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The SEE Center - Project DataMOCCA

Goal: Designing and Implementing a
(universal) data-base/data-repository and
interface for storing, retrieving, analyzing,
displaying and interacting with
transaction-based data.

Enable the Study of:

- Customers (Callers, Patients) Waiting, Abandonment, Returns
- Servers (Agents, Nurses) Service Duration, Activity Profile
- Managers (System) Loads, Queue Lengths, Trends



DataMOCCA History: The Data Challenge

- Queueing Research lead to Service Operations (Early 90s)

Services started with Call Centers which, in turn, created data-needs

Queueing Theory had to expand to Queueing Science: Fascinating

WFM was Erlang-C based, but customers abandon! (Im)Patience?

(Im)Patience censored hence Call-by-Call data required: 4-5 years saga

Finally Data: a small call center in a small IL bank (15 agents, 4 service
types, 350K calls per year)

Technion Stat. Lab, guided by Queueing Science: Descriptive Analysis

Building blocks (Arrivals, Services, (Im)Patiece): even more Fascinating



DataMOCCA: System Components

1. Clean Databases: Operational histories of individual
customers and servers (mostly with IDs).

- In Call Centers: from IVR to Exit;
- In Hospitals: from ED to Exit (or just ED).

2. SEEStat: Online GUI (friendly, flexible, powerful)

- Queueing-Science perspective;
- Operational data (vs. financial, contents or clinical);
- Flexible customization (e.g. seconds to months);

3. Tools:

- Online statistics (survival analysis, mixtures, smoothing);
- Dynamic Graphs (flow-charts, work-flows)
- Simulators (CC, ED; data-driven).
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Current Databases

1. U.S. Bank (PUBLIC): 220M calls, 40M agent-calls, 1000
agents, 2.5 years, 7-40GB.

2. lIsraeli Banks:

- Small (PUBLIC): 350K calls, 15 agents, 1 year. Started it all
in 1999 (JASA), now “romancing” again (Medium, with 300
agents);

- Large (ongoing): 500 agents, 1.5 years, 3-8GB.

3. Israeli Telecom (ongoing): 800 agents, 3.5 years; 5-55GB.

4. |sraeli Hospitals:
- Six ED’s (to be made PUBLIC);

- Large (ongoing): 1000 beds, 45 medical units, 75,000 patients
hospitalized yearly, 4 years, 7GB.
5. Website (pilot).
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DataMOCCA: Future

Operational (ACD) data with Business (CRM) data, Contents/Medical
Contact Centers: IVR, Chats, Emails; Websites
Daily update (as opposed to montly DVDs)

Web-access (Research; Applications, e.g. CC/ED Simulation; Teaching)
Nurture Research, for example
- Skills-Based Routing: Control, staffing, design, online; HRM

- The Human Factor: Service-anatomy, agents learning, incentives

Hospitals (OCR: with IBM, Haifa hospital): Operational,
Human-Factors, Medical & Financial data; RFIDs for flow-tracking
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DataMOCCA Interface: SEEStat

- Daily / monthly / yearly reports & flow-charts for a complete
operational view.

- Graphs and tables, in customized resolutions (month, days, hours,
minutes, seconds) for a variety of (pre-designed) operational measures
(arrival rates, abandonment counts, service- and wait-time distribution,
utilization profiles,).

- Graphs and tables for new user-defined measures.

- Direct access to the raw (cleaned) data: export, import.

- Online Statistics: Survival Analysis, Mixtures, Smoothing, Graphics.
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Data-Based Research: Must (?7) & Fun

- Contrast with “EmpOM": Industry / Company / Survey Data (Social
Sciences)

- Converge to: Measure, Model, Validate, Experiment, Refine (Physics,
Biology, ...) - The Scientific Paradigm

- Prerequisites: OR/OM, (Marketing) for Design; Computer Science,
Information Systems, Statistics for Implementation

- Outcomes: Relevance, Credibility, Interest; Pilot (eg. Healthcare, Web).
Moreover,
Teaching: Class, Homework (Experimental Data Analysis); Cases.

Research: Test (Queueing) Theory / Laws, