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We analyze a queueing model that we call Erlang-R, where the “R” stands for Reentrant customers. Erlang-R

accommodates customers who return to service several times during their sojourn within the system, and its

modeling power is most pronounced in time-varying environments. Indeed, it was motivated by healthcare

systems, in which offered-loads vary over time and patients often go through a repetitive service process.

Erlang-R helps answer questions such as how many servers (physicians/nurses) are required in order to

achieve predetermined service levels. Formally, it is merely a 2-station open queueing network which, in

steady-state, evolves like an Erlang-C (M/M/s) model. In time-varying environments, on the other hand, the

situation differs: here one must account for the reentrant nature of service, in order to avoid excessive staffing

costs or undesirable service levels. We validate Erlang-R against an Emergency Ward (EW), operating under

normal conditions as well as during a Mass Casualty Event (MCE). In both scenarios, we apply time-varying

fluid and diffusion approximations: the EW is critically loaded (QED) and the MCE is overloaded (ED). In

particular, for the EW we propose a time-varying square-root staffing (SRS) policy, based on the modified-

offered-load, which is proved to perform well over small-to-large systems.

Key words : Healthcare; Queueing Networks; Modified Offered-Load; Time Varying Queues; Halfin-Whitt

Regime; QED Regime; ED Regime; Emergency Department Staffing; Mass Casualty Events; Patient

Flow

1. Introduction: The Erlang-R Model

It is natural and customary to use queueing models in support of workforce management. Most

common are the Erlang-C (M/M/s), Erlang-B (M/M/s/s) and Erlang-A (M/M/s + M) models,
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all used, for example, as models of call centers. But when considering healthcare environments,

we find that these models lack a central prevalent feature, namely, that customers might return

to service several times during their sojourn within the system. Therefore, the service offered has

a discontinuous nature, as it is not provided at a single event. This has motivated our queueing

model, (the time-varying) Erlang-R (“R” for Reentrant customers or Repetative service) which

accommodates the Return-to-service phenomena.

More explicitly, we consider a model where customers seek service from servers. After service

is completed, with probability 1− p they exit the system and with probability p they return for

further service, after a random delay time. We refer to the service phase as a Needy state, and to

the delay phase as a Content state (following Jennings and de Véricourt 2011). Thus, during their

stay in the system, customers start in a Needy state and then alternate between Needy and Content

states. We assume that there are multiple servers in the system, and their number st can vary

with time. When customers become Needy and a server is idle, they are immediately treated by a

server. Otherwise, customers wait in queue for an available server. The queueing policy is FCFS

(First Come First Served). Needy service times are independent and identically distributed (i.i.d.),

with general distributed G1 and mean 1
µ
, and Content times are i.i.d. with general distribution G2

and mean 1
δ
. We also assume that the Needy and Content times are independent of each other

and of the arrival process. The arrival process is a time-inhomogeneous Poisson process with rate

function λt, t≥ 0; this is empirically justified, for example in Maman (2009). Some of our results

require that the Needy and Content times have concrete distributions (exponential, deterministic).

We shall state specifically when this is the case. Figure 1 displays our system schematically.

1.1. Examples of Service Systems with Reentrant Customers

We now describe examples that underscore the practical relevance of Erlang-R: An Emergency

Ward (EW), under normal conditions or during a Mass Casualty Event (MCE); The Radiology

reviewing process; Oncology bed management; and call centers.

The first example captures the complex medical service process, provided by EW physicians (or

nurses) (Marmor and Sinreich 2005). We consider separately normal and stressful EW conditions.
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Figure 1 The Erlang-R Queueing Model.
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For the first, the process starts by admitting patients and referring them to an EW physician.

The physician examines them in order to decide between discharge vs. hospitalization - a decision

that could require a series of medical tests. Thus, the process that a patient experiences, from the

physician’s perspective, fits Erlang-R: a physician visit is a Needy state; and between each visit, the

patient is in a Content state, which represents the delay caused by undergoing medical tests such

as X-rays, blood tests or examinations by specialists. After each visit to the physician, a decision

is made to release the patient from the EW (home or hospitalized), or to direct the patient to

additional tests. We shall verify later, in Section 6, that the simple Erlang-R model captures the

essence of the complete EW process, enough to render the model useful for staffing applications.

EWs often accommodate MCEs, and these are inherently transient (Zychlinski et al. 2012).

Based on data from an MCE drill, as described in Section 7.1, we demonstrate that our time-

varying Erlang-R can accurately forecast MCE census and hence support its management. Ours is

a Chemical MCE, and these share treatment protocols that are especially amenable to Erlang-R

modeling: every T minutes or so, each patient must be monitored and given an injection, where

T depends on severity. (In our case, patients were triaged into 4 levels of severity: the most acute

required treatment every 10 minutes, the second level every 30 minutes, etc.)

Our second example is the Radiology reviewing process (Lahiri and Seidmann 2009). After a

mammography test, the radiologist interprets the results. In some cases, part of the information

on the patient is lacking: the radiologist starts the reviewing but the case must be put on hold.

One then waits for this additional information to arrive, after which the reviewing process starts

again. With radiologists being the servers, this can be modeled using our Needy-Content cycle.
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The third example is the process of bed management in an Oncology Ward. In such a medical

ward, patients return for hospitalization and treatment far more frequently than in regular wards.

Here servers are the beds, the Needy state models the times when a patient is in the hospital,

and the Content state corresponds to a patient being at home. A patient leaves the system when

cured or unfortunately passes away. (A hospital colleague tells us that the same dynamics could

possibly fit a Geriatric Ward during the flu season, when elderly patients transfer back and forth

between their (nursing) home and the hospital.) Lessons from fitting Erlang-R to this and the

above examples are summarized in Section 8.

Our prime motivation is healthcare. Yet, Erlang-R is clearly relevant to other environments, for

example, call center customers who return for additional services (Zhan and Ward 2012, Khudyakov

et al. 2010). Note that our reentrant customers differ from what is traditionally referred to as

retrial customers in queueing theory (redials in call centers) (e.g. Falin and Templeton 1997): these

leave the system prior to service, in response to all lines being busy or after abandonment due to

impatience, while our customers return after service and their returns are considered part of the

service process.

1.2. Contributions

The contributions of our paper are both theoretical and practical. The main ones are as follows:

• Theoretical understanding of the significance of re-entrance, leading to practical insights for the

above healthcare examples (§8). A central question is when must customer-returns be acknowledged

explicitly, as opposed to being absorbed within the service or arrival process. (This absorption

has been common practice; see for example Green et al. (2006).) Our important insight (§3&4) is

that returns become significant in time-varying systems (they are not so in steady-state) - roughly

speaking, when the arrival rate varies noticeably during the sojourn-time of a customer within the

system (§4.2). In particular, with periodic arrivals and exponential services, this significance is most

pronounced when the period duration of the arrival process is around
√
δµ(1− p) (§4.3); another

insight is that re-entering customers smooth (reduce the amplitude of) staffing requirements over
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time (Theorem 5); the lessons are similar for deterministic service times but the story is then

somewhat more complex (§A.5).

• Stabilizing performance of time-varying queueing networks via square-root staffing (SRS) rules

(§5). Significantly, this has been so far proved feasible only for isolated queues (Jennings et al.

1996, Feldman et al. 2008, Whitt 2013). As explained below, the network for which performance

is stabilized could be rather general - for example, the full-fledged EW network in Section 6. Our

method requires explicit calculations of the time-varying offered-load, based on Massey and Whitt

(1993), as well as of key performance measures for Erlang-R (§3&4).

• Analytical approximations for the Queue-Length and Number-of-Busy-Servers processes.

These are derived separately for systems that are super-critical (e.g. EWs during MCEs as described

in §7) by implementing methods from Mandelbaum et al. (1998), or systems that are well-balanced,

namely Quality and Efficiency Driven (QED; see Internet Supplement §C, which is a manifestation

of the Modified-Offered-Load (MOL) principle as in Massey and Whitt (1994)).

• Developing and implementing a complete framework for assessing the practical value of asymp-

totic queueing theory. This framework entails 4 network models: Queueing, Fluid, Diffusion and

Simulation. To elaborate, asymptotic queueing models have been traditionally tested for accuracy

against their mathematical origins: for example, our formulae for QED approximations (§C) or

transient fluid/diffusion models (§7) would have been compared, for numerical accuracy, against

Erlang-R (Figure 1) steady-state formulae or transient simulation, respectively. In contrast, here

we seek added-value of asymptotic models rather than accuracy, which we test against a full-fledged

proxy (simulation) of the complex EW reality. The added value comes about from:

— Stabilizing the performance of an EW in normal conditions, using staffing recommendations

that are based on the QED Erlang-R (§6).

— Capturing the dynamics of an EW during a Chemical MCE, via transient fluid and diffusion

models. This utilizes RFID-based data from an MCE drill which, interestingly, had to be un-

censored (§7.1).
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— Validating the applicability (and understanding the limitations) of SRS to very small sys-

tems, e.g. with 1 to 10 servers (§5.2; this was first observed in Borst et al. (2004), then taken

advantage of for healthcare systems in Jennings and de Véricourt (2011), and recently found the-

oretical explanations in Janssen et al. (2011)).

• Erlang-R can be viewed as a proxy for a general time-varying network from the viewpoint of

a particular service station. To this end, one chooses the latter to be the “Needy” station (e.g.

physicians in our case) while the rest of the network is aggregated into the “Content” station (rest

of the EW). The value of this approach, as discussed above, is the successful stabilization of EW

performance via physician staffing that is Erlang-R generated.

2. Literature Review

The medical workforce of a hospital consists of nurses, physicians, and support staff, all jointly

contributing as much as 70% to the hospital’s operational budget (IMH 2006). Thus, careful man-

agement of workforce capacity is called for, and here queueing models come naturally to the rescue.

The first to consider the effect of returning patients in healthcare were Jennings and de Véricourt

(2011). They used a closed queueing model to develop recommendations for nurse-to-patient ratios,

which Yom-Tov (2010) then expanded to jointly accommodate bed allocations; both analyzed their

system in steady-state. Green et al. (2006, 2007) and Zeltyn et al. (2011) consider explicitly time-

varying queues in hospital staffing. They applied the Erlang-C model for staffing physicians in

the EW: Green et al. using the Lag-SIPP (Stationary Independent Period by Period) approach

and Zeltyn et al. using ISA (Infinite Server Approximation) plus heuristics. One goal here is to

demonstrate that Erlang-R is more appropriate for modeling the time-varying EW environment,

which is due to the repetitive nature of service. We refer the reader to Green et al. (2007) for a

comprehensive survey of time-varying queues and their applications in workforce management.

We focus on QED queues in order to balance patients’ clinical needs for timely service against

the economical preferences to operate at high efficiency. The QED regime is widely used in call

centers (Gans et al. 2003). However, Jennings and de Véricourt (2011) discovered its relevance
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also for much smaller Healthcare systems. QED queues adhere to some version of the square-root

staffing rule, which was first analyzed by Halfin and Whitt (1981). For example, in an Erlang-C

(M/M/s) model, the number of servers s is set to s≈ R+ β
√
R; here R is the offered-load, given

by R= λ ·E[S] = λ
µ
, and β is a Quality-of-Service parameter that is set to accommodate service-

level constraints. Data from Zeltyn et al. (2011) suggests that EWs in fact use QED staffing with

0.4<β < 1.6.

