often separated from

customer-logs, and typically the latter are the focus of attention. It turns out that the value of N

must often be estimated, and here Erlang-S provides a useful resource. Specifically, in Section 4 we

successfully estimate N , via an EM algorithm that is based on the Erlang-S model.

To sum up, our main contributions are as follows:

• We propose and use a new service model, Erlang-S: it is developed from data, in order to

capture the behavior of servers who change their availability status stochastically.

7

• Model parameters are estimated (at various levels of granularity) via EM algorithms, and the

model is fitted using call center data.

• Significantly, the model can fit a complex queueing system, specifically (sub) networks of

parallel multi-class customers and multi-skill servers, with a general topology of class-skill

matching. This is done by modeling the rest of the network system, beyond the queue of

primary interest, as a node which agents visit and from which they return.

• In general, our model is much more accurate and versatile than Erlang-A, which has become

the most prevalent model for queues with impatient customers. (We also have anecdotal

evidence that Erlang-A is replacing Erlang-C as the (call center) industry standard.)

• Nevertheless, Erlang-A can still be useful for isolated I-topology (as opposed to I- within a

G-topology) if its parameters are appropriately tuned.

• Estimated parameters reveal interesting phenomena. For example, the rate at which agents

become spontaneously available increases with queue length.

• Several parametric forms of the availability functions are compared. We find that, for the

I-topology, a low-dimensional form works well; but for the more complex case of G-topology,

a higher dimensional form is truly needed.

• We use Erlang-S to estimate the number of agents present in the system, a quantity that is

often needed for modeling but is beyond readily available data.

The rest of the paper is organized as follows: Section 2 starts with a brief description of the

Erlang-A model. Through call center data, we demonstrate that the assumption, on the number

of available agents being constant, is violated even over short time periods (seconds). This leads

one to formally introduce the Erlang-S model and its parameters. Section 3 discusses estimation

of parameters and the use of Erlang-S for prediction of the abandonment fraction. We then show,

via real data, that Erlang-S predicts abandonments better than Erlang-A. Section 4 addresses the

problem of estimating the number of agents present, when it is unobservable. Call center topology

can be complex, as in Figure 1; this motivates the application of Erlang-S, in Section 5, to a general

queue structure. Then in Section 6 we compare Erlang-S and Erlang-A through a simulation study.

We conclude with remarks and comments on future research in Section 7. Finally, Appendices A-F

include material that is not directly required for reading continuity.

8

2 Erlang-S (vs. Erlang-A)

In this section we introduce the Erlang-S model. It is compared against Erlang-A, which has been

widely used for modeling call centers (and is a special case of Erlang-S).

2.1 Erlang-A

Figure 4 shows a schematic representation of Erlang-A, or M/M/n + M in the “language” of

Queueing Theory (see Zeltyn (2005) for a comprehensive literature review). Arrivals are assumed

to follow a Poisson process with rate λ; they immediately enter the queue or get served, depending

on whether all n servers are busy or there exists an idle one, respectively. Each customer abandons

the queue at rate θ and the individual service rate is µ; thus, impatience and service durations are

exponentially distributed, which are further assumed independent, both between each other and

across customers. Let x(t) denote the number of customers at time t in the system, either in service

or in queue. According to Erlang-A, x(·) is a birth-and-death process with death rates

µA(x) :=

 µx x ≤ n

µn+ (x− n)θ x > n
,

and constant birth rates λ.

Figure 4: Schematic representation of the Erlang-A model.

Let q(t) = max{x(t)− n, 0} denote the number of customers in the queue at time t. Note that,

for every t, if q(t) > 0 then x(t)− q(t) = n, which is referred to as “work conservation”; no servers

idle if there are customers awaiting service. Thus, Erlang-A assumes that:

1. Work conservation: All the n servers present are available in the sense that they either serve

customers or are ready to serve (the latter implies that there are no customers in the queue).

9

2. The number of available servers is constant in time.

The last two assumptions are frequently violated in the call center data sets that we have analyzed.

Specifically, while changes in the number of available servers over moderate (hours) to long (shifts)

periods are expected, and could be accommodated by Erlang-A, here we find that such changes occur

over short periods (seconds) of time: these changes, therefore, must be captured stochastically, as

we do in Erlang-S. We now present an example where Assumption 2 is violated; this implies that

Assumption 1 is also violated, assuming that the number of agents present is constant in time.

The example is depicted in Figure 5, displaying a specific half-hour in the telesales operation

of a U.S. bank. This part is isolated from the rest of the call center and therefore can be treated

separately (I-topology). At times t =10:36:54, 10:43:07, 10:47:23, we have x(t)− q(t) = (44, 58, 61)

respectively, as well as q(t) > 0 (which can be verified by a close examination of Figure 5). That

is, triggered by the arrivals of many customers, and within approximately 11 minutes, 17 agents

became available and then immediately become busy serving customers. During this time frame,

demand and capacity are almost balanced: q is usually 0 and increases up to 1 or 2 over short

periods. From 10:47 on, the number of agents does not grow any more and customers who arrive

to the system join the queue. Consequently, the average waiting-time and abandonment fraction

increase dramatically at this time, as clearly seen in (b) and (c) of Figure 5. Figure 5 (d) focuses

on one minute, during which q > 0 (except for the first few seconds). Over this minute, while q

increased from 1 to 10, x increased by more – from 58 to 70. This implies that 3 agents became

available during that minute.

A second example of violating the constant-agents assumption is given in Appendix A. This

example is taken from the data set that is extensively analyzed in Section 3.2 below. In that data

set, the percentage of minutes where the constant-agents assumption is violated is 67.7%. When

considering 5 and 10 minute intervals, the percentage is 98.0% and 99.9%, respectively. We conclude

that the constant-agents assumption is frequently violated in the data sets we analyzed, even over

short time periods.

2.2 Erlang-S

The violation of the two assumptions, namely constant number of available agents and work con-

servation, calls for modifying Erlang-A so that the number of available agents may vary in time.

This gives rise to Erlang-S.

Figure 6 shows a schematic representation of Erlang-S. As in Erlang-A, arrivals are assumed

10

(a) (b)

(c) (d)

Figure 5: (a) Illustration of x(t), q(t) (blue, red) in data from a U.S. Bank, the telesales part. At times t =10:36:54,

10:43:07, 10:47:23 , x(t) − q(t) = (44, 58, 61) respectively (and q(t) > 0). (b) Waiting time, averaged over 30-second

intervals. (c) Abandonment fraction, accumulated over 2-minute intervals. (d) A specific one minute (10:47) from the

data of Figure (a).

Poisson with rate λ and they enter the queue or get served; each customer abandons the queue at

rate θ and service rate is µ. In Erlang-S, the agents present may be available or unavailable: the

latter are present in the system but they are not serving customers from the queue. The number of

agents present, denoted by N , is assumed constant, but whether agents are available or not is time

varying.

Agents change their availability status according to the following dynamics. Upon service com-

pletion, the customer leaves the system and the agent stays available with probability p2 (con-

tinuation probability) or becomes unavailable with probability 1 − p2. An unavailable agent can

become available in one of two ways: either at rate ξ (spontaneous availability), or when a customer

arrives at the queue and there is no available idle agent; in the latter case, the server immediately

11

 customers service agents

 (open system) (closed system)

 Customer-agents interaction

 queue of customers queue of ready agents

 arrivals

 𝜆

 end of service

 abandonment 𝜃

 𝜉
 𝑝2 𝑝1
 customer departures

 1 − 𝑝2

 unavailable agents

Figure 6: Schematic representation of the Erlang-S model.

becomes available with probability p1 (activation probability) and serves the new, possibly VIP,

customer (even if there are other customers in the queue). The parameters p1, p2 and ξ are all

state-dependent.

Let n(t) denote the number of available agents at time t. Recall that x(t) and q(t) are the

overall number of customers and the queue-length at time t, respectively. The following relations

hold both in Erlang-S and in Erlang-A (but in Erlang-A, n(t) ≡ n is constant):

Number of customers being served = number of busy agents = min{x(t), n(t)} = x(t)− q(t);

Number of agents that are ready to serve = max{n(t)− x(t), 0};

Number of customers in the queue = q(t) = max{x(t)− n(t), 0}. (1)

For Erlang-S we also have:

when q > 0, number of unavailable agents = N − (x− q).

Erlang-S could have been defined as a two-dimensional model, where a state is the pair (x, n).

However, we found, for reasons we now discuss, that the pair (x, q) is in fact more convenient to

work with.

We first observe that, when q > 0, then n = x − q and hence, in this case, (x, q) and (x, n)

are equivalent. However, when q = 0, the pair (x, q) does not determine n, as implied by (1): the

12

number of busy agents is equal to x, but the number of ready agents is undetermined, and can take

any value 0, 1, . . . , N − x.

Remark 1. Why (x, q) and not (x, n)? One reason that a model with (x, q) is preferred is that

it is easier to implement. Data on n is often ambiguous, as is the case in our data sets. The

main difficulty is to determine if an agent is ready to serve a newly arrived customer when q = 0.

According to our terminology, a ready agent is one that will serve a customer immediately upon

arrival; however, such a status generally does not exist in call center data. The “ready” agents in

call centers serve arriving customers according to their importance, but they do not necessarily serve

any customer upon arrival as we assume. It follows that, when q = 0, we actually have no data

on the number of ready agents. Another related reason to prefer (x, q) is that it is simpler. Such

a model does not require knowledge about ready agents. Thus, it need not account for agents that

change their status from ready to unavailable when q = 0, while the full model on (x, n) must.

A state of Erlang-S is thus the pair (x, q). Figure 7 illustrates the feasible transitions and the

parameters of the model: at state (x, q), for q > 0, five transitions are possible, as detailed in Figure

7. Given that a customer arrives, which occurs at rate λ, a customer (either the one that arrived

or a customer from the queue) enters service with probability p1(x, q;N) (activation probability),

otherwise the queue increases by one. When an end of service occurs, at rate µ · (x − q), the next

customer enters service with probability p2(x, q;N) (continuation probability), or otherwise stays in

the queue. An abandonment occurs at rate qθ and a “spontaneous service” occurs at rate ξ(x, q;N).

Summing up, the transition rates from (x, q) to (x′, q′) are

if q > 0



λ[1− p1(x, q;N)] (x′, q′) = (x+ 1, q + 1) (arrival, enter queue)

λp1(x, q;N) (x′, q′) = (x+ 1, q) (arrival, enter service)

µ(x− q)p2(x, q;N) + θq (x′, q′) = (x− 1, q − 1) (end of service, the next

customer enters service)

µ(x− q)[1− p2(x, q;N)] (x′, q′) = (x− 1, q) (end of service, no service

for the next customer)

ξ(x, q;N) (x′, q′) = (x, q − 1) (spontaneous service)

, (2)

if q = 0


λ[1− p1(x, 0, N)] (x′, q′) = (x+ 1, 1) (arrival, enter queue)

λp1(x, 0, N) (x′, q′) = (x+ 1, 0) (arrival, enter service)

µx (x′, q′) = (x− 1, 0) (end of service)

. (3)

13

Since the number of customers being served cannot exceed N , if x − q ≥ N then p1(x, q;N) =

ξ(x, q;N) = 0. Table 1 conveniently summarizes the parameters and relevant quantities of Erlang-

S.

Table 1: Parameters, states, and status of agents for Erlang-S.