When the arrival rate varies with time, it is natural to consider service-quality measures at every

moment in time. Our goal, in this case, is to identify staffing procedures that maintain high levels

of servers’ utilization and, jointly, no matter what time of day customers enter the system, they will

always encounter the same (high) service-level. This goal has been addressed via two approaches.

The first uses steady-state approximations, such as in PSA (Piecewise Stationary Analysis), SIPP,

or lag-SIPP (Jennings et al. 1996, Green et al. 2001, 2006). The approach works well if the system

reaches steady-state quickly. The second approach includes the MOL in Jennings et al. (1996) or

ISA of Feldman et al. (2008). Here one calculates or approximates the time-varying offered-load

R(·), via a corresponding system with ample servers. For example, in the time-varying Erlang-

C model (Mt/M/st), R(t) = E [λ(t−Se)]E[S] (Eick et al. 1993b). Then one uses a time-varying

adaptation of the SRS formula: s(t) = R(t) + β
√
R(t). This approach works very well for single

queues, we shall apply it here to Erlang-R, which encapsulates a queueing network.

3. Steady-State Performance Measures

We start with a simple steady-state analysis of the Erlang-R model, when it is merely a two-state

Jackson network. This provides the backbone for later analysis. We then present formulae for the

standard quality measures of Erlang-R. We thus assume that the service times are exponentially dis-

tributed, and that the arrival rate is constant λ(t)≡ λ. Let Q= {Q(t), t≥ 0} be a two-dimensional

stochastic queueing process, where Q(t) = (Q1(t),Q2(t)): Q1(t) represents the number of Needy

patients in the system at time t, and Q2(t) the number of Content patients. Under our assumptions,

the system is an open (product-form) Jackson network with the following steady-state distribution:

πij := P (Q1(∞) = i,Q2(∞) = j) =
(R1)i

ν(i)
c1

(R2)j

j!
c2,
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where

c1 =

[
(R1)s

s!(1−R1/s)
+

s−1∑
i=0

(R1)i

i!

]−1

, c2 =

[
∞∑
j=0

(R2)j

j!

]−1

= e−R2 , (1)

ν(i) is defined as ν(i) := (i∧s)s(i−s)+ , and R1 = λ
(1−p)µ , R2 = pλ

(1−p)δ . We call R1 and R2 the steady-

state offered-load of Stations 1 and 2, respectively. Now let Wt be the waiting time for service,

of a (virtual) customer who becomes Needy at time t (either upon first arrival or returning); let

W = limt→∞Wt denote the corresponding steady-state waiting time (weak limit).

Theorem 1. Assume that S1
d
= exp(µ) and S2

d
= exp(δ), and the arrival rate is constant λ. Then

α := P (W > 0) =

[
(R1)s

s!(1−R1/s)

]
c1,

E[W |W > 0] =
1

µs(1− ρ)
,

W |W > 0
d
= exp(E[W |W > 0]),

where ρ=R1/s, and c1 is defined in (1). (
d
= denotes equality in distribution.)

Proof: Theorem 1 is a straightforward result of Erlang-R being a 2-node Jackson network,

jointly with the arrival theorem for Open Jackson networks.

In steady-state, Node 1 is an M/M/s queue with parameters (λ,µ(1− p), s), and Node 2 is an

M/M/∞ queue with parameters (λ, (1−p)δ
p

). It follows that, in steady-state, the appropriate QED

staffing policy for our model sets s=R1 +β
√
R1, β > 0, where β is related to the desired α by

α=

[
1 +β

Φ(β)

φ(−β)

]−1

; (2)

here φ(·) and Φ(·) are the standard Normal density and distribution functions, respectively (Halfin

and Whitt 1981). Hence, in steady-state, the staffing recommendations of Erlang-R and Erlang-C

coincide.

For every Erlang-R with parameters (λ,µ, p, δ), there are two naturally corresponding Erlang-

C models: one with parameters (λ,µ(1− p)), in which successive services are concatenated with

no delay between them; the second has parameters ( λ
1−p , µ), in which the number of arrivals is

amplified appropriately. Only the first option, with concatenated services, will be considered from

now on; we refer to this model as multi-service Erlang-C. (The second option turns out to be an

inferior fit over finite horizons, which was verified via simulations.)
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4. The Offered-Load

As mentioned earlier, staffing levels that are based on the time-varying offered-load, do stabilize

performance of non-stationary systems. Adopting this approach, we now introduce the offered-load

function of our time-varying Erlang-R model, denoted R= {R(t), t≥ 0}. Here R(t) = (R1(t),R2(t)),

where Ri(t) is the offered-load of Node i at time t. The function R(·) is defined in terms of a

related system, with the same structure as ours, but in which the number of servers in Node 1

is infinite, which results in an (Mt/G/∞)2 network: Ri(t) is simply the average number of busy

servers (served customers) in this latter network, in Node i at time t; equivalently, Ri(t) equals the

average least number of servers that is required so that no arriving customer is delayed in queue

prior to service.

We now calculate R under various scenarios:

4.1. The Offered-Load for General Arrivals and Exponential Services

Assume that Si are exponentially distributed. The Erlang-R model is then a time- and state-

dependent Markovian service network (Mandelbaum et al. 1998), for which the following holds:

Theorem 2. Assume that S1
d
= exp(µ) and S2

d
= exp(δ). Then R(·) is given by the unique solu-

tion of the following ODE (Ordinary Differential Equation): for t≥ 0,

d

dt
R1(t) = λt + δR2(t)−µR1(t),

d

dt
R2(t) = pµR1(t)− δR2(t).

(3)

The initial condition is determined by the originating system.

Proof: Internet Supplement, Section A.1.

With general time-varying arrival rates, the ODE (3) is unlikely to be tractable analytically.

Nevertheless, one can easily solve it numerically. We used this method for the experiments in

Sections 5 and 6.

4.2. The Offered-Load for General Arrivals and General Services

Let J denote the number of returns to service, thus J
d
=Geom≥0(1− p).
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Theorem 3. The offered-load R(·) is given by:

R1(t) =E

[
∞∑
j=0

pjλ(t−S∗j1 −S
∗j
2 −S1,e)

]
E[S1] =

E[S1]

1− p
E
[
λ(t−S∗J1 −S∗J2 −S1,e)

]
,

R2(t) =E

[
∞∑
j=1

pjλ(t−S∗j1 −S
∗j−1
2 −S2,e)

]
E[S2] =

E[S2]

1− p
E
[
λ(t−S∗J1 −S∗J−1

2 −S2,e)
]
,

(4)

where Si,e is a random variable representing the excess service time at Node i, S∗ji is the sum of

j i.i.d random variables Si (the j-convolution of Si), and all these random variables are assumed

independent.

Proof: This theorem follows from Massey and Whitt (1993). For completeness, we provide a proof

in Internet Supplement, Section A.1.

Proposition 1. A second-order Taylor-series approximation of R1(·) is given by

R1(t)≈ E[S1]

1− p

[
λ
(
t−E

[
S1,e +S∗J1 +S∗J2

])
+

1

2
λ(2)(t)V ar[S1,e +S∗J1 +S∗J2 ]

]
. (5)

Proof: Internet Supplement, Section A.1.

Approximation (5) reveals a fundamental difference between the offered-loads of Erlang-R and

its corresponding Erlang-C. The multi-service Erlang-C second-order approximation is R(t) ≈

E[S1]

1−p

[
λ(t−E

[
S∗J1,e

]
) + 1

2
λ(2)(t)V ar[S∗J1,e]

]
. This results from adjusting the Erlang-C formula in

Whitt (2007) to the case where the service time is a random sum of i.i.d. (partial) service durations.

We thus observe that Erlang-R corrects the time-gap, relative to time t; it extends this gap further

by S∗J2 , namely the overall time spent in the Content state during a customer’s sojourn. It follows

that time-varying approximations of the offered-load, which are based on Erlang-C, are potentially

inaccurate in both time-lag and magnitude - this will be confirmed in the sequel.

4.3. Analysis of Special Cases and Managerial Insights: Sinusoidal Arrival Rate

In this section, we analyze the offered-load for the special case of a sinusoidal arrival rate function.

There are several reasons for using the sine function. First, any periodic time-varying arrival rate

(hence the corresponding offered-load) can be approximated by a finite linear combination of sine

functions, thus leading to a Fourier expansion of the offered-load. Second, sine functions yield
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closed-form solutions to the offered-load (in some special cases). This, in turn, reveals the role that

the amplitude and frequency of the arrival rate, in conjunction with service and content time, play in

our system evolution (Section 4.3.1). Specifically, all these parameters jointly specify the amplitude

and phase of the offered-load function which, in turn, determines magnitude-changes in staffing

levels and the timing of such changes. This explains and quantifies the gap and its magnitude

between peak arrival-rate and peak offered-load, hence consequent peak-staffing. Finally, our closed

forms enable a comparison between Erlang-R and the corresponding multi-service Erlang-C, thus

highlighting the influence of returning customers and the circumstances under which Erlang-R is

a modeling necessity - as opposed to absorbing returns into exogenous arrivals (Section 4.3.2).

Assume that

λ(t) = λ̄+ λ̄κ sin (2πt/f) = λ̄+ λ̄κ sin (ωt), t≥ 0, (6)

where λ̄ is the average arrival rate, κ is the relative amplitude, f is the period, ω = 2π
f

is the

frequency. (We are assuming here, without loss, that the phase of the arrival rate is 0.) Substituting

this arrival rate into (4) yields

R1(t) =
λ̄

1− p
E[S1] +E[S1]λ̄κ

∞∑
j=0

pjE
[
sin
(
ω
(
t−S1,e−S∗j1 −S

∗j
2

))]
. (7)

We now provide explicit solutions for R(·) in the case of exponential service times. (Deterministic

service times are also amenable to analysis; then the amplitude and phase behavior of R(·) is also

interesting, but less realistic and, therefore, is only hinted at in Internet Supplement, Section A.5.)

4.3.1. Exponential Service Times

Theorem 4. Assume that λ(·) is given in (6), and S1
d
= exp(µ) and S2

d
= exp(δ). Then (7) has

the following form:

R1(t) =
E[S1]λ̄

1− p
+ λ̄κ

√
(δ− iω)

(µ− iω)(δ− iω)− pµδ
· (δ+ iω)

(µ+ iω)(δ+ iω)− pµδ
cos (ωt+π+ tan−1(θ)), (8)

where θ= µ(δ2−pδ2+ω2)

ω(δ2+ω2+pµδ)
.
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Figure 2 The relative amplitude and phase of R1(·) and λ+
1 (·) as a function of ω.
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Proof: The results follow from applying the characteristic function of the Exponential and Erlang

distributions to (7). See Internet Supplement, Section A.2.