λ arrival rate x overall number of customers

µ service rate q number of customers in queue

θ abandonment rate (individual) available agents =

 x− q if q > 0

any of x, x+ 1, . . . , N if q = 0

N Number of agents present unavailable agents =

 N − (x− q) if q > 0

any of 0, 1, . . . , N − x if q = 0

ready agents =

 0 if q > 0

any of 0, 1, . . . , N − x if q = 0

busy agents = x− q

2.3 Properties of Erlang-S

The Erlang-S model can be considered as a generalization of Erlang-A to a two-dimensional state

space: it has two transitions that represent an arrival, and the sum of their rates is λ, the arrival

rate in Erlang-A; similarly, at state (x, q), there are two types of “deaths” and the sum of their

rates is µ · (x − q) + θq, as in Erlang-A. Due to the two-dimensional state space, there is another

possible transition (x, q)→ (x, q− 1), which is not possible in Erlang-A. (Notice also that Erlang-S

reduces to Erlang-A when ξ(x, q;N) = 0, p2(x, q;N) = 1, and p1(x, q;N) =

 1 x < n, q = 0

0 otherwise
,

for n ≤ N .)

Erlang-S always has a stationary distribution, as stated in the following proposition and proved

in Appendix B.

Proposition 1. If θ > 0, Erlang-S is ergodic for all parameter values.

Generally, the projection of Erlang-S on x is a Markovian process only with respect to the full

filtration of Erlang-S. In the special case where µ = θ, the projection is a Markov process in itself,

as stated in the following proposition. The proof is again given in Appendix B.

14

Figure 7: Possible transitions and rates at state (x, q), for Erlang-S (right) and Erlang-A (left). The upper (lower)

figure shows the case q > 0 (q = 0).

Proposition 2. If θ = µ then the projection of Erlang-S on x is a Markov process, specifically the

M/M/∞ queue.

3 Using Erlang-S to predict abandonment fraction

In this section, we introduce the estimation procedure for the availability functions of Erlang-S.

Specifically, we describe how to estimate (p1, p2, ξ), from call center data. To this end, we consider

two parametric forms of these functions. The first form is a “high-dimensional” function, which

depends on relatively many parameters, while the second form is simpler. The main difficulty in

estimating the parameters is that the call center is observed at discrete times, specifically seconds.

Since several events can occur during a second, the process is not observed fully (recall the footnote

on Page 5.) To overcome this problem, we use the EM algorithm of Bladt and Sørensen (2005) to

estimate the parameters of Erlang-S.

15

3.1 The EM algorithm

Let {x(t)}0≤t≤T be a Markov process on the state space {1, . . . , s}, and let Q be its s×s infinitesimal

generator matrix. If the process was observed continuously from 0 to T , then the maximum likeli-

hood estimate (hereafter MLE) of Qij would be Q̂ij :=
Nij

Ri
, where Nij is the number of transitions

i→ j, and Ri is the sojourn time in state i. However, when the process is observed only in discrete

times, say {1, 2, . . . , T}, then Nij and Ri are not observable. To overcome this problem, Bladt and

Sørensen (2005) propose the following EM algorithm:

1. Set Q̃ to be any generator matrix.

2. E step: Compute

Ñij := EQ̃

[
number of transitions i→ j|{x(t)}Tt=1

]
, (4)

R̃i := EQ̃

[
sojourn time in i|{x(t)}Tt=1

]
. (5)

3. M step: Set Q̃ij =
Ñij

R̃i
, check for some stopping criterion to apply, stop if it applies or return

to Step 2 if it does not.

Specific stopping criteria will be formally described for each subsequent application of the EM

algorithm. The heart of the algorithm is the computation of the conditional expectation in (4) and

then (5). Bladt and Sørensen (2005) provide explicit formulas for these expectations, which are

given in Appendix D.

The EM algorithm is useful when the model depends on unobserved latent variables. Here, the

latent variables are Nij , Ri, which are functions of the unobserved continuous process. Its discrete

observations are used to estimate its unobserved states and the parameters of the model.

Bladt and Sørensen (2005) also prove that the algorithm converges to a stationary point of the

likelihood function. Below we implement this algorithm for Q’s of a certain structure, namely, our

parameter space is QI := {Q|Qij = 0 for (i, j) ∈ I}, where I is a set of pairs of indices. This differs

from the parameter space in Bladt and Sørensen (2005), where Qij 6= 0, for every i 6= j. However,

their theoretical result continues to hold in our reduced parameter space, since we assume that

the real Q belongs to the interior of QI (namely, 0 < Qij < ∞, for (i, j) /∈ I), and therefore no

boundary problems arise. To maximize the likelihood over QI , note that if we start with Q̃ij = 0

for certain i, j, then Q̃ij remains 0 in all iterations of the algorithm. Furthermore, in order to apply

the algorithm to our data set, we truncated the state space, as shown in Figure 18 below, so that

16

the part removed is negligible (time spent in it is about 0.5% of the total time, in the training data;

the average queue length in the truncated data set is 0.539, while the corresponding number in the

full training set is 0.542). We use variations of this algorithm to estimate the parameters of interest:

p1(x, q;N), p2(x, q;N), ξ(x, q;N).

3.2 Estimation in an Israeli call center

We now consider a specific foreign-language service, the data of which will be used throughout

Section 3.2. It has an I-topology (see Figure 1) and thus could be analyzed in isolation. At each

second t, we observe (x(t), q(t)), which is the number of customers in the system and in the queue,

respectively. We analyze the data from weekdays in 2004-2005, from 10:00 till 11:00; the data from

2004 (232 days) is training data while from 2005 (226 days) serves as test data. This hour was

chosen since the arrival rate does not change too much during that hour, as opposed to earlier in

the morning. We divided the hour into two half-hours, for each of which it is assumed that the

parameter values are fixed. The focus on half-hours provides more refined analysis and predictions,

as well as a larger sample-size.

3.2.1 High-dimensional form

In this section, we assume a certain high-dimensional parametric form for p1(x, q;N), p2(x, q;N), ξ(x, q;N)

and estimate the parameters. The process by which we obtained this specific parametric form is

described in Appendix C. To summarize it, we start with a nonparametric estimate that yields a

general form. Subsequently, we parametrize the estimate via logistic regression (p1, p2) and linear

regression (ξ). (Logistic regression is commonly used to estimate probabilities.) We show below

that our resulting estimates have good prediction power in the data sets we studied.

The parametric form that we worked with is

p1(x, q;N) =
I(x− q < N)

1 + exp{−(c1 + α1x+ β1q + γ1N)}
(6)

p2(x, q;N) =
1

1 + exp{−(c2 + α2x+ β2q + γ2N)}

ξ(x, q;N) = (c3 + α3/x+ β3q + γ3N)I(x− q < N),

where I(·) denotes the indicator function. In order to calculate the MLE of (c1, α1, . . . , β3, γ3), we

used a variation of the EM algorithm of Bladt and Sørensen (2005), which is introduced formally

in Appendix D. Here we only mention briefly three necessary modifications to the algorithm. First,

17

we have multiple sample paths, corresponding to each half-hour in the training data, as opposed

to a single simple path in Bladt and Sørensen (2005). To accommodate this, we computed (4)

and (5) for each half-hour separately and then calculated their total sum. This is similar to the

approach taken by Bladt and Sørensen (2009), which does handle multiple sample paths. Second,

as mentioned above, we assumed that Qij = 0, for i, j ∈ I. Third, unlike Bladt and Sørensen

(2005), we study a parametric estimation, which requires computation of the likelihood function

and a separate optimization method to maximize the likelihood (see Appendix D for more details).

We obtained the following estimates for (6):

p1(x, q;N) =
I(x− q < N)

1 + exp{−(−0.084−0.265x+0.039q+0.023N)}
, (7)

p2(x, q;N) =
1

1 + exp{−(−8.010 + 0.206x+0.069q + 0.166N)}
,

ξ(x, q;N) = (−0.116+0.720/x+ 0.002q + 0.005N)I(x− q < N).

The parameter p1 is the probability of entering service immediately upon arrival. It decreases in

x since when x gets larger (with q fixed), there are fewer unavailable agents N − n = N − x + q

(which holds for q > 0) and it increases in N due to having more agents present. The parameter

p2 is close to zero, indicating that, when a service is completed, the corresponding agent typically

becomes unavailable. The parameter ξ decreases in x and increases in N for the same reasons as

p1. It increases in q, which indicates that agents tend to become more available as the queue gets

longer. Notice the special form of 1
x in ξ, which is discussed in Appendix C.

To get a rough idea about the dynamics of the system, one can look at the value of the parameters

in different states. For example, consider the case of having eight customers in the system, two of

whom are in the queue, and there are 12 agents in the system, i.e., x = 8, q = 2, N = 12. In this

state, out of the 12 agents present in the system, only half are serving customers. The values of the

parameters are hence

p1(8, 2, 12) = 0.136, p2(8, 2, 12) = 0.014, ξ(8, 2, 12) = 0.038; (8)

the average arrival rate λ is approximately 0.02 arrivals per second (72 per hour). That is, in this

state the spontaneous service rate is about twice the arrival rate and therefore an unavailable agent

is likely to become available before another customer arrives. The probability that an agent will

stay available after an end of service (continuation probability), p2, is low. Similarly, the probability

of a newly arrived agent to start service (activation probability), p1, is low. From the point of view

18

of the agent, what typically happens in state (8, 2, 12) is that the agent becomes unavailable after

the end of service, and then relatively shortly after, will become available again.

For a second example, in which the queue gets relatively long, e.g., q = 5, we have

p1(8, 5, 12) = 0.150, p2(8, 5, 12) = 0.018, ξ(8, 5, 12) = 0.045,

which represents an increase of about 10% for p1, p2 and about 20% for ξ, relative to the values

in (8). This means that a newly arrived customer, when q = 5, is more likely to be served upon

arrival, and, more importantly, an unavailable agent will become available faster. Thus, as queue

length increases, agents tend to become more available, which prevents the queue from becoming

even longer.

3.2.2 First-principle form

We now consider a simplified version of Erlang-S, where each one of the functions p1(x, q,N),

p2(x, q,N), ξ(x, q,N) depends only on a single parameter.

The function p1(x, q,N) (activation probability) is the probability that a customer will be served

immediately upon arrival. For simplicity, we assume now that p1 = 0 when q > 0; thus, a customer

can enter service immediately only when there is no one in the queue. When q = 0 and an arrival

occurs, we assume that each of the N − x agents that are not serving flips a coin with probability

p01 to serve the new customer, and the customer is served if at least one of those agents is willing to

serve. Thus, we assume that p1(x, q,N) = I(q = 0;N > x){1− (1− p01)N−x}.

For p2(x, q,N) (continuation probability), we assume that it is equal to a constant p02, i.e.,

an agent that completes service moves on to the next customer with probability p02 or becomes

unavailable with probability 1− p02. For the spontaneous service rate, we assume that, when q > 0,

each of the N − (x − q) agents that are unavailable has a rate of ξ0 to become available and to

serve a customer from the queue. Agents become available independently of each other. Thus, we

assume that ξ(x, q,N) = {N − (x− q)}ξ0I(q > 0).