Therefore, the amplitude of R1(·) is

Amp(R1) = λ̄κ

√
(δ− iω)

(µ− iω)(δ− iω)− pµδ
· (δ+ iω)

(µ+ iω)(δ+ iω)− pµδ
(9)

and its phase is

Phase(R1) =
1

2π
cot−1

(
µ(δ2− pδ2 +ω2)

ω(δ2 +ω2 + pµδ)

)
.

A similar calculation for λ+
1 (t) (λ+

i (·) is the aggregated-arrival-rate function to Node i) is provided

in Theorem 8 (Internet Supplement, Section A.2). Theorem 4 yields a simple relation between the

amplitudes of R(·) and λ+
1 (·): Amp(R1) = Amp(λ+

1 )
√
µ2 +ω2, which separates two influences on

the offered-load amplitude: Amp(λ+
1 ) is associated with returning customers and

√
µ2 +ω2 with

the last service before departure. The right diagram of Figure 2 shows an analogous but additive

relation between phases: the phase of R1(·) is the sum of the phase shift between λ+
1 (·) and λ(·) (due

to returning customers) with the phase shift between R1(·) and λ+
1 (·) (last service). As indicated,

phases determine timing of required staffing: a large phase corresponds to a long time-lag between

the peak of the arrival rate and the peak of staffing. We observe that the influence of the returning

customers decreases and vanishes as ω ↑∞ (both in amplitude and phase).

In the Internet Supplement, Section A.4, we elaborate on the amplitude of R1(·) and λ+
1 (·). We

analyze limiting cases. We show that both amplitudes are decreasing functions of ω, and that the

amplitude of R1(·) is an increasing function of δ.
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4.3.2. When is Erlang-R necessary? (Comparing to Erlang-C)

We now compare amplitudes and phases of the offered-loads for Erlang-R with those of the multi-

service Erlang-C model. The amplitude of the offered-load in Erlang-C, with arrival rates (6) and

service rate µc = (1− p)µ, is given by Amp(Rc) = λ̄κ√
µ2
c+ω2

, and its phase is θc = 1
2π
cot−1 (µc/ω)

(Eick et al. 1993a). The ratio between the amplitudes and phases are thus given by

AmpRatio=
Amp(R1)

Amp(Rc)
=
λ̄κ
√

(δ−iω)

(µ−iω)(δ−iω)−pµδ ·
(δ+iω)

(µ+iω)(δ+iω)−pµδ

λ̄κ√
((1−p)µ)2+ω2

, (10)

PhaseRatio=
Phase(R1)

Phase(Rc)
=
cot−1

(
µ(δ2−pδ2+ω2)

ω(δ2+ω2+pµδ)

)
cot−1

(
(1−p)µ
ω

) .

Theorem 5. Assume that the arrival rate is sinusoidal and service times are exponential. Com-

paring Erlang-R with parameters (λ,µ, p, δ) against the (multi-service) Erlang-C model with param-

eters (λ, (1− p)µ):

1. The amplitude of the offered-load in Erlang-R is always smaller than that of the multi-service

Erlang-C.

2. The amplitude ratio attains its minimal value when ω=
√
δµ(1− p).

3. Both amplitude and phase ratios approach 1 as ω ↑ ∞ or δ ↑ ∞. The amplitude ratio also

approaches 1 as ω ↓ 0.

Proof: All results follow from analyzing Equations (10); see Internet Supplement, Section A.3.

The first part of the theorem implies that returning customers have a stabilizing effect on the

system. This means that the difference between high and low staffing levels is smaller when cus-

tomers reenter service, which alleviates staffing scheduling decisions. An example of the difference

between the amplitudes is given in the left diagram of Figure 3. Having a smaller amplitude means

that for one part of the cycle, R1(·) is higher, and in the other part Rc(·) will be higher (as we show

later in Figure 5). The implication is that Erlang-C will both over- or under- staff. The impact of

this observation on the service level is further explored in Section 5; it shows that one must take

into account the repetitive nature of service, in order to avoid excessive staffing costs or undesirable

service levels.
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Figure 3 Ratio of amplitudes & phases between Erlang-R and Erlang-C as a function of ω (Case Study 1, §5.1).
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The second part of the theorem identifies the cases in which the difference between the amplitudes

is maximal. In particular, for periodic arrivals, this difference is most pronounced when the period

duration of the arrival process is a square-root order of the multiplication of Needy service time,

Content time, and the average number of services. In such cases, the arrival rate varies significantly

over the sojourn of a customer within the system.

The phase ratio, as a function of ω (see the right diagram of Figure 3), exceeds 1 up to ω =√
2δ2+p(1−p)δµ

p
, and from that point on it is smaller than 1. Therefore, for certain values of ω, the

Erlang-C offered-load leads that of Erlang-R and for other values it lags behind.

From the last part of the theorem and Figure 3, we gain an understanding of when the influence

of returning customers is not significant, and thus does not require the use of the Erlang-R model.

We observe that if ω ↑∞, or δ ↑∞, the difference between the offered-load of Erlang-R and Erlang-

C becomes negligible. An intuitive explanation for this finding is that when ω ↑∞, the arrival rate

changes so rapidly that its changes are assimilated in the variance of the arrival process. In this

case, the offered-load becomes constant; this is true for both Erlang-C and Erlang-R. As δ ↑ ∞,

customers immediately return to the Needy state; thus the system behaves as if the services were

concatenated into a single exponential ((1− p)µ) service. The limit ω ↓ 0 is interesting as well:

here the amplitude ratio does indeed converge to 1, but the phase ratio need not. (All the above

observations will be used, in Section 8, to analyze the significance of Erlang-R in the healthcare

examples of Section 1.1.)
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5. Validation of MOL Staffing

We now propose a staffing procedure for the time-varying Erlang-R model, which we validate

via several examples. We propose the use of the SRS with MOL approximation (e.g. Massey

and Whitt 1994). We shall compare it to two other approaches: time-varying Erlang-C and PSA

approximation. Importantly, MOL has been proven effective for staffing (time-varying) isolated

queues. It has not been previously tested for time-varying queues within queueing networks, which

is what we do here.

The MOL Algorithm for Erlang-R runs simply as follows:

1. Calculate the time-varying offered-load R(·), generally by (4) or approximately via (3) or (5).

2. Staff the Needy station according to the SRS formula: s(t) =R1(t) + β
√
R1(t), t≥ 0, where

β is chosen according to the steady-state Halfin-Whitt formula (2). (This follows from the Needy

part of Erlang-R having the same steady-state distribution of the multi-service Erlang-C.)

We use simulation to validate our approach. The first example (§5.1) serves as a proof-of-concept

and does not mirror the hospital environment: it is too large of a system. The second (§5.2) is a

small system with an arrival-rate shape that is taken from hospital data, and the third example

(§6) is an actual EW.

5.1. Case Study 1 - Large System

In this case study, we validate our assumption that the MOL algorithm stabilizes network perfor-

mance over time, showing along the way that Erlang-R must be used in time-varying environments.

We use a stylized sinusoidal arrival rate (6). This example has a relatively large λ̄ since we wish

to start our validation process with a system where the asymptotic approximations are expected

to work well. The parameters of this experiment are: λ̄= 30 customers per hour, p= 2/3, κ= 0.2,

f = 24 hours, µ= 1, δ= 0.5, and 0.1≤ β ≤ 1.5; 100 replications were generated for each β value.

We find that for a large enough system in the QED regime (β > 0.3), the MOL approach stabilizes

all performance measures of the Erlang-R queueing network. Consequently, any pre-specified QED

service level can be achieved stably over time. For example, Figure 4a shows the empirical P (Wt >
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Figure 4 Case study 1 - Simulation results of P (Wt >T ) for various β values and W |W > 0 in large systems.
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T ), the fraction of Needy arrivals at time t, who are delayed in queue more than T units of time.

This fraction was calculated over a 5-day period, for various values of β. We note that P (Wt >T )

is relatively stable for all β tested. Figure 4b shows the conditional distribution of the waiting time

given delay (W |W > 0), when β = 0.5. (It is calculated over all arrivals during the 5-day period.)

We compare it to the steady-state theoretical distribution, which is exponential with rate sµ(1−ρ)

(as stated in Theorem 1). The simulation results depict the distribution of waiting times from all

replications, over the entire time horizon. We observe a very good fit in the QED regime (here

β = 0.5). Other performance measures are also considered in Appendix B. The reason for success

appears to be that the time-varying SRS controls the system, at all times, in a state that is very

close to a naturally-corresponding steady-state system. This also explains why the constant β is

calculated using steady-state formulae, and it need not vary in time.

Remark: While the above performance measures, under MOL QED staffing, are close to being

constant over time, it is important to understand that the total number of customers in the system

does vary over time. Specifically, the number of customers turns out to be accurately described by

E[Q1(t)] =R1(t) +αR1(t)

s(t)

(
1− R1(t)

s(t)

)−1

; see Internet Supplement Section C, for more details.

Comparing Erlang-R, Erlang-C and PSA staffing: In applications, researchers have used

Erlang-C to model systems in which customers return multiple times for service. For example,

Green et al. (2001, 2007) used Lag-SIPP for staffing EW physicians. We now compare the outcome
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Figure 5 Case study 1 - Comparing Erlang-R, Erlang-C, and PSA.
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of using Erlang-R staffing against that of using Erlang-C staffing, the latter based on one of two

methods: MOL and PSA. The performance measure we focus on is the delay probability, setting

its target level to 0.5 (hence β = 0.5). Figure 5a shows that, while using Erlang-R stabilizes system

performance around the pre-specified target, using Erlang-C or PSA does not. PSA performs the

worst (resulting in the least stable system), because PSA staffing does not take into account

either the time-lag or the reentrant effects. We explain the performance differences by considering

the offered-load function R(·) (Figure 5b). We observe that for one half of the cycle, Erlang-

C over-estimates R(·), resulting in over-staffing which, in turn, results in a better performance

than the pre-specified target. However, in the other half cycle, the opposite occurs, causing the

performance to be worse than pre-specified. Erlang-R, in contrast, stabilizes performance over the

whole time horizon. (These observations also follow from our theoretical analysis in Section 4.3.2.)

The conclusion again is that one must take into account the repetitive nature of service.

5.2. Case Study 2 - Small System; Hospital Arrival Rates

In the second case study, we investigate the use of the MOL algorithm in small systems, specifically

in setting staffing levels for EW physicians. To this end, we consider the actual arrival rate function

of the Emergency Ward in Figure 6. The values for p,µ, and δ were inferred from that EW data.

There are obvious problems in applying our MOL approach to small systems: First, our approx-

imations are expected to be less accurate, being limits as systems grow indefinitely. (In our simu-

lation, the number of servers changes between one and eight.) Second, rounding up a “theoretical”
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Figure 6 Case study 2 - Plot of arrival rates in an emergency ward.
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Table 1 Small Systems: An example of a discrete range for P (W > 0), as a function of β.

target β range effective β s P (W > 0)
(0.474,1.055] 1.055 4 34.0%
(1.055,1.658] 1.658 5 11.4%
(1.658,2.261] 2.261 6 3.0%
1.658 and up ∞ 7 0%

We distinguish between target β and effective β; the latter is the β actually used, calculated by

(
β =

dse−R1√
R1

)
.

need of say 1.5 servers to 2 servers means adding 30% excess capacity to the required capacity,

which suggests difficulties in stabilizing performance around pre-specified values. Related to this is

the fact that the set of achievable performance measures is manifestly discrete for small systems:

changing the staffing level of a small system by a single server could discontinuously change its per-

formance. For example, if the offered-load is R= 2.75, the values that P (W > 0) can have are shown

in Table 1. Finally, one cannot have an EW operate with no physicians, and for small servers this

lower bound of 1 plays a binding role. It is therefore unclear whether, under these circumstances,

we shall still be able to stabilize system performance around a predetermined value. Nevertheless,

we found that it is possible to stabilize even such small systems, given specific (though not all, as

expected) target performance levels. The performance measures are relatively stable, and the four

possible scenarios are visibly separable. (Due to space limitations, we have not included supporting

graphs; furthermore, Figure 9a in Section 6 well demonstrates these phenomena in an even more

complex environment.)

There is another important impact of system size that we observed in this case study. When

verifying whether the relation between actual P (W > 0) and β fits the Halfin-Whitt formula, we

note a gap between the two (see the left diagram in Figure 7). The left plot in Figure 7 shows the
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Figure 7 Case study 2 - Comparison of the Halfin-Whitt and Janssen et al. formulae to simulation.
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relationship between these functions, when we consider the target β values used in the square-root

formula. In most cases, the empirical function is shifted downwards, and the gap between the two

is reduced as β grows. This is mainly due to the rounding procedure. The right plot of Figure 7

shows the same graph, but as a function of the effective β values. We observe that the two functions

have the same shape but the empirical function is shifted upwards. The gap between them appears

to be constant. As this seems to be the effect of using asymptotic approximations in such a small

system, we also applied the refined approximations of Janssen et al. (2011). This caused the gap

to narrow, but it is still noticeable.

The practical guideline that can be derived from these graphs is that, when targeting a specific

P (W > 0) value, one should use a smaller value of β, based on the left diagram of Figure 7. More

research is also needed to understand the Halfin-Whitt (and Janssen et al.) function for small

systems while also considering the rounding effect. As a first step, one can develop graphs such as

Figure 7, using a steady-state simulation of an Erlang-C model.

6. Using Erlang-R for Staffing EW Physicians: Fitting a Simple Model
to a Complex Reality

In this last case study, we test Erlang-R as a support tool for planning a real system. Specifically,

we demonstrate that it can be used to practically plan staffing of physicians in an EW, although the

real system is far more complicated than our model. In passing, we show that applying Erlang-C to

the real system is inferior to Erlang-R. The EW system was briefly described in our Introduction;
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Table 2 EW simulation parameters.

Physician Type Patient Type µ E[S1] [hour] δ E[S2] [hour] p
1 1,7 8.91 0.112 0.953 1.049 0.7743
2 2,5 8.86 0.113 0.969 1.031 0.6094
3 3,6 10.33 0.097 0.572 1.749 0.6441
4 4 12.37 0.081 1.310 0.763 0.7268

for a complete description see Marmor and Sinreich (2005). In our experiment, we use their accurate

and detailed EW simulation model (it takes into account even walking distances), which is flexible

in that it is easily adapted to a given EW. We fit the simulator to the EW of our partner Israeli

hospital (Armony et al. 2011), and then use the simulator as an accurate portrait of the complex

EW reality.

Clearly, many of our main assumptions do not hold in the EW environment. For example, service

times are not exponentially distributed, and could depend on the load in the EW, as follows from

Armony et al. (2011). Moreover, there are 7 types of patients that seek EW services, and each type

goes through a different routing process during their sojourn. The physicians are divided into four

groups, according to their expertise. There is an explicit connection between a patient type and

a physician group. We now simplify this complex system into an Erlang-R by setting parameter

values, for each physician type separately, as follows:

• Arrival rate: λ(·) is the average arrival rate for each hour of the day, for each physician group,

as shown in Figure 8.

• Needy times: E[S1] = 1
µ

is estimated by averaging all services given by a specific physician

group.

• Content times: E[S2] = 1
δ

is the average time between successive visits of a patient to the

physician.

• Probability of returning to the physician for an additional service: p is deduced from the

average number of visits of patients to their physician, which we take to be 1
1−p and solve for p.

Table 2 specifies the estimated parameters according to physician type. We calculated (simply

via a spreadsheet) the offered-load using the differential equations (3), and ran the staffing recom-

mendation with our EW simulation. We assumed that changes in staffing could be implemented
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Figure 8 EW case study - Patient Arrivals and Physician Staffing for Each Physician Type in EW simulation

(β = 0.5).
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in a one-hour resolution. For each interval, we calculated the average number of physicians needed

and rounded up to the nearest integer. We used one replication of one hundred weeks. (The first

setup week was excluded.)

Figure 8 shows the arrival rate and the recommended number of physicians during the day,

for each type of physician, with β = 0.5. The number of physicians varies between one and four.

We observe that the staffing function lags behind the arrival rate function, with an approximate

time-lag of two hours. Note that the number of physicians does not change every hour, and natural

shift schedules could be derived to fit this graph.

This EW system is small with merely a few “servers”. Our results are summarized in Figure

9a, which depicts the probability of waiting for four values of beta: 0.1, 0.5, 1.0, and 1.5; the four

cases are clearly separable and become more stable as β increases. Figure 9b shows a comparison

between the results of Erlang-R and Erlang-C for β = 1.5, which is the easiest case to stabilize

since the number of physicians is the largest. We clearly observe the significant difference between

the results of the two staffing procedures, where Erlang-R yields a much more stable performance.

Table 3 completes the picture by presenting the Residual Mean Square Error (RMSE) and Average

Percentage Error (APE) for each β category and patient-physician combination. A smaller value

of these measures indicates a more stable performance. We see that Erlang-R is superior across all

β values and all physician types, but that the variability (when β = 0.5) is higher at the patient
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Figure 9 EW case study - P (Wt > 0) for various β values.
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level than the aggregated one. This is mainly due to the fact that some of the patient types have

very small demand and therefore hit the staffing constraints more often than others. As β grows

this difference diminishes. (Supporting figures are omitted for lack of space.) We also observe that

Erlang-R improves stability by 20%–350% (depending on β and patient-type), which could be very

significant.

Table 3 Stability comparison between Erlang-R and Erlang-C staffing in EW.

(a) P (Wt > 0) by β

Model β RMSE APE
Erlang-R 0.1 0.091 0.348

0.5 0.058 0.338
1 0.061 0.410

1.5 0.031 0.404
Erlang-C 0.1 0.113 0.397

0.5 0.131 0.499
1 0.118 0.588

1.5 0.111 0.688

(b) P (Wt > 0) by physician type (β = 0.5)

Model Physician Type RMSE APE
Erlang-R 1 0.105 0.217

2 0.142 0.459
3 0.109 0.259
4 0.115 0.289

Erlang-C 1 0.185 0.384
2 0.139 0.480
3 0.133 0.324
4 0.162 0.436

Note: RMSE =

√∑n
t=1(αs(t)−αe)2

n
,APE = 1

n

∑n
t=1

∣∣∣αs(t)−αe
αe

∣∣∣, where αs(t) is the simu-

lated probability of waiting at time interval t while αe is the stable theoretical value the

system was designed to achieve. (Here the time interval is 1-hour, measured over a week,
namely n=167.)

To conclude, despite the simplicity of the Erlang-R model, it does manage to capture the impor-

tant aspects of patient visits in the EW, and hospital management can use it to calculate recom-

mended staffing for physicians. The same outcome can be expected for nurse staffing. In fact, one
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would expect better results for nurse staffing since it gives rise to a higher number of servers, hence

the MOL is likely to be more accurate.

7. Fluid and Diffusion Models of the Number of Needy Customers,
with Application to Mass-Casualty Events

In this section, we develop Fluid and Diffusion limits for Erlang-R. We then use the resulting

models/approximations to analyze an MCE, in which service demand fluctuates significantly and

exceeds capacity, over a relatively short time period. Note that while fluid models are naturally use-

ful for analyzing time-varying systems, they are also useful towards understanding the finite-horizon

evolution of systems in steady-state. For example, one might seek to evaluate the probability that

the number of customers (patients) in the system exceeds a certain threshold during a specific time

horizon. This could support the design of alarm protocols such as when to commence special pro-

cedures: ambulance diversion or summoning additional medical staff. In designing such protocols,

for example towards avoiding excessive alarms, one would in fact require our diffusion refinements

that determine confidence intervals around fluid sample paths; see Mandelbaum et al. (1999).

It was already noted that Erlang-R, both stationary and time-varying, fits the mathematical

framework of Markovian Service Networks in Mandelbaum et al. (1998). This framework justi-

fies the existence and uniqueness of model-solutions that accommodate time-varying arrivals and

time-varying staffing policies. Specifically, Erlang-R is represented by Q = {Q(t), t ≥ 0}, Q(t) =

(Q1(t),Q2(t)): Q1(t) is the number of Needy patients in the system at time t (i.e., those either

waiting for service or being served), and Q2(t) is the number of Content patients in the system.

The process Q is characterized by the following sample-path equations, for t≥ 0:

Q1(t) =Q1(0) +Aa1

(∫ t

0

λudu

)
−Ad2

(∫ t

0

pµ (Q1(u)∧ su)du

)
−A12

(∫ t

0

(1− p)µ (Q1(u)∧ su)du

)
+A21

(∫ t

0

δQ2(u)du

)
,

Q2(t) =Q2(0) +A12

(∫ t

0

pµ (Q1(u)∧ su)du

)
−A21

(∫ t

0

δQ2(u)du

)
,

where Aa1,A
d
2,A12 and A21 are 4 mutually independent time-homogenous Poisson processes with

rate 1. We now introduce a family of scaled queueing models, indexed by η↗∞, such that both
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the arrival rate and the number of physicians are scaled up by η while the Needy and Content

service rates remain unscaled:

Qη
1(t) =Qη

1(0) +Aa1

(∫ t

0

ηλudu

)
−Ad2

(∫ t

0

ηpµ

(
1

η
Qη

1(u)∧ su
)
du

)
−A12

(∫ t

0

η(1− p)µ
(

1

η
Qη

1(u)∧ su
)
du

)
+A21

(∫ t

0

ηδ

(
1

η
Qη

2(u)

)
du

)
,

Qη
2(t) =Qη

2(0) +A12

(∫ t

0

ηpµ

(
1

η
Qη

1(u)∧ su
)
du

)
−A21

(∫ t

0

ηδ

(
1

η
Qη

2(u)

)
du

)
.