Summing up, the low-dimensional version of Erlang-S has the following structure:

p1(x, q,N) = I(q = 0;N > x){1−(1−p01)N−x}, p2(x, q,N) = p02, ξ(x, q,N) = {N−(x−q)}ξ0I(q > 0)

(9)

where p01 and p02 are, respectively, the probability for a server to serve a customer that arrives when

the queue is empty and upon service completion; ξ0 is the spontaneous service rate of each agent.

19

The MLE of the parameters p01, p
0
2, ξ

0 was calculated using an EM algorithm, similar to the one

in Appendix D. We obtain

p01 = 0.0515 , p02 = 0.0115, ξ0 = 0.0111. (10)

According to this parametrization, we calculate that

p1(8, 2, 12) = 0.0, p2(8, 2, 12) = 0.011, ξ(8, 2, 12) = 0.055.

Comparing these values to (8), we note that ξ is larger while p1 is smaller (= 0 since q > 0) and

p2 is almost the same. Hence, in this state, for the low-dimensional form, an unavailable agent is

more likely to become available, and a newly arrived customer will not be served upon arrival.

3.3 Predicting abandonment fraction

We now compare abandonment predictions of Erlang-S models with both real test data and the

predictions of Erlang-A.

3.3.1 Prediction - preliminaries

We denote the high-dimensional Erlang-S of Section 3.2.1 by Erlang-SH , and the simpler model of

Section 3.2.2 by Erlang-SL. For those two models we obtained estimates for p1, p2, ξ. The other

parameters of the model are µ, θ, λ and N . For µ and θ we use the mean service time and the average

of mean abandonment proportion
mean waiting time (see Mandelbaum and Zeltyn, 2004), over all half-hours in the training

data, respectively. The additional two parameters λ,N are assumed known for each half-hour of

the test data. The assumption that N is known in advance is reasonable since a system manager

typically knows how many agents are present in the system. (However, we have encountered data-

bases in which N was unknown - for such cases, we provide a procedure for estimating N in Section

4.) The arrival rate, λ, is not known in advance but there are efficient ways to estimate it. One

can in fact improve the estimates by updating them periodically; see e.g., Goldberg et al. (2014).

Consequently, for each half-hour, the parameters of the model are either estimated or assumed

known and the steady-state equations can be numerically solved to compute E[q], the average

queue length. The prediction of the abandonment fraction is computed by

P (abandonment) =
abandonment rate

arrival rate
=
E[q]θ

λ
. (11)

In this work we focus on abandonment fraction. Similar analysis can be carried out for average

queue length due to the relationship in (11), which would yield the same conclusions.

20

3.3.2 Analysis: first half versus second half

Table 2: Abandonment fractions - comparing predictions against real data. The Mean (std) is presented.

First half (2/1/2005 - 27/6/2005) Second half (28/6/2005 - 22/12/2005)

Erlang-SL 0.080 (0.031) 0.073 (0.031)

Erlang-SH 0.096 (0.039) 0.115 (0.038)

Data 0.094 (0.064) 0.060 (0.048)

0 20 40 60 80 100

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

days

P
(a

ba
nd

on
m

en
t)

true
Erlang−S_H
Erlang−S_L

(a) First half (2/1/2005 - 27/6/2005).

120 140 160 180 200 220

0.
00

0.
05

0.
10

0.
15

0.
20

days

P
(a

ba
nd

on
m

en
t)

true
Erlang−S_H
Erlang−S_L

(b) Second half (28/6/2005 - 22/12/2005).

Figure 8: Abandonment fractions according to Erlang-SH , Erlang-SL and the test data, divided into the first

(2/1/2005 - 27/6/2005) and second (28/6/2005 - 22/12/2005) half of the test data.

We compared the abandonment fraction between the real data and the models. The results

are shown in Figure 8 and in Table 2. We found that both Erlang-S models generally provide

good predictions of the abandonment fraction in the first half of the test data, but Erlang-SL

provides slightly biased predictions. After about 150 days, the approximations of the Erlang-S

models deteriorate. Erlang-SL has less parameters and therefore is more robust and provides better

predictions than Erlang-SH in the second half.

Table 8 in Appendix F reports a detailed comparison of predictions by Erlang-SH and Erlang-

SL, against various versions of the Erlang-A model using different metrics; see Section 3.3.3 below

21

for precise definitions. Among the models we compared, Erlang-SL has the smallest RMSE but

it provides biased predictions as seen in Figure 8. A specific version of Erlang-A predicts the

abandonment fraction in an unbiased manner, but the variance is relatively high. Overall, the

different models we tried perform better in the first half (2/1/2005 - 27/6/2005).

There are, in fact, several changes between the two halves of the test data. The mean service

times in the first and second half are 254 and 267 seconds, respectively. Also, the averages of N

differ: 11.1 and 13.4 respectively. These differences are statistically significant: the p-values of a

one-sided Wilcoxon test that checks stochastic dominance between the two halves are 0.003 and

< 0.001 for service time and N , respectively. Figure 9 plots the average number (over the two

half-hours: 10:00-10:30, 10:30-11:00) of N , for all days in the test data. It is seen that, in the

second half, there are generally more agents present. All of this indicates that the agents of the

first and second halves have different characteristics and, hence, the availability functions p1, p2, ξ

that are estimated, based on the training data, are no longer valid in the second half.

0 50 100 150 200

8
10

12
14

16
18

20
22

days

N

Figure 9: The average number of N in the test data (2/1/2005 - 22/12/2005) for each day; the average is over the

two half-hours: 10:00-10:30, 10:30-11:00. The vertical line separates the first and second half.

In practice, deterioration of prediction accuracy would suggest that parameters should be re-

estimated periodically, where the time between successive estimators may vary depending on the

dimensionality of the parametric form (the higher the dimension, the longer is the time). To

demonstrate this approach we considered an adaptive version of Erlang-SL, where parameters are

re-estimated every 30 days based on the last 60 days. Here we report only the results of the

22

adaptive version of Erlang-SL and not of Erlang-SH , because the latter has more parameters and a

re-estimation period of 30 days is too short; see the discussion below in Section 7.1. The predictions

of abandonment fractions of adaptive Erlang-SL are compared to the predictions of the non-adaptive

Erlang-SL in Figure 10. The adaptive version is unbiased and the prediction error is much smaller

than the non-adaptive Erlang-SL: the RMSE is 0.032 vs. 0.047.

120 140 160 180 200 220

0.
00

0.
05

0.
10

0.
15

0.
20

days

P
(a

ba
nd

on
m

en
t)

true
adaptive Erlang−S_L
Erlang−S_L

Figure 10: Abandonment fractions according to the adaptive Erlang-SL, the non-adaptive Erlang-SL and the test

data in the second (28/6/2005 - 22/12/2005) half of the test data.

3.3.3 Comparison with Erlang-A

We now compare the predictions of Erlang-S with those of Erlang-A in the first half of the testing

data.

To study Erlang-A predictions, we follow a similar procedure as in Erlang-S: µ, θ are the same

estimates as above and λ, n are assumed known in advance. A key point here is to determine the

parameter n. As we demonstrated in Section 2, in call center data, n changes even during short

time periods but in Erlang-A one must choose a fixed value of n. The natural choice is to use the

averaged number of available agents. We denote this model by Erlang-A. Notice that n is observed

directly only when q > 0; therefore, we imputed the values of n when q = 0 as in (13) below. We

consider also a model where n is the median and denote it by Erlang-Amedian. Another version that

we study is when n is larger than the mean by a fixed number k; we denote it by Erlang-Ak. The

latter models, in which we incorporate an arbitrary extra number of servers, have the potential to

23

correct the over-estimation (see below) of the abandonment fraction in Erlang-A.

Furthermore, the analysis in Section 3.2.1 implies that agents usually become unavailable after

service and become available again after some time. This implies that service is in fact composed of

two parts, one is the observed service time and the second part, in which agents remain unavailable

to serve other customers, is unobserved. We should note here that, in the above data set, there is

very little explicitly-acknowledged after-call work; for 98.2% of the calls, the wrap-up time is 0 and

for 1.32% it is one second. Therefore, the second part of the service is not simple after-call work

but rather some unobservable time during which the agent is unavailable. We call the sum of the

two parts virtual service time and we denote the corresponding Erlang-A model by Erlang-Avirtual.

To elaborate, the four parameters of Erlang-Avirtual are λ, θ, which are the same as in the regular

Erlang-A; n is equal to N , the number of agents present; and the service rate µ is the unobserved

virtual service rate. For each half-hour h, we estimate the latter as follows: let λh, θh, Nh, p(Ab)h

be the arrival rate, abandonment rate, number of agents present and abandonment fraction at h,

respectively. Also, let FA(λ, µ, θ, n) be the function that maps the vector of parameters (λ, µ, θ, n)

to the corresponding abandonment fraction according to Erlang-A (by solving the steady-state

equations and using (11)). The estimated virtual service time at half-hour h is the quantity µ̂h that

(numerically) solves the equation FA(λh, µ̂h, θh, Nh) = p(Ab)h. The mean virtual service time in

the training data is 437 seconds, while the mean standard service time is 241.

We now compare the different versions of Erlang-A, Erlang-SL and Erlang-SH . Each of these

models provide predictions of the abandonment fraction, p̂(Ab)h, where h is a half-hour in the first

half of the test data, and it is compared to the true value p(Ab)h in terms of the following metrics:

• Mean: the mean 1
H

∑
h p̂(Ab)h, where H is the total number of half-hours (compared to true

mean 1
H

∑
h p(Ab)h).

• p-value: The p-value of the two-sample Wilcoxon test that identifies stochastic dominance

between {p̂(Ab)h} and {p(Ab)h} (we used the function wilcox.test from the R software pack-

age).

• RMSE: the root mean square error
{

1
H

∑
h(p̂(Ab)h − p(Ab)h)2

}1/2
.

• MAE: mean absolute error - the mean L1 error 1
H

∑
h |p̂(Ab)h − p(Ab)h|.

• MAPE: mean absolute percent error - the mean 1
H

∑
h:p(Ab)h>0.02 |p̂(Ab)h − p(Ab)h|/p(Ab)h,

over the half-hours where the abandonment fraction is larger than 0.02. (If we consider also

24

half-hours, h, with smaller abandonment fraction, then the denominator p(Ab)h is small and

the error in h is over-weighted.)

• % over/under: The percentage of over- or under-estimation, i.e., 100 × | 1H
∑

h I{p̂(Ab)h >

p(Ab)h} − 0.5|.

• % win: The percentage of hours, h, where p̂(Ab)h is closer to the true value than the prediction

of Erlang-SH .

The results are presented in Table 3.

Erlang-Avirtual provides unbiased predictions to the abandonment fraction. This is not surprising

since the service time was estimated so that it would yield unbiased estimate of the abandonment

fraction. The error under Erlang-Avirtual is slightly larger than Erlang-SH , Erlang-SL: the RMSE

and L1 error is about 5-10% higher. Overall, Erlang-Avirtual is comparable to the Erlang-S models

in this data set, as far as estimating abandonment fractions. Note, however, that this is too limited

of an advantage. First, Erlang-Avirtual cannot be used, for example, to estimate N (see Section

4). Second, we are fitting here a simple I-topology. The situation changes dramatically with a

G-topology; then, the advantage of Erlang-S clearly emerges (Section 5.3.2) and errors of Erlang-

Avirtual increase by an order of magnitude.