(11)

Theorem 6. (FSLLN) Through the scaling (11), we have

lim
η→∞

Qη(t)

η
=Q(0)(t), t≥ 0,

where Q(0)(·), the fluid approximation/model, is the solution of the following ODE:

Q
(0)
1 (t) =Q

(0)
1 (0) +

∫ t

0

(
λu−µ

(
Q

(0)
1 (u)∧ su

)
+ δQ

(0)
2 (u)

)
du,

Q
(0)
2 (t) =Q

(0)
2 (0) +

∫ t

0

(
pµ
(
Q

(0)
1 (u)∧ su

)
− δQ(0)

2 (u)
)
du.

(12)

The convergence to Q(0)(·) is a.s. uniformly on compacts (u.o.c).

The theorem follows from Theorem 2.2 in Mandelbaum et al. (1998). We continue by developing

diffusion approximations for Erlang-R. These are used for calculating variances and covariances

which, in turn, yield confidence intervals for the number of patients in the system.

Theorem 7. (FCLT) Through the scaling (11) and with the fluid limits (12), we have

lim
η→∞

√
η

[
Qη(t)

η
−Q(0)(t)

]
d
=Q(1)(t), t≥ 0, (13)

where Q(1)(·), the diffusion model/approximation, is the solution of an SDE (Stochastic Differential

Equation), as given by (26) in the Internet Supplement, Section A.6. The convergence to Q(1)(·)

is the standard Skorohod J1 convergence in D[0,∞).

The theorem is a consequence of Theorem 2.3 in Mandelbaum et al. (1998). Our fluid and diffusion

models are easiest to apply when durations of critical-loading are negligible (the zero-measure

assumption in Mandelbaum et al. (2002)). They are thus natural as models for MCEs, during

which overloading constantly prevails. Formally:
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Proposition 2. Define S to be the set of times when the fluid “number” of physicians equals

the “number” of patients in the Needy state: S = {t > 0|Q(0)
1 (t) = st}. Assume that this set of times

S has measure zero. Then (26) simplifies to

Q
(1)
1 (t) =Q

(1)
1 (0) +

∫ t

0

(
−µ1{

Q
(0)
1 (u)≤su

}Q(1)
1 (u) + δQ

(1)
2 (u)

)
du+Ba

1

(∫ t

0

λudu

)
−Bd

2

(∫ t

0

pµ
(
Q

(0)
1 (u)∧ su

)
du

)
−B12

(∫ t

0

(1− p)µ
(
Q

(0)
1 (u)∧ su

)
du

)
+B21

(∫ t

0

δQ
(0)
2 (u)du

)
,

Q
(1)
2 (t) =Q

(1)
2 (0) +

∫ t

0

(
pµ1{

Q
(0)
1 (u)≤su

}Q(1)
1 (u)− δQ(1)

2 (u)

)
du

+B12

(∫ t

0

pµ
(
Q

(0)
1 (u)∧ su

)
du

)
−B21

(∫ t

0

δQ
(0)
2 (u)du

)
.

(14)

The mean vector for the diffusion approximation (27) is then:

d

dt
E
[
Q

(1)
1 (t)

]
=−µ1{

Q
(0)
1 (t)≤st

}E
[
Q

(1)
1 (t)

]
+ δE

[
Q

(1)
2 (t)

]
,

d

dt
E
[
Q

(1)
2 (t)

]
= pµ1{

Q
(0)
1 (t)≤st

}E
[
Q

(1)
1 (t)

]
− δE

[
Q

(1)
2 (t)

]
;

and the covariance matrix (28) is

d

dt
Var

[
Q

(1)
1 (t)

]
=−2µ1{

Q
(0)
1 (t)≤st

}Var
[
Q

(1)
1 (t)

]
+ 2δCov

[
Q

(1)
1 (t),Q

(1)
2 (t)

]
+λt + δQ

(0)
2 (t)

+µ
(
Q

(0)
1 (t)∧ st

)
,

d

dt
Var

[
Q

(1)
2 (t)

]
=−2δVar

[
Q

(1)
2 (t)

]
+ 2pµCov

[
Q

(1)
1 (t),Q

(1)
2 (t)

]
+ pµ

(
Q

(0)
1 (t)∧ st

)
+ δQ

(0)
2 (t),

d

dt
Cov

[
Q

(1)
1 (t),Q

(1)
2 (t)

]
=−

(
µ1{

Q
(0)
1 (t)≤st

} + δ

)
Cov

[
Q

(1)
1 (t),Q

(1)
2 (t)

]
+ δVar

[
Q

(1)
2 (t)

]
+ pµ1{

Q
(0)
1 (t)≤st

}Var
[
Q

(1)
1 (t)

]
− pµ

(
Q

(0)
1 (t)∧ st

)
− δQ(0)

2 (t).

(15)

Proposition 2 supports MCE modeling and management, which we turn to next.

7.1. Mass-Casualty Events

When an MCE is in progress, the EW must, over a short time period, attend to already admitted

patients, release those who can be released and, most importantly, provide emergency care to new

arrivals at over-capacity rates. We now demonstrate that our transient fluid and diffusion models,

from the previous subsection, usefully capture the state of an EW during an MCE. This enables
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Figure 10 Chemical MCE Drill: Arrivals, Departures, and Erlang-R Approximations.

(a) Arrival and Departures in MCE Drill
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one to use Erlang-R for off-line Planning of an MCE, Initial-Reaction at its outset (customized to

the MCE type, severity and scale), and subsequently online MCE Control until the event winds

up. We focus as before on staffing. To this end, we use data from a Chemical MCE drill. The MCE

took place in July 2010 at 11:00 a.m. and lasted till 13:15; its casualties were transported to an

Israeli hospital where our data were collected. The short horizon of MCEs (here 2 hours) and the

protocol of chemical events (periodic treatment of patients) renders the transient Erlang-R, with

its recurrent service structure, naturally appropriate.

Our data is for the severely wounded non-trauma patients. Figure 10a depicts cumulative arrival

and departure counts, collected roughly during 11:15–13:15. The arrival rate is clearly time-varying:

periods with no arrivals alternate with approximately constant arrival rates, with the rates decreas-

ing as time progresses. (Our hospital partners, experienced in managing MCEs, inform us that

this piecewise-constant pattern of arrival rate is typical of MCEs: it is attributed to the fact that

casualties are transported from the MCE scene by a finite number of ambulances, who traverse

back and forth.) The estimated arrival rate function (customers per minute) is as follows (1[a,b) is

an indicator function):

λt = 0.773× 1[0,22)(t) + 0.884× 1[44,69)(t) + 0.5× 1[102,117)(t), 0≤ t≤ 120. (16)
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Erlang-R parameters were estimated from medical specifications and the physics of Erlang-R, as

we now explain. The severity level of the patients under consideration calls for medication every 30

minutes, in addition to treating their injuries. Staffing specs assigned every physician to 4 patients

at a time. (In reality, and being a drill, there were ample physicians on site, which implies, no upper

bound on the number of physicians (s=∞). Such resource levels are unlikely to prevail in true-

to-life MCEs, but they facilitate the estimation of parameter values - which are practice-relevant.)

One can now estimate µ,p, δ via the following 3 equations:

1/µ+ 1/δ= 30; 1/µ+ 30p/(1− p) = 62.4; µ/δ= 3/p. (17)

The first equation corresponds to the 30-minute cycle. The second represents LOS as the first

service followed by a geometric number of cycles; the average LOS of 64.2 minutes is then the

classical Kaplan-Meier estimator (Kaplan and Meier 1958) for censored data: indeed, patients that

were still in treatment when the drill ended (about 20 out of 50) provided only lower bounds

on their LOS. The last equation arises from the patients-to-physician ratio (R1 +R2)/4 =R1, in

which R1,R2 are the steady-state offered-loads from Section 3. Solving the equations in (17) yields

average treatment time of 5.4 minutes (µ= 11.06), average content time 24.6 minutes (δ = 2.44)

and p= 0.662.

We now compare, in Figure 10b, Erlang-R estimators against MCE data. First we have fluid-

based estimators for Q=Q1 +Q2, the total number of casualties, enveloped by a diffusion-based

95% confidence band. This is to be compared against the actual sample-path, observed from our

MCE data (the difference between cumulative arrivals and departures). Erlang-R clearly captures

well the transient nature of the MCE: the data is essentially within its confidence band. Notably, a

comparison (omitted for space constraints) of Erlang-R with Erlang-C demonstrated that the latter

yields noticeably inferior path-estimators: an increase of about 45% in RMSE and APE measures,

for the reasons that were explained in Section 4.3.2.

After validating Erlang-R against the observed Q, one can now trust it to infer the number of

busy physicians - see the dashed function Q1 in Figure 10b. Its evolution was unobservable at the
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MCE drill, which is a state of affairs that is to be commonly expected. Yet Q1 is essential for

planning and control of MCEs, as discussed next.

7.1.1. Erlang-R in Support of MCE Staffing

Since Erlang-R reliably captures MCE dynamics, one can use it to support planning for an MCE,

initial-reaction to its severity and scale and, ultimately, controlling MCE evolution. For concrete-

ness we consider staffing upon initial-reaction. The procedure would be similar in planning, when

applying Erlang-R for comparative analysis of plausible scenarios; and control, where parameter

values are updated adaptively and then fed into Erlang-R over a rolling horizon. All these appli-

cations entail the following steps:

1. Forecasting the arrival rate function λt (e.g. (16)), for each severity group of patients. Any

forecasting model should take into account the estimated number of casualties routed to the hos-

pital, number of ambulances available, and distance from the hospital (Jacobson et al. 2012).

2. Estimating the offered-load R(·), for each severity group, taking into account group-specific

treatment protocols as demonstrated above.

3. Calculating the staffing function s(·), via s(t) =
[
R(t) +β

√
R(t)

]
, t ≥ 0. We recommend a

relatively high β, say β ≥ 2, to account for the emergency situation at hand. One should then

accommodate constraints such as the available number of physicians within the hospital and the

availability and time-to-arrive of out-of-hospital physicians.

4. Predicting EW evolution via Erlang-R, under the planned SRS.

Given our RFID-based data in Figure 10, we now demonstrate the above steps by planning for

staffing an MCE. Being able to infer Q1 (Figure 10) yields insights that exploit its special structure

of 3 phases: a first surge of arrivals (11:00–12:00), peak period (12:00–13:00), and a closure phase

from 13:00 till completion; each phase starts with an increase of load, that is immediately followed

by a decrease due to ambulances returning to the MCE scene. As will be demonstrated, this allows

one to initially divert physicians within the hospital to cater to the first surge while, in parallel,

summon off-duty staff who would join (say from home) towards the second peak surge. Staffing

remains constant within a phase, which gives rise to the following plan:
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1. Initial reaction: Recall that the MCE occurred at 11:00. The first casualties arrived to the

hospital at 11:15, thus starting a surge of demand (offered-load) that peaks at 11:40: Q1 = 5. By

SRS, this calls for 5 + 2
√

5≈ 9 physicians, which are to arrive, conceivably from the hospital itself,

until 11:15.

2. Peak period: From 12:07, demand for physicians increases to a peak Q1 = 7.5 at 12:25. One

needs now 7.5 + 2
√

7.5≈ 13 physicians, or an additional group of 4 physicians that can join within

1 hour from MCE start.

3. Closure: This last phase starts around 13:00, and arrivals cease at 13:15. A real MCE would

continue at the hospital till all casualties are hospitalized, while gradually releasing physicians

to their routine or reassigning them to help with already-hospitalized casualties. Similarly to the

above (not pursued here), one can again use Erlang-R to plan for the release of physicians which,

interestingly, involves also the prediction of the MCE completion time.

As mentioned, Chemical MCEs naturally fit the recurrent service structure of Erlang-R. Other

types of MCEs might need other models. For example, with relatively more trauma patients and

during off-peak arrivals, physicians who perform initial life-saving procedures could also accompany

their patients through surgery. A corresponding model would then consist of 2 queues in tandem,

as analyzed by Zychlinski et al. (2012).

8. Conclusions and Further Research

Motivated by staffing applications in healthcare, we have developed a simple-yet-not-too-simple

service model, Erlang-R, which accommodates returning customers in a time-varying environment.

The model valuably captures both normal operating conditions and MCEs. In the former, it gives

rise to an explicit staffing recipe that matches service capacity with time-varying demand (the QED

operational regime), which in turn stabilizes operational performance (service level, utilization). In

MCEs, the model can support planning for, initial-reaction to and control of such events.

We started, in the Introduction, with four examples of returning customers/patients in Health-

care systems. We can now conclude, based on the analysis in Sections 3, 4.3.2 and 7.1 and some
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additional hospital data, that Erlang-R better be used for modeling EWs (both in normal and MCE

conditions) while, for Oncology and Radiology wards, Erlang-C suffices. To elaborate, for the EW

under its normal conditions, the parameters ω= 0.2618 (as f = 24, in hours) and
√
µδ(1− p)≈ 3.4

are such that the EW fits the left part of Figure 3 (in both plots). The amplitude ratio is within

(0.93,0.97) and the phase ratio is within (1.7,3), depending on patient type (see Table 2); hence, the

significant difference is between phases rather than amplitudes, which means that using Erlang-C

will be mostly wrong in timing—starting (and ending) shifts too soon. In the Oncology ward, the

corresponding values are ω= 6.283 (f = 1, in days) and
√
µδ(1− p) = 0.0495. This puts Oncology

on the right side of Figure 3, where we expect little if any difference between the two models.

Indeed, the amplitude and phase ratios are 0.9987 and 0.9756 respectively, namely very close to

unity. Next, Radiology operates in a steady-state environment, since the arrival rate is constant,

and thus need not use Erlang-R. Finally, our last example, EW under MCE stress, must be modeled

as Erlang-R since, in transient times (over a short time-horizon), the difference between Erlang-R

and Erlang-C is significant.

It is important to emphasize that, even in the case when Erlang-C suffices to capture overall

performance, Erlang-R would be still preferable over a finite-horizon, or for focusing on the perfor-

mance of needy (content) patients. Erlang-R is also capable of capturing usefully, as in Section 6,

the operational performance of a full-scale EW, from the point of view of its physicians: the model

plainly aggregates the “world beyond physicians” into a single ample-server station. One could

do the same with EW nurses. One could also raise the more general question of approximating a

general queuing network, from the point of a specific node, by an Erlang-R model (the specific node

would be “needy” while the rest of the network is “content”) - when do such crude approximations

work and, alternatively, when are their refinements necessary.

The healthcare environment suggests further extensions for Erlang-R. To name a few, Yom-Tov

(2010) adds an upper-bound on the overall number of customers in the system, which corresponds

to finite bed capacity; Chan et al. (2012) consider state-dependent service times; Huang et al.
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(2012) trade-off high priority to patients on their first visit vs., alternatively, to those who have

been in the system for a long time; and, finally, customer abandonment can take place during a

first waiting (Left Without Being Seen) or between services (Left Against Medical Advice). We

conclude with an outstanding open theoretical problem, which is the analysis of the limiting time-

varying diffusion process under SRS. This is a prerequisite for understanding the success of our

time-varying MOL staffing.
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Appendix. Internet Supplement

A. Proofs of Theorems

A.1. The Offered-Load Measure

Proof of Theorem 2 in Section 4.1. Let Q∞ = {Q∞(t), t ≥ 0} be a 2-dimensional stochastic process,

where Q∞(t) = (Q∞1 (t),Q∞2 (t)): Q∞1 (t) represents the number of Needy patients in the system at time t, and

Q∞2 (t) the number of Content patients, assuming we have an infinite number of servers in Node 1 (as well

as Node 2).

The process Q∞(t) is characterized by the following equations:

Q∞1 (t) =Q∞1 (0) +Aa1

(∫ t

0

λudu

)
−Ad2

(∫ t

0

pµQ∞1 (u)du

)
−A12

(∫ t

0

(1− p)µQ∞1 (u)du

)
+A21

(∫ t

0

δQ2(u)du

)
Q∞2 (t) =Q∞2 (0) +A12

(∫ t

0

pµQ∞1 (u)du

)
−A21

(∫ t

0

δQ∞2 (u)du

)
,

where Aa1,A
d
2,A12 and A21 are four mutually independent, standard (mean rate 1), Poisson processes. We now

introduce a family of scaled queues Qη,∞(t), indexed by η > 0, so that the arrival rate grows to infinity, i.e.

scaled up by η, but leaves the Needy and Content rates unscaled. By Theorem 2.2 (FSLLN) in Mandelbaum

et al. (1998),

lim
η→∞

Qη,∞(t)

η
=Q(0)(t) u.o.c. a.s.,

where Q(0)(·) is called the fluid approximation, which is the solution to the following ODE:

Q
(0),∞
1 (t) =Q

(0),∞
1 (0) +

∫ t

0

(
λu−µQ(0),∞

1 (u) + δQ
(0),∞
2 (u)

)
du

Q
(0),∞
2 (t) =Q

(0),∞
2 (0) +

∫ t

0

(
pµQ

(0),∞
1 (u)− δQ(0),∞

2 (u)
)
du.

Note that R(·) =Q(0),∞(·) by definition.

Proof of Theorem 3 in Section 4.2. Following Massey and Whitt (1993), λ+
i (·), which is the aggregated-

arrival-rate function to Node i, is given by the minimal non-negative solution to the traffic equations

λ+
1 (t) = λ(t) +E[λ+

2 (t−S2)], λ+
2 (t) = pE[λ+

1 (t−S1)], (18)

for t≥ 0. Then

Ri(t)≡E[Q∞i (t)] =E

[∫ t

t−Si

λ+
i (u)du

]
=E[λ+

i (t−Si,e)]E[Si], (19)
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where Si,e is a random variable representing the excess service time at Node i. Equations (18) constitute a

variation of Fredholm’s integral equation, which one can solve recursively (using the fact that S1 and S2 are

independent) as follows:

λ+
1 (t) = λ(t) + pE[E[λ+

1 (t−S2−S1)]] = · · ·=
∞∑
j=0

pjE[λ(t−S∗j1 −S
∗j
2 )],

λ+
2 (t) = pE[λ(t−S1) +E[λ+

2 (t−S1−S2)]] = · · ·=
∞∑
j=1

pjE[λ(t−S∗j1 −S
∗j−1
2 )].

Substituting λ+(t) into R(t) yields

R1(t) =E[λ+
1 (t−S1,e)]E[S1] =E

[
∞∑
j=0

pjλ(t−S∗j1 −S
∗j
2 −S1,e)

]
E[S1],

R2(t) =E[λ+
2 (t−S2,e)]E[S2] =E

[
∞∑
j=1

pjλ(t−S∗j1 −S
∗j−1
2 −S2,e)

]
E[S2].

(20)

Since J
d
=Geom≥0(1− p), P (J = j) = (1− p)pj , which yields the final form of (4).

Proof of Proposition 1 in Section 4.2. Consider the following second-order Taylor-series approximation

for the arrival-rate function λ(·): λ(t−u)≈ λ(t)−λ(1)(t)u+λ(2)(t)u
2

2
, u≥ 0, where λ(k)(t) is the kth derivative

of λ(·) evaluated at time t. Then, from (4) we get an approximation for R1(t):

R1(t) =
E[S1]

1− p
E
[
λ(t−S1,e−S∗J1 −S∗J2 )

]
≈ E[S1]

1− p
E

[
λ(t)−λ(1)(t)

(
S1,e +S∗J1 +S∗J2

)
+

1

2
λ(2)(t)

(
S1,e +S∗J1 +S∗J2

)2]
=
E[S1]

1− p

[
λ
(
t−E

[
S1,e +S∗J1 +S∗J2

])
+

1

2
λ(2)(t)V AR[S1,e +S∗J1 +S∗J2 ]

]
,

where, by Wald’s equation, E [S1,e +S∗J1 +S∗J2 ] = E [S1,e] +E[J ]E [S1 +S2], and V AR [S1,e +S∗J1 +S∗J2 ] =

V AR[S1,e] +E[J ]V AR[S1 +S2] +V AR[J ]E[S1 +S2], in which E[J ] = p

1−p and V AR[J ] = p

1−p2 .

A.2. The Offered-Load for Sinusoidal Arrival Rate

Proof of Theorem 4 in Section 4.3.1. Since Si is exponentially distributed, Si,e
d
= Si. Defining X ≡ S∗j11

d
=

Erlang(µ, j1), and Y ≡ S∗j22
d
=Erlang(δ, j2):

E[eiωX ] =

∫ ∞
0

eiωx
µj1xj1−1e−µx

(j1− 1)!
dx=

(
µ

µ− iω

)j1
:= (ϕS1

(ω))
j1 ,

E[eiωY ] =

(
δ

δ− iω

)j2
:= (ϕS2

(ω))
j2 ;

(21)

E[cos (ω(S∗j11 +S∗j22 ))] =E[cos (ω(X +Y ))] =
1

2
E
[
eiω(X+Y ) + e−iω(X+Y )

]
=

1

2
E
[
eiωXeiωY + e−iωXe−iωY

]
=

1

2

[
(ϕS1

(ω))
j1 (ϕS2

(ω))
j2 + (ϕS1

(−ω))
j1 (ϕS2

(−ω))
j2
]
,

(22)
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and similarly for

E[sin (ω(S∗j11 +S∗j22 ))] =
1

2i
E
[
eiω(X+Y )− e−iω(X+Y )

]
=

1

2i

[
(ϕS1

(ω))
j1 (ϕS2

(ω))
j2 − (ϕS1

(−ω))
j1 (ϕS2

(−ω))
j2
]
.