We find that the mean and the median of n are close and hence Erlang-A and Erlang-Amedian

perform similarly. From the different versions of Erlang-Ak, we found that Erlang-A1 outperforms

the other versions. That is, if we consider n to exceed the mean by 1, we obtain unbiased estimates

of the abandonment fraction (the p-value of the Wilcoxon test is not small). The average n in

this period is 5.7 and hence Erlang-A1 represents an increase of about 20% over the mean. When

comparing Erlang-A1 to the Erlang-S models, we find that the error of the latter models are about

40% smaller than Erlang-A1. Furthermore, Erlang-A1 yields unbiased estimates, but this comes at

the cost of high percentage of underestimation, unlike the Erlang-S models.

In short, certain versions of Erlang-A provide unbiased predictions, but Erlang-SL and Erlang-

SH yield better predictions (using our metrics). The prediction error under the best Erlang-A

model is about 5-10% larger than for the Erlang-S models; and we repeat the above observation,

that prediction errors become dramatically different in favor of Erlang-S when considering the G-

topology data set (Section 5.3.2).

25

Table 3: Abandonment fractions - comparing predictions against real data in the first half of the test data (2/1/2005

- 27/6/2005).

mean (std) p-value RMSE (std) MAE (std) MAPE (std) % over/under % win

Data 0.094 (0.064)

Erlang-SH 0.096 (0.039) 0.373 0.052 (0.057) 0.042 (0.03) 0.476 (0.552) 8.4%

Erlang-SL 0.08 (0.031) 0.281 0.054 (0.063) 0.043 (0.033) 0.425 (0.412) 5.8 % 37.2%

Erlang-Avirtual 0.093 (0.061) 0.922 0.057 (0.067) 0.046 (0.034) 0.541 (0.528) 2.2 % 46.9%

Erlang-A 0.142 (0.063) < 0.001 0.092 (0.126) 0.072 (0.058) 1.052 (1.696) 28.8% 31.9%

Erlang-A1 0.082 (0.045) 0.233 0.068 (0.089) 0.05 (0.046) 0.571 (0.942) 11.1 % 47.8%

Erlang-A2 0.044 (0.031) < 0.001 0.079 (0.095) 0.063 (0.048) 0.628 (0.465) 29.6 % 31.0%

Erlang-Amedian 0.135 (0.062) < 0.001 0.041 (0.114) 0.066 (0.056) 0.956 (1.519) 23.5% 34.5%

4 Estimating the number of agents present N

The number of agents that are present in the system, namely the parameter N , is sometimes

unknown (or not included in available data). Erlang-S can then be used to estimate it, which we

do in two ways: calculate the N that maximizes the likelihood of the model (MLE), or find the N

that best fits a specific performance measure, e.g., abandonment fraction. The two approaches will

be now formalized, implemented and compared.

4.1 Two approaches

Suppose that the functions p1, p2, ξ are given. For a specific time period h (e.g., 10:00-11:00 a.m.

on a certain day), the parameters λ, µ, θ were estimated and the goal now is to infer N .

The first approach is to compute the MLE of N using the EM algorithm in Appendix D. The

second seeks N that best predicts some performance measures. Formally, for a specific performance

measure M , the Erlang-S model induces a function M(λ, µ, θ, p1, p2, ξ;N) that is computed using

the given parameters. As before, given p1, p2, ξ and a specific time period, the parameters λ, µ, θ are

assumed estimated for that time period. Then one chooses an N for which M(λ, µ, θ, p1, p2, ξ;N)

matches best the observed performance.

26

4.2 Implementation and comparison

We now compute several estimates of N , by using the data set of the foreign language service from

Section 3.2. These estimates are compared to the true values, in each hour of the first part of the

test data, for which information on N is available. (Half-hour turns out too short of a period for

obtaining useful estimates of N (high variance due to too little data) and therefore we considered

hours.) The estimated N was restricted to be one of 7, 8, . . . , 15, which are the feasible values for

N in the training data.

Several estimates were considered, which are based on Erlang-S. For the MLE, we considered

the low and high-dimensional forms for p1, p2, ξ, denoted by MLEL, MLEH and introduced in

Sections 3.2.2 and 3.2.1, respectively. In addition, we estimated N via two performance measures:

abandonment fraction and average queue length, denoted by M-a and M-q, respectively. For each

performance measure, we considered the low and high-dimensional forms, denoted by subscript L

and H; for example M-aL, denotes the estimate based on abandonment fraction under the low-

dimensional form.

We also computed estimates via the Erlang-A model. They are based on the same performance

measures: abandonment fraction and average queue length; they were computed as before, with

the function M induced by the Erlang-A model. They are denoted by M-A-a and M-A-q for the

abandonment fraction and average queue length, respectively. Note that N cannot be estimated

through Erlang-Avirtual in Section 3.3.3, since the virtual service time is not observed and N is used

in order to estimate it. Thus, if N is missing, then the virtual service time cannot be estimated.

As a benchmark, we compared the estimates to a naive estimate, which we took to be maxt{x(t)−

q(t)}, namely the maximum number of busy agents during the time period.

The estimates were compared via the mean error (absolute value) between the estimated N and

the true one, for each hour in the first half of the test data (113 days). (For the second half, the

models do not fit the data well, as discussed in Section 3.3, and therefore the second half is not

considered here.) We also computed the fraction of cases where the error was less than or equal

to 1. The results are displayed in Figure 11 and Table 4. The naive estimate provides downward

biased estimates since it is rarely the case that all agents present are busy. The estimates based on

Erlang-A are also biased, because the parameter n in Erlang-A measures the number of available

agents, which is below the number of agents present. The estimates based on Erlang-S outperform

the ones based on Erlang-A. Among them, MLEL provides the best results: in 51% of the hours

it is accurate in the sense that the error is at most one; also its average error, 1.74 agents, is the

27

smallest.

If the errors in each hour of the test data are i.i.d., then the standard deviation of the sample

mean is about 1.4/
√

113 = 0.13. It follows that the difference of 0.28 between MLEL and MLEH ,

for example, is statistically significant.

0 20 40 60 80 100

6
8

10
12

14
16

18

days

N

true
MLE_L
M−A−q
naive

Figure 11: Comparison of estimates of N and the true N (2/1/2005 - 27/6/2005).

5 Erlang-S for a general queue.

So far, we have discussed the application of the Erlang-S model to an I-topology (recall Figure 1).

Here customers of a certain type are served by agents from a single pool, which serves only that

type of customer. However, as seen in Figure 1, this is not very common in call centers. In this

section, we discuss queues with a general structure (G-topology).

28

Table 4: Comparison of various estimates of N .

Mean error (std) % of error ≤ 1

MLEL 1.74 (1.4) 51.3%

MLEH 2.02 (1.4) 39.8%

M-qL 1.99 (1.4) 41.6%

M-aL 2.04 (1.5) 38.1%

M-qH 2.33 (1.3) 26.6%

M-aH 2.35 (1.4) 30.0%

M-A-q 4.12 (1.3) 1.0%

M-A-a 4.12 (1.3) 1.0%

naive 2.93 (1.3) 12.4 %

5.1 General topology

The general case is depicted in Figure 12. There are two types of customers, A and B, and two

skills of agents, namely those whose primary service is A, and those whose primary service is B.

There are NA and NB agents of the two skills present in the system. Both skills of agents serve

both types of customers, but agents of a certain skill tend to serve customers of their primary type.

This gives rise to a rather general model since one can focus on part A, while B is regarded as “the

rest of the call center”. In terms of Figure 1, A is business, while B is an aggregation of private,

private VIP, business VIP, etc.

5.2 Estimation in an Israeli call center

We consider a specific part of an Israeli call center, analyzing data of weekdays in 2004-2005 from

10:00 till 11:00. The data from 2004 (232 days) is training data and from 2005 (189 days) is test data.

(The specific service we studied was no longer provided in November-December 2005; therefore, this

data duration is two months shorter than that of Section 3.3). In this system, Types A and B are

(almost) isolated from the rest of the call center: about 99% of the calls from customers A or B

were handled by agents counted in NA and NB, and about 95% of the customers that these agents

served were either A or B. Figure 13 plots NA versus NB, demonstrating that there is a negative

correlation between NA and NB. The reason is that there is a roughly constant number of agents

29

Figure 12: Aggregation of G-topology into an X-topology.

in this part of the call center, namely A and B, and when NB increases, NA tends to decrease.

5 10 15 20 25 30 35

10
15

20
25

30
35

N_A

N
_B

Figure 13: Plot of {NA(h), NB(h)} for each half-hour h in the training data.

5.2.1 High-dimensional form

To apply Erlang-S to Figure 12 in its high-dimensional form, the parameters p1, p2, ξ are consid-

ered functions of NA, NB (as well as of x, q). Similarly to the I-topology case, p1(x, q;NA, NB) =

30

ξ(x, q;NA, NB) = 0 for x − q ≥ NA + NB. To estimate the parameters, the same EM algorithm

as in Section 3.2 can be used, namely the one in Appendix D; however, now the terms in (6) are

functions of NA and NB, not just N . The parametric form implies that the estimates of p1, p2, ξ

now depend on 15 parameters.

The MLE’s are:

p1(x, q;NA, NB) =
I(x− q < NA +NB)

1 + exp{−(0.0974−0.0605x−3.5865q+0.0461NA − 0.0083NB)}
,

p2(x, q;NA, NB) =
1

1 + exp{−(−5.7315 + 0.1267x−0.0753q + 0.0365NA + 0.0195NB)}
, (12)

ξ(x, q;NA, NB) = (0.0140+0.0001x+ 0.0027q + 0.0008NA + 0.0004NB)I(x− q < NA +NB).

There are several characteristics that are noteworthy. The probability p1 decreases quite rapidly in

q, hence the probability of entering service immediately upon arrival is relatively high for q = 0,

and much lower for q > 0. This is to be expected since customers in the queue are more likely to be

served than a newly arrived customer. The coefficient of NB in p1 is negative due to the negative

correlation between NA and NB discussed above. In this case, ξ does not have the special form of

1/x as before, but it is more or less constant in x; it increases in q, so that when the queue is starting

to build up, agents tend to become available so as to accommodate the increasing workload.

5.2.2 First-principle form

The MLE’s of p01, p
0
2, ξ0, as defined in (9), were computed similarly to Section 3.2.2, using N =

NA + NB. That is, our low-dimensional model ignores the different skills of agents and considers

only one pool of N = NA + NB agents. Here, unlike the I-topology case, agents that are not

available (to A-type customers) may be serving a B-type customer (Figure 12). We obtain the

following MLE’s:

p01 = 0.026, p02 = 0.040, ξ0 = 0.001.

To compare both forms of Erlang-S, consider the situation where x = 12, q = 2 and there are

NA = NB = 20 agents. The values of p1, p2, ξ are 0, 0.040, 0.039 for the low-dimensional form,

and 0.001, 0.037, 0.044 for the high-dimensional form. Thus, p1, p2 are similar in both forms but ξ

is slightly higher in the high-dimensional form; the means (1/rate) are 26 and 23 seconds for the

low and high-dimensional forms, respectively. Hence, an unavailable agent is expected to become

available earlier in the high-dimensional form.

31

5.3 Predicting abandonment fraction

We use the same setting of Section 3.3 to compare the predictions of Erlang-A, Erlang-SL (low-

dimensional) and Erlang-SH (high-dimensional) to real data. Specifically, all parameters, excluding

λ and NA, NB (or n for Erlang-A), are estimated from the training data and assumed constant

throughout the test data. The arrival rate λ, as well as NA, NB and n, are assumed to be known

in advance, over half-hours.