(23)

Incorporating (22) and (23) into (7) and using sin(x− y) = sinx cosy− siny cosx, we get:

R1(t) =
E[S1]λ̄

1− p
+E[S1]λ̄κ

∞∑
j=0

pjE
[
sin (ωt) cos (ω(S∗j+1

1 +S∗j2 ))− sin (ω(S∗j+1
1 +S∗j2 )) cos (ωt)

]
=
E[S1]λ̄

1− p
+E[S1]λ̄κ

[
sin (ωt)

∞∑
j=0

pj
1

2

[
(ϕS1

(ω))
j+1

(ϕS2
(ω))

j
+ (ϕS1

(−ω))
j+1

(ϕS2
(−ω))

j
]

− cos (ωt)

∞∑
j=0

pj
1

2i

[
(ϕS1

(ω))
j+1

(ϕS2
(ω))

j − (ϕS1
(−ω))

j+1
(ϕS2

(−ω))
j
]]

=

=
E[S1]λ̄

1− p
+E[S1]λ̄κ

1

2

[
sin (ωt)

[
ϕS1

(ω)

∞∑
j=0

(pϕS1
(ω)ϕS2

(ω))
j

+ϕS1
(−ω)

∞∑
j=0

(pϕS1
(−ω)ϕS2

(−ω))
j

]

− cos (ωt)
1

i

[
ϕS1

(ω)

∞∑
j=0

(pϕS1
(ω)ϕS2

(ω))
j −ϕS1

(−ω)

∞∑
j=0

(pϕS1
(−ω)ϕS2

(−ω))
j

]]
=

=
E[S1]λ̄

1− p
+

1

2
λ̄κ sin (ωt)

[
(δ− iω)

(µ− iω)(δ− iω)− pµδ
+

(δ+ iω)

(µ+ iω)(δ+ iω)− pµδ

]
− 1

2i
λ̄κ cos (ωt)

[
(δ− iω)

(µ− iω)(δ− iω)− pµδ
− (δ+ iω)

(µ+ iω)(δ+ iω)− pµδ

]
=
E[S1]λ̄

1− p
+ λ̄κ

√
(δ− iω)

(µ− iω)(δ− iω)− pµδ
· (δ+ iω)

(µ+ iω)(δ+ iω)− pµδ
cos (ωt+π+ tan−1(θ)),

where

θ= i ·
(δ−iω)

(µ−iω)(δ−iω)−pµδ + (δ+iω)

(µ+iω)(δ+iω)−pµδ
(δ−iω)

(µ−iω)(δ−iω)−pµδ −
(δ+iω)

(µ+iω)(δ+iω)−pµδ

=
−µ(−δ2 + pδ2−ω2)

ω(δ2 +ω2 + pµδ)
.

Similar calculations for λ+
1 (t) yield the following theorem:

Theorem 8. Assuming that Si are exponentially distributed, λ+
1 (·) has the following form:

λ+
1 (t) =

λ̄

1− p
+ λ̄κ

√
(µ− iω)(δ− iω)

(µ− iω)(δ− iω)− pµδ
· (µ+ iω)(δ+ iω)

(µ+ iω)(δ+ iω)− pµδ
cos (ωt+π+ tan−1(θ)), (24)

where

θ= i ·
(µ−iω)(δ−iω)

(µ−iω)(δ−iω)−pµδ + (µ+iω)(δ+iω)

(µ+iω)(δ+iω)−pµδ
(µ−iω)(δ−iω)

(µ−iω)(δ−iω)−pµδ −
(µ+iω)(δ+iω)

(µ+iω)(δ+iω)−pµδ

=
ω2δ2 +ω4 +ω2pµδ+µ2δ2−µ2pδ2 +µ2ω2

µωpδ(µ+ δ)
.

Therefore, the amplitude of λ+
1 (·) is given by

Amp(λ+
1 ) = λ̄κ

√
(µ− iω)(δ− iω)

(µ− iω)(δ− iω)− pµδ
· (µ+ iω)(δ+ iω)

(µ+ iω)(δ+ iω)− pµδ
(25)

and the phase of λ+
1 (·) is given by

Phase(λ+
1 ) =

1

2π
cot−1

(
ω2δ2 +ω4 +ω2pµδ+µ2δ2−µ2pδ2 +µ2ω2

µωpδ(µ+ δ)

)
.
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A.3. Comparing to Erlang-C

Proof of Theorem 5 in Section 4.3.2. We must prove that AmpRatio≤ 1, which is given by:

AmpRatio=

√
δ2 +ω2

((µ− iω)(δ− iω)− pµδ)((µ+ iω)(δ+ iω)− pµδ)
/

1√
((1− p)µ)2 +ω2

.

Thus, we shall prove that:

(δ2 +ω2)((1− p)2µ2 +ω2)

[(µ− iω)(δ− iω)− pµδ][(µ+ iω)(δ+ iω)− pµδ]
?
< 1

δ2(1− p)2µ2 +ω2(1− p)2µ2 + δ2ω2 +ω4

(µ− iω)(δ− iω)(µ+ iω)(δ+ iω)− pµδ[(µ+ iω)(δ+ iω) + (µ− iω)(δ− iω)] + p2µ2δ2

?
< 1

δ2(1− p)2µ2 +ω2(1− p)2µ2 + δ2ω2 +ω4

(µ2 +ω2)(δ2 +ω2)− pµδ(2µδ− 2ω2) + p2µ2δ2

?
< 1

δ2(1− p)2µ2 +ω2(1− p)2µ2 + δ2ω2 +ω4
?
<µ2δ2 +ω2δ2 +µ2ω2 +ω4 + 2pµδ(ω2−µδ) + p2µ2δ2

δ2(1− p)2µ2 +ω2(1− p)2µ2
?
<µ2ω2 +µ2δ2(1− p)2 + 2pµδω2

ω2(1− p)2µ2
?
<µ2ω2 + 2pµδω2,

which is true for every µ, δ,ω, and 0< p≤ 1.

In the second part of the theorem, one must prove that AmpRatio reaches its minimum at ω=
√
δµ(1− p).

The derivative of AmpRatio with respect to ω is:

∂AmpRatio

∂ω
=

2pωµ(2δ+ (2− p)µ)(ω2 + (1− p)µδ)(ω2− (1− p)µδ)
(ω4 + (p− 1)2δ2µ2 +ω2(δ2 + 2pδµ+µ2))2

.

This derivative vanishes when ω = 0 or ω =
√
δµ(1− p). For ω = 0, the AmpRatio reaches its maximum

which is 1, and at ω=
√
δµ(1− p) it reaches its minimal value.

The third part of the theorem is a direct result of the limits of R1(t) as presented in Proposition 3 below.

A.4. Analysis of Limits of R(·) with Sinusoidal Arrivals and Exponential Services

We now further investigate the relative amplitudes of the offered-load R1(·) and the aggregate arrival rate

λ+
1 (·), when all service times are exponential. We state the following proposition that highlights some of the

limits of R1(·) and λ+
1 (·) with respect to ω and δ:

Proposition 3. In the case of sinusoidal arrival rates and exponential service times, with µ and δ being

fixed:

lim
ω↓0

Amp(R1(·)) =
λ̄

µ(1− p)
κ, lim

ω↑∞
Amp(R1(·)) = 0,

lim
ω↓0

Amp(λ+
1 (·)) =

λ̄

1− p
κ, lim

ω↑∞
Amp(λ+

1 (·)) = λ̄κ;
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Figure 11 Plot of Relative Amplitude.

(a) R1(t) and λ+
1 (t) with respect to ω (b) R1(t) with respect to δ and ω

if µ and ω are fixed:

lim
δ↓0

R1(t) =
E[S1]λ̄

1− p
+

λ̄κ

µ2 +ω2
(µ sin (ωt)−ω cos (ωt)) ,

lim
δ↑∞

R1(t) =
E[S1]λ̄

1− p
+

λ̄κ

(1− p)2µ2 +ω2
((1− p)µ sin (ωt)−ω cos (ωt)) .

Proof: The limits are obtained by straightforward calculations, based on (8), (9), and (25).

We would like to understand the changes in R1(·) and λ+
1 (·) with respect to the external arrival rate λ(·).

We call the ratio between the amplitudes relative amplitude. Figure 11a shows the relative amplitude of

R1(·) and λ+
1 (·), as a function of ω (µ and δ are fixed). We observe that the relative amplitude of R1(·)

is a decreasing function of ω, starting from the value 1
µ(1−p) , and decreasing to 0 as ω→∞. On the other

hand, λ+
1 (·) starts from the value 1

1−p , and tends to 1 as ω→∞. Figure 11b shows the relative amplitude

of R1(·) as a function of ω and δ (when µ = 0.5). We observe that the relative amplitude of R1(·) is an

increasing function of δ, starting from the value 1√
µ2+ω2

, and increasing to E[S1]λ̄

1−p + λ̄κ√
(1−p)2µ2+ω2

, as δ→∞.

When δ→ 0, the extreme values of R1(·) are maxt(R1(t)) = E[S1]λ̄

1−p + λ̄κ√
µ2+ω2

, and the relative amplitude is

1√
µ2+ω2

. When δ→∞, the extreme values of R1(t) are maxt(R1(t)) = E[S1]λ̄

1−p + λ̄κ√
(1−p)2µ2+ω2

, and the relative

amplitude is 1√
(1−p)2µ2+ω2

.
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A.5. Deterministic Service Times

We now discuss shortly deterministic service times. These are not usually found in healthcare systems, where

exponential service times provide a good enough approximation for many applications. Nevertheless, they

are common in manufacturing and communication and, moreover, they add insight here as well.

Theorem 9. Assume that Si are deterministic, and the arrival rate is given by (6). Then, for t≥ 0,

λ+
1 (t) =

λ̄

1− p
+ λ̄κRe

{
ei(ωt−

π
2

)

1− pe−iω(S1+S2)

}
and

R1(t) = S1

λ̄

1− p
+ λ̄κ

[
Re

{
1
−iω (ei(ω(t−S1)−π

2
)− ei(ωt−π2 ))

1− pe−iω(S1+S2)

}]
.

Proof We start with λ+
1 (·). In the deterministic case, E[S∗ji ] = jSi. Consequently,

λ+
1 (t) =

λ̄

1− p
+ λ̄κ

∞∑
j=0

pjE[sin (ω(t−S∗j1 +S∗j2 ))] =
λ̄

1− p
+ λ̄κ

∞∑
j=0

pj sin (ω(t− jS1 + jS2))

=
λ̄

1− p
+ λ̄κ

∞∑
j=0

pj cos
(
ω(t− j(S1 +S2))− π

2

)
=

λ̄

1− p
+ λ̄κ

∞∑
j=0

pjRe
{
ei(ω(t−j(S1+S2))−π

2
)
}

=
λ̄

1− p
+ λ̄κRe

{
ei(ωt−

π
2

)

∞∑
j=0

pje−ijω(S1+S2)

}
=

λ̄

1− p
+ λ̄κRe

{
ei(ωt−

π
2

)

1− pe−iω(S1+S2)

}
.

In order to calculate R1(t), we note that Si,e is uniformly distributed over [0, Si]. Therefore:

R1(t) =E[S1]E[λ+(t−S1,e)] = S1

λ̄

1− p
+S1λ̄κE

[
Re

{
ei(ω(t−S1,e)−π2 )

1− pe−iω(S1+S2)

}]
= S1

λ̄

1− p
+ λ̄κ

∫ S1

0

[
Re

{
ei(ω(t−x)−π

2
)

1− pe−iω(S1+S2)

}]
dx= S1

λ̄

1− p
+ λ̄κ

[
Re

{
1
−iω (ei(ω(t−S1)−π

2
)− ei(ωt−π2 ))

1− pe−iω(S1+S2)

}]
.

Figure 12 shows the changes in relative amplitude and phase as a function of ω ·(S1 +S2). The deterministic

case exhibits different characteristics from the exponential. First, the amplitude of λ+
1 (·) can reach as high

as λ̄κ
1−p and as low as λ̄κ

1+p
; the former as in the exponential case, the latter in contrast to the exponential

case where the minimal amplitude is λ̄κ (equals the arrival rate amplitude). Second, we now observe a cyclic

behavior, where the amplitude is maximal when ω(S1 + S2) = 2πj (for some integer j), and minimal when

ω(S1 +S2) = πj; in the former case, the returning stream from Node 2 is fully synchronized with the external

input stream λ(·) (S1+S2

f
is an integer), and in the latter the returning stream balances the external input

stream. This is very different from the exponential case where we observed monotonicity and the amplitude

decreases in ω. Finally, Erlang-R is most needed if ω(S1 + S2)≈ 0.25πj or ≈ 1.75πj, when both phase and

amplitude are influenced by the reentering customers (patients). Note that, due to the cyclic shape of the
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Figure 12 Plot of relative amplitude and phase of λ+
1 (t) as a function of ω.

amplitude and phase functions, special care is required when optimizing the system. For example, reducing

LOS (length-of-stay) is often attempted by reducing Needy and Content times (S1 and S2). However, if the

system operates in the decreasing region of the left Figure 12, shortening S1 or S2 will increase the amplitude

of λ+
1 (·), and therefore the amplitude of R1(·) will also increase, which could destabilize the system. Indeed,

a system in which staffing amplitude increases becomes more challenging to operate.

A.6. Time-Varying Diffusion Approximations

The Stochastic Differential Equations underlying Theorem 7 are:

Q
(1)
1 (t) =Q

(1)
1 (0) +

∫ t

0

(
µ1{

Q
(0)
1 (u)≤su

}Q(1)
1 (u)−−µ1{

Q
(0)
1 (u)<su

}Q(1)
1 (u)+ + δQ

(1)
2 (u)

)
du

+Ba
1

(∫ t

0

λudu

)
−Bd

2

(∫ t

0

pµ
(
Q

(0)
1 (u)∧ su

)
du

)
−B12

(∫ t

0

(1− p)µ
(
Q

(0)
1 (u)∧ su

)
du

)
+B21

(∫ t

0

δQ
(0)
2 (u)du

)
,

Q
(1)
2 (t) =Q

(1)
2 (0) +

∫ t

0

(
pµ1{

Q
(0)
1 (u)<su

}Q(1)
1 (u)+− pµ1{

Q
(0)
1 (u)≤su

}Q(1)
1 (u)−− δQ(1)

2 (u)

)
du

+B12

(∫ t

0

pµ
(
Q

(0)
1 (u)∧ su

)
du

)
−B21

(∫ t

0

δQ
(0)
2 (u)du

)
,

(26)

where Ba
1 ,B

d
2 ,B12 and B21 are four mutually independent, standard Brownian motions; x+ ≡ max(x,0),

and x− ≡max(−x,0) =−min(x,0).

The following theorem presents the mean vector and the covariance matrix for the diffusion limit.

Theorem 10. Using the scaling (11), the mean vector for the diffusion limit (26) is the unique solution

to the following two differential equations:

d

dt
E
[
Q

(1)
1 (t)

]
= µ1{

Q
(0)
1 (t)≤st

}E
[
Q

(1)
1 (t)−

]
−µ1{

Q
(0)
1 (t)<st

}E
[
Q

(1)
1 (t)+

]
+ δE

[
Q

(1)
2 (t)

]
,

d

dt
E
[
Q

(1)
2 (t)

]
= pµ1{

Q
(0)
1 (t)<st

}E
[
Q

(1)
1 (t)+

]
− pµ1{

Q
(0)
1 (t)≤st

}E
[
Q

(1)
1 (t)−

]
− δE

[
Q

(1)
2 (t)

]
.

(27)
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Figure 13 Case study 1 - P (Wt > 0) for various β values in large systems.

(a) P (Wt > 0)
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(b) Halfin-Whitt formula vs. simulation
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The covariance matrix for the diffusion limit solves:

d

dt
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[
Q

(1)
1 (t)

]
= 2µ1{

Q
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[
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(1)
1 (t),Q

(1)
1 (t)−

]
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(0)
1 (t)<st
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[
Q

(1)
1 (t),Q

(1)
1 (t)+

]
+ 2δCov

[
Q

(1)
1 (t),Q

(1)
2 (t)

]
+λt +µ

(
Q

(0)
1 (t)∧ st

)
+ δQ

(0)
2 (t),

(28)

d

dt
Var

[
Q

(1)
2 (t)

]
= 2pµ1{

Q
(0)
1 (t)<st

}Cov
[
Q

(1)
2 (t),Q

(1)
1 (t)+

]
− 2pµ1{

Q
(0)
1 (t)≤st

}Cov
[
Q

(1)
2 (t),Q

(1)
1 (t)−

]
− 2δVar

[
Q

(1)
2 (t)

]
+ pµ

(
Q

(0)
1 (t)∧ st

)
+ δQ

(0)
2 (t),

d

dt
Cov

[
Q

(1)
1 (t),Q

(1)
2 (t)

]
= µ1{

Q
(0)
1 (t)≤st

}Cov
[
Q

(1)
2 (t),Q

(1)
1 (t)−

]
−µ1{

Q
(0)
1 (t)<st

}Cov
[
Q

(1)
2 (t),Q

(1)
1 (t)+

]
+ δ
(

Var
[
Q

(1)
2 (t)

]
−Cov

[
Q

(1)
1 (t),Q

(1)
2 (t)

])
+ pµ1{

Q
(0)
1 (t)<st

}Cov
[
Q

(1)
1 (t),Q

(1)
1 (t)+

]
− pµ1{

Q
(0)
1 (t)≤st

}Cov
[
Q

(1)
1 (t),Q

(1)
1 (t)−

]
− δQ(0)

2 (t)− pµ
(
Q

(0)
1 (t)∧ st

)
.

B. Stabilizing large Erlang-R network: Additional graphs for case study 1

In this appendix, we provide additional support that Erlang-R can stabilize various performance measures.

Our testing ground is the large-scale Erlang-R queueing network, considered in Section 5.1.

Figure 13a depicts P (Wt > 0) over a 5-day period (120 hours), for six values of β. The performance

measure is visibly stable, which indicates that the MOL algorithm works well. As mentioned before, we

expect the relation between P (W > 0) and β to fit the Halfin-Whitt formula. We validated this by calculating

the average waiting probability for the time-varying system, for each value of β, and comparing it to the

steady-state Halfin-Whitt formula. In Figure 13b, the two are clearly very close to each other.
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Figure 14 Case study 1 - Simulation results of server utilization.
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Figure 15 Case study 1 - Simulation results of E[Wt] for various β values in large systems.
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Figure 14a shows the evolution of servers utilization over time, for each value of β, which is also stable.

Thus our staffing procedure stabilizes both service level and server utilization. In Figure 14b, we compare the

average utilization over time with the theoretical values. The latter were calculated using the steady-state

solution of our model, when given average values of λ and s. We observe that the two are almost identical.

Figure 15 depicts E[Wt] over a 5-day period. We note that, as β grows, E[Wt] becomes more stable and

well ordered.

Figure 16 displays the conditional distribution of the waiting time given delay (W |W > 0), for three values

of β (0.1,0.5, and 1.4). We compare them to the steady-state theoretical distribution, which is exponential

with rate sµ(1−ρ) (as stated in Theorem 1). The simulation results depict the distribution of waiting times

from all replications, over the entire time horizon. We observe a very good fit for β = 0.5 (QED) and β = 1.4

(QD (Quality Driven)), but when β is 0.1 (ED (Efficiency Driven)), the quality of fit deteriorates visibly.

This is in line with our observations for E[Wt], where small values of β give rise to a performance that does

vary in time and hence does not fit steady-state.
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Figure 16 Case study 1 - A comparison of the histogram of W |W > 0 with the corresponding theoretical distri-

bution.
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(c) β = 1.4
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C. Approximating the Number of Needy Customers and Waiting Times in the
QED Regime

In this section, we derive QED approximations for the actual number of customers in the system and the

virtual waiting time process. One could attempt to use the fluid and diffusion approximations developed in

Section 7 for this purpose. However, these approximations work well under the zero-measure assumption,

and when the system operates in the QED regime, the system is critical at all times. The problem when

using these approximations under QED staffing is twofold: first, we have numerical difficulties in calculating

the diffusion process itself since the diffusion approximation is non-autonomous. Second, the fluid process

itself has a different interpretation under the QED regime: no longer does it represent the average behavior

of its originating stochastic system.

To understand the interpretation problem, we use the following example from Case Study 1. Figure 17a

shows the fluid solution of the process Q
(0)
1 (·) (the number of Needy customers), as well as the following

simulation results: the average number of customers in the Needy state, and the average number of customers

in service. We note that the fluid model fits perfectly the number of customers in service and ignores the

number of customers waiting in queue (for service). This is because our MOL staffing procedure keeps the

staffing level always slightly above the average number of customers. Thus, the fluid approximation “sees”

the system as if it had an infinite number of servers, and actually calculates the number of busy servers,

without the queue.

In order to fill the gap and to estimate correctly the number of Needy customers (in queue and in service),

recall the insight (§5.1) that, under MOL staffing, the system behaves as if the Needy state were a stationary

M/M/s model (Erlang-C). Therefore, we attempt to use the stationary approximation of the Erlang-C



Authors’ names blinded for peer review
44Article submitted to Manufacturing & Service Operations Management; manuscript no. (Please, provide the mansucript number!)

Figure 17 Q1(t) - Fluid approximation vs. simulation results under QED staffing, for various β’s.
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(b) Corrected approximation vs. simulation
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Figure 18 E[Wt] - Corrected Fluid approximation vs. simulation for various β’s.
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model to estimate the number of customers in the queue. Halfin and Whitt (1981) approximated E[Q(∞)]

by the following formula: E[Q1(∞)] = λ
µ

+ α λ
sµ

(
1− λ

sµ

)−1

, with α in Theorem 1. We propose an MOL

correction, adjusting this formula to time-varying environments, in the following manner: E[Q1(t)] =R(t) +

αR(t)

s(t)

(
1− R(t)

s(t)

)−1

. Figure 17b compares this corrected approximation to simulation results for various β

values. We observe that the simulation and approximation are remarkably close.

One can also provide a correction to the E[Wt] function in the QED regime, using the following expression:

E[Wt] = α
µs(t)

(
1− R(t)

s(t)

)−1

. Experiments show that this correction works well for β > 0.3, as is apparent in

Figure 18.
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