5.3.1 Analysis: first half versus second half

For each half-hour in the test data, we compared the predictions of Erlang-S against real data. The

results are summarized in Figure 14 and Table 5. Due to the relationship in (11), the results for

the average queue length are similar. Table 9 in Appendix F provides a detailed comparison for

different versions of Erlang-A, under several prediction error metrics.

As before, Erlang-SH works well for the first half of the test data but not for the second. Unlike

before, Erlang-SL does not provide good predictions and overestimates the queue length. This result

indicates that Erlang-SL may be over-simplified for a general topology. Unlike the I-topology data

set, here an adaptive version of Erlang-S is not provided. The reason is that even a non-adaptive

version of Erlang-SL is too simple of a model for this data set, whereas adaptive Erlang-SH requires

a long re-estimation period as discussed below in Section 7.1. Our conclusion is that Erlang-S, at

least in its high-dimensional form, is still useful for the general topology.

Table 5: Daily mean (std) of abandonment fractions - comparing predictions against real data.

First half (2/1/2005 - 23/05/2005) Second half (24/5/2005 - 31/10/2005)

Erlang-SL 0.162 (0.053) 0.168 (0.063)

Erlang-SH 0.118 (0.026) 0.127 (0.029)

Data 0.114 (0.051) 0.215 (0.058)

5.3.2 Comparison with Erlang-A

As in Section 3.3.3, we consider here different versions of Erlang-A and compare them to Erlang-SH

and Erlang-SL in the first half of the test data. We use the same models and the same metrics

of comparison as in Section 3.3.3. For Erlang-Avirtual, we study here two versions, one where the

32

0 20 40 60 80

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

days

P
(a

ba
nd

on
m

en
t)

true
Erlang−S_H
Erlang−S_L

(a) First half (2/1/2005 - 23/05/2005).

100 120 140 160 180

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

0.
35

days

P
(a

ba
nd

on
m

en
t)

true
Erlang−S_H
Erlang−S_L

(b) Second half (24/5/2005 - 31/10/2005).

Figure 14: Abandonment fractions according to Erlang-SH , Erlang-SL, and in the test data, separately for the first

and second half of the test data.

estimate of the virtual service time is based on n = NA +NB, and one where it is based on n = NA;

the latter is denoted by Erlang-Avirtual−A.

The results of the comparison are presented in Table 6. Here, unlike the I-topology data set,

Erlang-Avirtual is biased and highly variable. Indeed, the improvement over Erlang-Avirtual−A in

terms of RMSE and L1 error is 250-260% (whereas in the I-topology data set, the improvement

was 5-10%). The rest of the results are not very different from that of Section 3.3.3. Erlang-A and

Erlang-Amedian are similar. Erlang-A2 (respectively, Erlang-A1) provides the smallest mean square

error (respectively, bias) among the Erlang-Ak models but Erlang-SH outperforms all the Erlang-A

models in all the metrics of comparison that we considered.

This G-topology data set is different from the I-topology data set (Section 3.2) in that customers

are being served by agents of two skills. Among the models we studied, Erlang-SH is the only model

that takes this fact into account. Furthermore, the estimates given in (12) imply that the servers of

skill A have different availability characteristics than servers of skill B (the coefficients of NA and

NB are different). This may explain the better performance of Erlang-SH compared to the other

models in this data set.

33

Table 6: Abandonment fractions - comparing predictions against real data in the first half of the test data (2/1/2005

- 23/05/2005).

mean (std) p-value RMSE (std) MAE (std) MAPE (std) % over/under % win

Data 0.114 (0.051)

Erlang-SH 0.118 (0.026) 0.526 0.049 (0.054) 0.04 (0.029) 0.482 (0.606) 5.3%

Erlang-SL 0.162 (0.053) < 0.001 0.076 (0.092) 0.06 (0.047) 0.735 (0.83) 30.9% 39.4%

Erlang-Avirtual 0.313 (0.12) < 0.001 0.227 (0.209) 0.201 (0.106) 2.172 (1.832) 44.7% 7.4 %

Erlang-Avirtual−A 0.241 (0.126) < 0.001 0.178 (0.205) 0.14 (0.11) 1.597 (1.957) 33% 19.1%

Erlang-A 0.171 (0.065) < 0.001 0.087 (0.106) 0.068 (0.054) 0.912 (1.531) 31.9% 37.2%

Erlang-A1 0.124 (0.055) 0.304 0.059 (0.076) 0.044 (0.039) 0.561 (1.052) 7.4% 47.9%

Erlang-A2 0.088 (0.045) < 0.001 0.058 (0.066) 0.048 (0.033) 0.487 (0.672) 24.5% 41.5 %

Erlang-Amedian 0.171 (0.068) < 0.001 0.057 (0.104) 0.07 (0.056) 0.934 (1.459) 27.7% 37.2%

6 Erlang-S versus Erlang-A: a numerical study

So far we have studied the implementation of Erlang-S to call center data, with our main argument

being that Erlang-S fits the data better than Erlang-A. In this section we perform a simulation study

where the underlying process that generates the data is known. In this way, one can investigate

the performance of Erlang-A when the real process is Erlang-S and vice versa. As importantly, the

estimation procedure can be assessed since the true parameters are known.

6.1 Real process is Erlang-S

In what follows, we assume that the real process is Erlang-S and calculate relevant performance

measures via numerically solving its steady-state equations.

6.1.1 Preliminaries: defining Erlang-A

Since our model uses states (x, q) rather than (x, n), we define and compute n(t) for every t in a

particular way and study the stationary (steady-state) distribution of n(t). We then compare the

performance measures of Erlang-S to that of Erlang-A whose n parameter is the average of n(t) in

that steady-state.

Suppose that θ = µ = 1/240 (i.e., both mean service time and mean patience are four minutes),

λ = 0.07 (per second; about 4 arrivals in one minute) and there are N = 30 agents. Assume also

34

the low-dimensional form (9) with the values given by (10), which are the estimates from the data

set described in Section 3.2. The choice µ = θ was made so that the process x(·) is Erlang-A, as

the model is then tractable, being distributed as M/M/∞; see Proposition 2.

In order to compare the performance of Erlang-S to Erlang-A, one must define the corresponding

n for the latter. To this end, we use n(t) from Erlang-S in the following two ways:

1. n has the steady-state distribution of n(t); Erlang-S is then compared against a random Erlang-

A.

2. n is the mean of the above steady-state distribution of n(t); Erlang-S is compared against the

classical Erlang-A.

Note that, in both comparisons, one must have n(t) defined for all t ≥ 0. If q(t) > 0 then unam-

biguously n(t) = x(t) − q(t). However, if q(t) = 0, then the parameter n(t) is undetermined (see

Table 1). We now complete the definition of n(t), for all t ≥ 0 as follows: let [A1, B1], [A2, B2], . . . ,

be the time intervals during which the queue is empty, that is q(t) = 0; then

n(t) :=

 x(t)− q(t), if q(t) > 0 (equivalently t /∈
⋃

i[Ai, Bi])

maxAi≤s≤t x(s), if t ∈ [Ai, Bi]
. (13)

When q(t) = 0, there is the possibility that an agent changes availability status - the above definition

of n(t) accounts for this by utilizing information that is revealed upon customer arrivals. Specifically,

consider a customer arriving at time t who encounters q(t−) = 0. We now distinguish between two

cases.

Case 1: The arriving customer is immediately served, which means that either an agent stayed

available or an agent became available prior to time t. Here, if n(t−) > x(t−) then n(t) remains

the same (since the agent stayed available) and if n(t−) = x(t−) then both x(t) and n(t) increase

by 1 (since an agent became available); either way, q(t) remains 0 until the next arrival.

Case 2: The arriving customer joins the queue, in which case an agent became unavailable prior to

time t; here q(t) jumps from 0 to 1 and n(t) = x(t)− q(t).

Since we update n(t) only upon arrivals, as long as q stays 0 we do not decrease n(t): this is the

above Case 1, which is captured by n(t) being the upper envelope of x(t), as in the second line of

(13). The first line applies when q jumps from 0 to 1, which is Case 2.

Since, when q(t) = 0, the parameter n(t) is undetermined; then the steady-state distribution

of n(·) cannot be directly deduced from that of (x, q). It is possible to compute this distribution

by adding n to the state-space, following the dynamics in (13), and then resolve the new steady-

state equations. Alternatively, one can compute it via simulation, which is a simpler procedure and

35

hence adopted here. We simulated the process for 5 × 106 seconds and recorded n(t) for each t.

The empirical distribution is displayed in Figure 15. It is seen that n(t) is usually around 17 but

it varies. In order to compare the performance to Erlang-A, we use the average n(t) in the latter,

which is ≈ 17. The distribution is close to being symmetric and the median is also 17. Our estimate

for P{n(t) = 17} is 0.11.

We also considered a random version of Erlang-A where the parameter n is random according

to the distribution of n(t) as shown in Figure 15; we denote this model by Erlang-A-random. For

example, the distribution of q according to Erlang-A-random is P (q = q̃) =
∑30

ñ=1 PA(q = q̃|n =

ñ)P (n = ñ), where PA(q = q̃|n = ñ) is the stationary distribution of Erlang-A when n = ñ (and

the rest of the parameters are as above) and P (n = ñ) is the distribution of n(t) given in Figure

15.

0 5 10 15 20 25 30

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

Distribution of n

n

fr
eq

ue
nc

y

Figure 15: Distribution of n(t).

6.1.2 Properties of Erlang-A when the real process is Erlang-S

Figure 16 shows the marginal stationary distribution of x and q for Erlang-A, Erlang-A-random

and Erlang-S; that of x is Poisson(λ/µ = 16.8) in all models. Under Erlang-A with parameter n,

the stationary distribution of q is ∼ max(Y − n, 0), where Y ∼ Poisson(16.8). For Erlang-S, the

marginal stationary distribution of q does not seem to have a closed-form expression and it was

36

hence computed by numerically solving the steady-state equations. For the numerical calculation

the state space was truncated so that x < 39 and q < 15. (When enlarging the state space so that

x < 50 and q < 20, the additional probability is of order of 10−6.)

It is seen that, while for x the distributions are identical in all models, for q the distributions

differ. Under Erlang-A and Erlang-A-random, there is a non-negligible probability that the queue is

very large; while in Erlang-S the queue very rarely exceeds 6, say. Overall, the average queue-length

in Erlang-A and in Erlang-A-random is 1.53 and 1.56, respectively, while in Erlang-S it is shorter,

0.59. In all three models, the abandonment fraction is given by (11). Thus, the abandonment

fraction in Erlang-A and Erlang-A-random are higher than in Erlang-S: 9.1% and 9.3% vs. 3.5%

respectively.

0 5 10 15 20 25 30

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

Distribution of x

x

fr
eq

ue
nc

y

(a) Distribution of x.

0 2 4 6 8

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

Distribution of q

q

fr
eq

ue
nc

y

Erlang−S
Erlang−A
Erlang−A random

(b) Distribution of q.

Figure 16: Histogram of x and q for Erlang-A, Erlang-A-random and Erlang-S.

6.1.3 Large number of agents present

In the above simulation we fixed N = 30 servers, which is a typical size of a small to moderate

call center. To analyze the behavior of larger call centers, we repeated the above calculation with

N = 50, N = 100 and N = 200, when λ is increased proportionally and other parameters being

fixed. The results of the abandonment fraction are given in Table 7. In both Erlang-S and Erlang-A,

as N increases, the abandonment fraction decreases but in Erlang-S it decreases more rapidly. It

seems that, in our present setting, the ratio between the abandonment fraction under Erlang-A and

37

Erlang-S goes to zero as N gets larger. Specifically, our setting is Erlang-SL, in which the overall

spontaneous service rate increases with the queue length; see(9). Thus, for larger values of N , there

are more agents that tend to become available when queue length increases, making service more

efficient and decreasing abandonment. It is theoretically intriguing to rigorously substantiate this

reasoning.

Table 7: Computation of abandonment fractions under Erlang-A, Erlang-A-random and Erlang-S when the real

process is Erlang-S.

Model N = 30 N = 50 N = 100 N = 200

Erlang-A 0.091 0.059 0.038 0.015

Erlang-A-random 0.093 0.073 0.047 0.021

Erlang-S 0.035 0.018 0.004 0.0003

6.2 Estimation of Erlang-S’ parameters

We now study the estimation process. We simulated the above Erlang-S process {x(t), q(t)}Tt=1, for

T = 3600× 200, namely 200 hours. We observed the process only in discrete times (seconds) as in

the call center data. We then computed the MLE in the same way as in Section 3.2.2. The resulting

estimates are

p̂01 = 0.0449, p̂02 = 7× 10−5, ξ̂0 = 0.0115.

and the true values are

p01 = 0.0515, p02 = 0.0115, ξ0 = 0.0111.

Thus, the estimates of p01 and ξ0 are close to the true values unlike the estimate of p02. The reason

might be that since p02 is close to zero then the problem becomes one of rare-event estimation and

calls for special treatment, which is beyond our scope. The estimated process yields an abandonment

fraction of 3.5%, which is equal to the true value (up to the third decimal digit). Hence, although the

estimated p02 differs from the true value, it does not impact much the estimation of the abandonment

fraction, which is very accurate.

38

6.3 Real process is Erlang-A

In this subsection, we simulate an Erlang-A process and study what happens when an Erlang-S

model is assumed. As mentioned in Section 2.3, Erlang-A is the same process as Erlang-S when

ξ(x, q;N) = 0, p2(x, q;N) = 1, and p1(x, q;N) =

 1 x < n, q = 0

0 otherwise
, for certain n < N . Hence,

it coincides with the low-dimensional form as described above, when p01 = 1, p02 = 1, ξ0 = 0 and

when N = n (every agent present is available for service). Indeed, when we simulated the Erlang-A

process that was described in Section 6.1, over a time period of 100 hours as in the previous section,

we obtained the following estimates

p̂01 = 0.9999, p̂02 = 0.9999, ξ̂0 = 8× 10−5,

which almost coincides with the Erlang-A structure.

7 Discussion and further research

In what follows, we provide a short summary of our contributions and mention worthy future

research directions. We divide the discussion into four short subsections: modeling, statistics,

operations, analysis.

7.1 Modeling

Our main conclusion is that one must account for agents’ operational behavior and availability in

order to develop valuable models that can accurately predict abandonment. We developed such

a model, Erlang-S, where servers can change their availability status. An important feature of

our model (when fitted to real data) is that it reveals that agents tend to become available when

the system is loaded and they are needed. Erlang-A does not allow this feature and hence it

overestimates the queue length and abandonment fraction in our data sets.

Other versions of Erlang-A, that add an extra after-service time, may work well for I-topology

queues, but they are not expressive enough for G-topology systems. In fact, Erlang-S has the

potential to fit any I-structure within a general queuing system (see Figure 1). This is done by

aggregating the rest of the system into a parallel I-structure, thus forming an X-topology (see

Figure 12). As already mentioned, this approach is similar to the one taken in Erlang-R (Yom-Tov

and Mandelbaum, 2014), which models a specific part (e.g. doctors) of a large service system (e.g.

emergency department) by retaining customer returns to service.

39

We studied parametric forms of the availability functions at different levels of complexity and

dimensionality. Let us refer to the I-topology data set as a “simple system” and to the G-topology

data set as a “complex system”. Furthermore, we may identify the regime of the first half of the

test data as stable and the second half as unstable. Assuming that our findings generalize to similar

call centers, we can then recommend both Erlang-SH and Erlang-SL for simple stable systems

(the former slightly outperforms the latter); for simple unstable systems, adaptive Erlang-SL is

recommended; for complex stable systems Erlang-SH is recommended and for unstable complex

systems no Erlang-S model was found satisfactory. These guidelines are based on a small number of

data sets. Thus, the present paper opens up the need for further research, with further data sets, in

order to determine with more confidence the complexity needed to model various types of queues,

and for understanding when a simple modification of Erlang-A would suffice, and when and why it

would not.

How frequently to update: a bias-variance trade-off. The adaptive version of Erlang-S

(see Section 3.3.3) introduces a bias-variance trade-off. When the re-estimation period is short then

the estimates have high variance; on the other hand, long periods induce accurate estimates but do

not allow the model to adapt to changes in the system (as in the second half of the testing data).

For Erlang-SL, a re-estimation period of 30 days worked quite well, as reported in Section 3.3.3,

but finding the best period length for Erlang-SH is more challenging since there are many more

parameters to estimate. We leave this issue for future research.

7.2 Statistics

On the statistical side, the main challenge was to estimate parameters of the continuous time process,

while observations are made in discrete times. To overcome this difficulty, we used variations of the

EM algorithm of Bladt and Sørensen (2005). It is worth mentioning that we also calculated the

MLE’s in the data set of Section 3.2, ignoring time discreteness; that is, maximizing the likelihood

as given in Stage 5 of the EM algorithm in Appendix D, where Mh[(x, q), (x′, q′)] and Rh[(x, q)] are

the observed number of transitions from (x, q) to (x′, q′), and the observed sojourn time in state

(x, q), respectively. The resulting prediction error (MSE) of the abandonment proportion is about

7% higher than the prediction error of Erlang-SH with the estimated parameters (7). This finding

points to higher prediction error when ignoring discreteness.

In the present work, we have not developed confidence intervals for the predicted estimates. One

should mention that Bladt and Sørensen (2009) do compute confidence intervals for transition rates.

40

Here we study a different parametric form, which requires different methods. It may be possible to

calculate the information matrix, which is based on the quantities, M [·, ·], R[·, ·], estimated in the

EM algorithm. It is also desirable to be able to construct confidence intervals for the predictions of

abandonment fractions. One possible approach would be a parametric bootstrap that simulates the

process based on the estimates, and then predicts abandonment fractions according to the simulated

process. This approach would be computationally intensive and it is left for future research.

7.3 Operations

In Erlang-S, not all of the servers present in the system are available for service. In such a real-

ity, performance can be improved even without recruiting new agents. This insight gives rise to

many questions and possibilities such as: can management measure and control the availability of

each agent, perhaps reward agents accordingly in some way? We postulated three parameters of

availability, p1, p2, ξ; is one of them more important to improve than the others?

To obtain some idea about improvements that can be achieved, consider a specific half-hour from

the data set discussed in Section 3.2. In this half-hour, λ = 0.01667, µ = 0.00409, θ = 0.00424, that

is, the arrival rate is approximately one per minute, and both the mean service time and impatience

time are approximately four minutes. The Erlang-SL model predicts an abandonment fraction of

0.065 (and the real fraction is 0.0645). If the spontaneous service rate, ξ0, was doubled, then the

abandonment fraction would be 0.032. If the continuation probability p02 was doubled, then the

abandonment fraction would stay almost the same. If p01 (activation probability) was doubled, then

the abandonment fraction would be 0.052. In summary, increasing p1 or ξ, e.g., via some form

of control, can improve significantly the abandonment fraction, and doing so without adding more

agents to the system. On the other hand, increasing the availability parameters may come at the

cost of other necessary agent activities. Further study is required to understand such trade-offs.

7.4 Analysis

We compared the predictions of abandonment fractions of Erlang-S and Erlang-A, against real data.

Erlang-A uses a constant number of available agents and, therefore, does not account for changes

in availability status. This leads to overestimation of the queue length and abandonment fraction.

Erlang-S, on the other hand, provides more accurate predictions.

In this study, we were able to solve the steady-state equations only numerically. We are relegating

the explicit solutions, at least for some important special cases, to future studies (Takagi and Taguchi

41

(2014) or Delasay et al. (2016) can serve as a starting point); however it seems that, ultimately,

the now-prevalent asymptotics of many-server queues will be called upon to provide insight and

numerical support. All this would lead to a better understanding of how the values of Erlang-S

parameters affect its performance.

Acknowledgments

We thank three referees, an associate editor and a department editor for a close reading of the

manuscript and many helpful comments. Assaf Zeevi generously agreed to read an earlier version

of the manuscript and suggested several changes. Noa Gans read it as well, and his encouragement

is appreciated. We also wish to thank the researchers of the Technion SEELab: Igor Gavako,

Ella Nadjharov, Arik Senderovic and Valery Trofimov. Without their support, this research would

not have been possible; in particular, they created Figures 1-3 and their underlying animations.

The work of A.M. has been partially supported by BSF Grants 2005175 and 2008480, ISF Grant

1357/08 and by the Technion funds for promotion of research and sponsored research. Some of

the research was funded by and carried out while A.M. was visiting the Statistics and Applied

Mathematical Sciences Institute (SAMSI) of the NSF; the Department of Statistics and Operations

Research (STOR), the University of North Carolina at Chapel Hill; the Department of Information,

Operations and Management Sciences (IOMS), Leonard N. Stern School of Business, New York

University; and the Department of Statistics, The Wharton School, University of Pennsylvania.

The wonderful hospitality of all four institutions is gratefully acknowledged and truly appreciated.

References

Aksin, Z., Armony, M., Mehrotra, V. (2007). The modern call-center: a multi-disciplinary perspec-

tive on operations management research. Production and Operations Management, 16, 665–668.

Bhaskaran, B. G. (1986). Almost sure comparison of birth and death processes with application to

M/M/s queueing systems. Queueing Systems. 1, 103–127.

Bickel, P. J., Doksum, K. A. (2001). Mathematical Statistics: Basic Ideas and Selected Topics.

Upper Saddle River, N.J.: Prentice-Hall.

Bladt, M., Sørensen, M. (2005). Statistical inference for discretely observed Markov jump processes.

Journal of the Royal Statistical Society. Series B (Statistical Methodology), 67, 395–410.

42

Bladt, M., Sørensen, M. (2009). Efficient estimation of transition rates between credit ratings from

observations at discrete time points. Quantitative Finance, 9, 147–160.

Brown, L., Gans, N., Mandelbaum, A., Sakov, A., Shen, H., Zeltyn, S., Zhao, L. (2005). Statistical

analysis of a telephone call center: a queueing-science perspective. Journal of the American

Statistical Association. 100, 36–50.

Delasay, M., Ingolfsson, A., Kolfal, B. (2016). Modeling load and overwork effects in queueing

systems with adaptive service rates. Operation Research, 64, 867–885.

Gans, N., Koole, G., Mandelbaum, A. (2003). Telephone call centers: Tutorial, review, and research

prospects. Manufacturing and Service Operations Management. 5, 79–141.

Gans, H., Liu, N., Mandelbaum, A., Shen H., Ye, H. (2010). Service times in call centers: Agent

heterogeneity and learning with some operational consequences. In Borrowing Strength: Theory

Powering Applications–A Festschrift for Lawrence D. Brown, Institute of Mathematical Statistics,

99–123.

Goldberg, Y., Ritov, Y., Mandelbaum, A. (2014). Predicting the continuation of a function with

applications to call center data. Journal of Statistical Planning and Inference, 147, 53–65.

Kc, D. S., Terwiesch, C. (2009). Impact of workload on service time and patient safety: An econo-

metric analysis of hospital operations. Management Science, 55, 1486–1498.

Mandelbaum A., Zeltyn S. (2004). The impact of customers patience on delay and abandonment:

some empirically-driven experiments with the M/M/N+G Queue. OR Spectrum, 26, 377–411.

Mandelbaum, A., Zeltyn, S. (2007). Service engineering in action: the Palm/Erlang-A queue, with

applications to call centers, Advances in Services Innovations, Editors D. Spath and K.P. Fahn-

rich. Springer-Verlag, 17–48.

Momcilovic, P., Armony, M., Carmeli, N., Mandelbaum, A. (2017). Data-based models of resource-

driven activity networks. In preparation.

Niebel B.W., Lohmann M.R., Mee J.F. (2012). Motion and time study: an introduction to methods,

time study and wage payment. Homewood, R.D. Irwin,

43

Palm, C. (1957). Research on telephone traffic carried by full availability groups. Tele, vol.1, 107

pp. (English translation of results first published in 1946 in Swedish in the same journal, which

was then entitled Tekniska Meddelanden fran Kungl. Telegrafstyrelsen.)

Senderovich, A. (2014). Service analysis and simulation in process mining. Ph.D. Research Proposal.

Available at: http://ie.technion.ac.il/serveng/References/Research_Proposal_Final_

12_2_14_Arik.pdf

Sun, H., Dharmaraja, S., Williamson, C., Jindal, V. (2007). An analytical model for wireless net-

works with stochastic capacity. Proceedings of SCS SPECTS, San Diego.

Takagi, H., Taguchi, Y. (2014). Analysis of a queueing model for a call center with impatient

customers and after-call work. International Journal of Pure and Applied Mathematics, 90, 205–

237.

Tian, N., Zhang, Z.G. (2005). Vacations queueing models: theory and applications, New York:

Springer.

Ward, A.R., Armony, M. (2013). Blind fair routing in large-scale service systems with heterogeneous

customers and servers. Operations Research, 61, 228–243.

Yom-Tov, G., Mandelbaum, A. (2014). Erlang-R: a time-varying queue with reentrant customers, in

support of healthcare staffing. Manufacturing and Service Operations Management, 16, 283-299.

Zeltyn S. (2005). Call Centers with Impatient Customers: Exact Analysis and Many-Server Asymp-

totics of the M/M/n+G queue. PhD Thesis, Technion. Available at http://ie.technion.ac.

il/serveng/References/MMNG_thesis.pdf.

Appendix A: A second real example of violating the constant-agents

assumption

In this appendix, we present another example of violating the constant-agents assumption. It is

taken from the data set that is analyzed in detail in Section 3.2. Here, we focus on data from a

specific hour, illustrated in Figure 17. During this hour, relatively many customers arrived by 10:15

and they entered service immediately, more or less (the blue line increases but not the red); these

customers were served by around 7 available agents in the system. At approximately 10:30, agents

44

 http://ie.technion.ac.il/serveng/References/Research_Proposal_Final_12_2_14_Arik.pdf
 http://ie.technion.ac.il/serveng/References/Research_Proposal_Final_12_2_14_Arik.pdf
http://ie.technion.ac.il/serveng/References/MMNG_thesis.pdf
http://ie.technion.ac.il/serveng/References/MMNG_thesis.pdf

became unavailable and only 3 are still serving customers. As a result, the service level deteriorates:

the average waiting time and abandonment rate increase, as illustrated in (b) and (c) of Figure 17.

Then, at around 10:45, 7 agents became available again and the service level improved.

(a) (b)

(c)

Figure 17: (a) Illustration of x(t), q(t) (blue, red) in data from an Israeli Telecom call center. At time t =10:18:30,

10:33:01, 10:44:21, x(t) − q(t) = (7, 3, 7) respectively (and q(t) > 0). (b) Waiting time, averaged over 30-second

intervals. (c) abandonment fraction, accumulated over 5-minute intervals.

Appendix B: Proofs

Proof of Proposition 1

By definition, q(t) ≤ x(t) almost surely, for every t ≥ 0. The process {x(t)}t≥0 is a birth-and-

death process with respect to the filtration of Erlang-S. It has a constant birth rate λ, and death

rate µ · (x − q) + θq, which is larger than xmin(µ, θ). (We allow here some harmless abuse of

45

notation, in which x denotes both a process and its state.) Thus, if θ > 0, it is stochastically

smaller than an x′ ∼M/M/∞ process with arrival rate λ and service rate min(µ, θ), and the latter

is stable. Therefore (Bhaskaran, 1986), there exists a probability space such that x(t) ≤ x′(t) and,

of course, q(t) ≤ x(t), where both inequalities hold almost surely for all t ≥ 0, and (x, q) ∼ Erlang-S,

x′ ∼ M/M/∞. Hence, the return time to (0, 0) in Erlang-S is bounded above by the return time

to 0 in M/M/∞. Also, it can be easily deduced from (2) and (3) that every state can be reached

from any other state in a finite number of steps with positive probability. Hence, since every state

x (and in particular x = 0) in M/M/∞ is positive recurrent, then Erlang-S is ergodic.

Proof of Proposition 2

Let Ft := σ{x(s), q(s)}s≤t denote the history of the Erlang-S process at time t. The Markovian

property implies that, for every t, s ≥ 0 and A ⊆ N2,

P [{x(t+ s), q(t+ s)} ∈ A|Ft] = P [{x(t+ s), q(t+ s)} ∈ A|{x(t), q(t)}] ;

and in particular, for any A ⊆ N,

P {x(t+ s) ∈ A|Ft} = P [x(t+ s) ∈ A|{x(t), q(t)}] .

When θ = µ the death rate is xµ = (x− q)µ+ qθ, which does not depend on q (and also the birth

rate is independent of q). Hence, we can conclude that

P {x(t+ s) ∈ A|Ft} = P {x(t+ s) ∈ A|x(t)} . (14)

Let F (x)
t := σ{x(s)}s≤t denote the history of x. The law of iterated expectations implies

P
{
x(t+ s) ∈ A|F (x)

t

}
= E

(
E [I{x(t+ s) ∈ A}|Ft]F (x)

t

)
.

By (14), the inner expectation is equal to P [x(t+ s) ∈ A|x(t)] which is measurable with respect to

F (x)
t . It follows that

P
{
x(t+ s) ∈ A|F (x)

t

}
= P {x(t+ s) ∈ A|x(t)}

and the Markov property follows. The birth rate is λ and the death rate at state x is µx, as in the

M/M/∞ queue.

46

Appendix C: Choosing the parametric form

The estimation of the parameters of the high-dimensional form (6) is carried out in two steps. The

first step is to estimate the rates with no parametric assumption; that is, for each (x, q) there are

five possible transitions for q > 0, and three for q = 0, and each rate is estimated separately. The

second step is to assume a certain parametric structure and to estimate the parameters. The reason

that the estimation was done in such a seemingly ad-hoc fashion is that we first sought to obtain a

general insight of how the rates change with x, q,N and only then to fit a specific parametric curve.

We now describe the first step of the estimation. Figure 18 presents the state-space on which

the process is observed; there are 50 possible states and 188 possible rates. In fact, the real process

visits more states than the 50 assumed. Transitions to or from these other states are not used in

the estimation procedure, nor is the sojourn time in these states. Due to this truncation, parameter

estimates on the boundary become slightly biased, but the effect on accuracy is negligible since the

sojourn time near the boundary is small. Furthermore, this first step of estimation is used to just

determine parametric structure, hence the specific values of the estimates are of little importance.

0 5 10 15

0
1

2
3

4
5

6

x

q

Figure 18: The state space.

The number of agents that were present in the system, N , is considered fixed over half-hours.

Since agents arrive and leave, N can change some during half-hours. However, we focus on 10:00-

11:00, which is in a middle of a shift and changes are small. For simplicity, we worked with the

number of agents present at the beginning of each half-hour. The histogram of this N , for the 464

47

half-hours in the training data, is presented in Figure 19. We divide the half-hours data into 7

groups such that, in each group, the number of agents N is the same (see Figure 19; half-hours with

7 and 8 agents and with 14 and 15 agents were considered as one group each). For each group, we

first estimated the transition rates from (x, q) to the five possible states (if q > 0), as illustrated in

Figure 7, and doing so with no further parametric assumptions.

Histogram of N

N_age_

F
re

qu
en

cy

0
20

40
60

80
10

0
12

0

7 8 9 10 11 12 13 14 15

Figure 19: The histogram of N , covering the 464 half-hours in the training data. The mean is 10.97 agents, and

the standard deviation 1.45.

We used the EM algorithm of Bladt and Sørensen (2005), described in Section 3.1, with the

following stopping rule: stop when the maximum difference (in absolute value) between the new

and old estimates of Qij is smaller than 2 × 10−4. We found that the following parametric form

works well, in the sense that the parametric and non-parametric estimates are similar:

p1(x, q;N) =
I(x− q < N)

1 + exp{−(c1 + α1x+ β1q + γ1N)}

p2(x, q;N) =
1

1 + exp{−(c2 + α2x+ β2q + γ2N)}

ξ(x, q;N) = (c3 + α3/x+ β3q + γ3N)I(x− q < N).

For p1 and p2, the standard logistic form was assumed. The parametric form for the rate ξ is linear

in q and N but not in x; for the latter, we found that the rate decreases like 1/x and not linearly

(see Figure 20 below). A similar form was found in other data sets, which are not reported here.

48

Notice that, if we make the following two assumptions:

1. Each of the N − (x − q) present but unavailable agents has a constant rate of becoming

available;

2. Agents become available independently of each other,

then the rate ξ would be linear in x. This suggests that the aforementioned assumptions cannot

both hold in general. If only Assumption 2 prevails, then the convexity of 1/x suggests that agents

have a higher individual spontaneous return-to-service rate for small x than for large x (for fixed

q).

We obtained the following estimates:

p1(x, q;N) =
I(x− q < N)

1 + exp{−(−0.084−0.265x+0.039q+0.023N)}
,

p2(x, q;N) =
1

1 + exp{−(−8.010 + 0.206x+0.069q + 0.166N)}
,

ξ(x, q;N) = (−0.116+0.720/x+ 0.002q + 0.005N)I(x− q < N).

Figure 20 illustrates the rate ξ for certain choices of x, q,N , under the parametric form and according

to the non-parametric estimate. This demonstrates that the rate decreases like 1/x and that the

parametric and non-parametric estimates are indeed similar.

0 2 4 6 8 10

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

xi

x

S
po

nt
an

eo
us

 s
er

vi
ce

 r
at

e

N=8, non−parametric
N=8, parametric
N=12, non−parametric
N=12, parametric

Figure 20: Estimates of ξ(x, q = 1, N) for N = 8 and N = 12, for x ∈ {0, 1, . . . , 11}.

49

Appendix D: EM algorithms

The heart of the EM algorithm is the computation of the conditional expectation in (4) and (5).

Bladt and Sørensen (2005) provide explicit formulas for these expectations which are given now.

Recall that

Ñij := EQ̃

[
number of transitions i→ j|{x(t)}Tt=1

]
,

R̃i := EQ̃

[
sojourn time in i|{x(t)}Tt=1

]
,

then,

Ñij =

T−1∑
t=1

f̃ ijx(t),x(t+1), R̃i =

T−1∑
t=1

M̃ i
x(t),x(t+1), (15)

for

M̃ i
k,` = M i

k,`/{exp(Q̃)}k,`, f̃ ijk,` = f ijk,`/{exp(Q̃)}k,`

where the notation {A}k,` denotes the k, ` entry of matrix A and

M i
k,` = exp(−λ)/λ

∞∑
n=0

λn+1

(n+ 1)!

n∑
m=0

{Bm(eie
′
i)B

n−m}k,`,

f ijk,` = Q̃i,j exp(−λ)/λ

∞∑
n=0

λn+1

(n+ 1)!

n∑
m=0

{Bm(eie
′
j)B

n−m}k,`

for λ ≥ maxi=1,...,s(−Q̃i,i), ei is the i-th unit vector, a′ denotes the transpose of vector a, and finally

B = I + Q̃/λ.

MLE of (c1, α1, . . . , β3, γ3) (used in Section 3.2)

1. Start with some (c1, α1, . . . , β3, γ3).

2. For each half-hour h in the training data, estimate µ(h), θ(h), λ(h); here µ(h) is one over

the mean service time, θ(h) is mean abandonment proportion
mean waiting time (Mandelbaum and Zeltyn, 2007), and

λ(h) is the average number of arrivals per second (we know N(h)).

3. For each half-hour h in the training data, compute the generator matrix Qh[(x, q), (x′, q′)],

based on µ(h), θ(h), λ(h), N(h) and (c1, α1, . . . , β3, γ3), according to (2), (3) and the paramet-

ric form (6).

4. Compute

Mh[(x, q), (x′, q′)] := EQh

[
number of transitions (x, q)→ (x′, q′) in h|{x(t), q(t)}t∈h

]
,

Rh[(x, q)] := EQh
[sojourn time in state (x, q) in h|{x(t), q(t)}t∈h],

50

and M [(x, q), (x′, q′)] :=
∑

hMh[(x, q), (x′, q′)], R[(x, q)] :=
∑

hRh[(x, q)].

5. Estimating c1, α1, β1, γ1: using logistic regression (see, e.g., Bickel and Doksum, 2001, Sec-

tion 6.4); at each state (x, q), there are M [(x, q), (x + 1, q)] “successes” and M [(x, q), (x +

1, q + 1)] failures.

Estimating c2, α2, β2, γ2: maximizing the log likelihood

∑
x,q,h

{Mh[(x, q), (x− 1, q)] log(q1)− q1Rh[(x, q)] +Mh[(x, q), (x− 1, q − 1)] log(q2)− q2Rh[(x, q)]} ,

where

q1 = µ(h)(x− q)[1− p2(x, q;N(h))], q2 = µ(h)(x− q)p2(x, q;N(h)) + θ(h)q.

Estimating c3, α3, β3, γ3: maximizing the log likelihood

∑
x,q,h

{Mh[(x, q), (x, q − 1)] log{ξ(x, q;N(h))} − ξ(x, q;N(h))Rh[(x, q)]} .

6. If the maximum distance (absolute value) between the new and previous estimates of the 12

parameters is bigger than 10−4, go to Step 3.

The conditional expectations of Step 3 were computed using (15). The maximization in Step 5 was

performed numerically by using the “optim” function of R (and its default optimization method

“Nelder-Mead”). The R code that implements the algorithm will be gladly provided by the first

author.

MLE of N (used in Section 4)

1. Start with some N .

2. Compute the transition matrix Q[(x, q), (x′, q′)], based on µ, θ, λ, the functions p1, p2, ξ and

N .

3. Compute

M [(x, q), (x′, q′)] := EQ

[
number of transitions (x, q)→ (x′, q′) during h|{x(t), q(t)}t∈h

]
,

R[(x, q)] := EQ[sojourn time in state (x, q) during h|{x(t), q(t)}t∈h].

51

4. Find an N that maximizes the log likelihood

∑
x,q

M [(x, q), (x+1, q)] log(q
(1)
1)−q(1)1 R[(x, q)]+M [(x, q), (x+1, q+1)] log(q

(1)
2)−q(1)2 R[(x, q)]

+M [(x, q), (x− 1, q)] log(q
(2)
1)− q(2)1 R[(x, q)] +M [(x, q), (x− 1, q− 1)] log(q

(2)
2)− q(2)2 R[(x, q)]

+M [(x, q), (x, q − 1)] log(ξ(x, q;N))− ξ(x, q;N)R[(x, q)],

where

q
(1)
1 = λp1(x, q;N), q

(1)
2 = λ{1− p1(x, q;N)}, q(2)1 = µ(x− q)[1− p2(x, q;N)],

q
(2)
2 = µ(x− q)p2(x, q;N) + θq.

5. If the new N is different from the previous N , go to Step 2.

Appendix E: Animating the data underlying Figures 1, 2, 3

This appendix serves as a brief documentation for the animations of Figures 1–3. Each colored circle

traces the state of a specific customer or agent, and the arcs represent possible state transitions. A

circle that moves within an arc from X to Y (say) stands for a customer or an agent who is still in

X and will next switch to Y . The time to traverse that arc reflects the sojourn time in X; thus,

slow and fast motion of circles corresponds to long and short sojourn times, respectively.

The real time is given in the lower left corner. The dynamic bars, which appear in some parts

of the animations, represent the total number of customers or agents in the corresponding state.

Also, in some of the animations, the thickness of the arc from X to Y corresponds to the number

of customers that are in X and are about to switch to Y (and similarly for arcs from X to out of

the network). We now expand on what is shown in each of the animations.

Figure 1, http://youtu.be/_eyAXVXZU7o: The first 19 seconds show the flow of customers

from the queues in the ellipsoids to the servers in the rectangles. Next (till 0:53), the customers in

the queue and those who are being served, are animated through bars that display the corresponding

customer count. Red bars represent overloaded queues (waiting time exceeding 2 minutes). Next (till

1:20), the circles and bars are shown together. Next (till the end), the customer flow is represented

by snapshots and thick/thin arcs: the arc width corresponds to the total number of customers that

traversed that arc since the previous snapshot. Red arrows stand for abandonment.

The animation of Figure 2, http://youtu.be/DHvObpKjYrQ, shows both the circles and the

bars. It focuses on two agents: the red circle stands for a “supervisor” and the green is a regular

52

http://youtu.be/_eyAXVXZU7o
http://youtu.be/DHvObpKjYrQ

agent. While the regular agent spends the most time in the “serving-cycle”: ready → online →

wrap-up, the supervisor often goes (after 16:00) to meetings and breaks.

The animation of Figure 3, http://youtu.be/H-wMFSl95KU, is similar to that of Figure 2,

but here the different service types (investments, general banking, ...) of online and wrap-up are

aggregated into one, and the animation covers all the agents present in the call center (not just two

of them).

As a final comment, our data and its corresponding animations enable almost automatic time-

studies, which traditionally have been performed through human observational studies (Niebel et

al., 2012).

Appendix F: Comparing predictions against real data in the second

half of the test data

Table 8: Abandonment fractions - comparing predictions against real data in the second half of the test data

(28/6/2005 - 22/12/2005) in the I-topology data set.

mean (std) p-value RMSE (std) MAE (std) MAPE (std) % over/under % win

Data 0.060 (0.048)

Erlang-SH 0.115 (0.038) < 0.001 0.065 (0.061) 0.057 (0.031) 1.083 (1.032) 46.5%

Erlang-SL 0.073 (0.031) 0.001 0.035 (0.039) 0.029 (0.02) 0.46 (0.517) 19% 85.0%

Erlang-Avirtual 0.097 (0.066) < 0.001 0.058 (0.073) 0.045 (0.036) 0.804 (0.804) 25.2% 75.2%

Erlang-A 0.083 (0.034) < 0.001 0.046 (0.052) 0.038 (0.026) 0.623 (0.667) 24.3% 72.6%

Erlang-A1 0.048 (0.023) 0.359 0.04 (0.054) 0.03 (0.027) 0.378 (0.295) 6.6% 75.2%

Erlang-A2 0.026 (0.015) < 0.001 0.052 (0.068) 0.04 (0.034) 0.576 (0.191) 28.8% 66.4%

Erlang-Amedian 0.083 (0.037) < 0.001 0.024 (0.05) 0.037 (0.026) 0.587 (0.688) 23.5% 73.5%

53

http://youtu.be/H-wMFSl95KU

Table 9: Abandonment fractions - comparing predictions against real data in the second half of the test data

(24/5/2005 - 31/10/2005) in the G-topology data set.

mean (std) p-value RMSE (std) MAE (std) MAPE (std) % over/under % win

Data 0.215 (0.058)

Erlang-SH 0.127 (0.029) < 0.001 0.104 (0.11) 0.09 (0.054) 0.395 (0.179) 46.8%

Erlang-SL 0.168 (0.063) < 0.001 0.085 (0.099) 0.067 (0.052) 0.311 (0.243) 23.7% 73.7%

Erlang-Avirtual 0.316 (0.135) < 0.001 0.161 (0.169) 0.134 (0.09) 0.68 (0.542) 27.9% 35.8%

Erlang-Avirtual−A 0.298 (0.128) < 0.001 0.156 (0.197) 0.121 (0.098) 0.641 (0.67) 24.7% 49.5%

Erlang-A 0.267 (0.083) < 0.001 0.095 (0.113) 0.077 (0.057) 0.388 (0.33) 27.9% 64.2%

Erlang-A1 0.204 (0.075) 0.14 0.074 (0.092) 0.057 (0.047) 0.268 (0.211) 5.8% 77.9%

Erlang-A2 0.151 (0.066) < 0.001 0.092 (0.108) 0.075 (0.054) 0.343 (0.206) 35.3% 55.8%

Erlang-Amedian 0.275 (0.09) < 0.001 0.06 (0.121) 0.082 (0.062) 0.415 (0.359) 25.8% 62.1%

54

	Introduction
	Erlang-S: a simple server network
	Literature review
	Contributions and contents

	Erlang-S (vs. Erlang-A)
	Erlang-A
	Erlang-S
	Properties of Erlang-S

	Using Erlang-S to predict abandonment fraction
	The EM algorithm
	Estimation in an Israeli call center
	High-dimensional form
	First-principle form

	Predicting abandonment fraction
	Prediction - preliminaries
	Analysis: first half versus second half
	Comparison with Erlang-A

	Estimating the number of agents present N
	Two approaches
	Implementation and comparison

	Erlang-S for a general queue.
	General topology
	Estimation in an Israeli call center
	High-dimensional form
	First-principle form

	Predicting abandonment fraction
	Analysis: first half versus second half
	Comparison with Erlang-A

	Erlang-S versus Erlang-A: a numerical study
	Real process is Erlang-S
	Preliminaries: defining Erlang-A
	Properties of Erlang-A when the real process is Erlang-S
	Large number of agents present

	Estimation of Erlang-S' parameters
	Real process is Erlang-A

	Discussion and further research
	Modeling
	Statistics
	Operations
	Analysis

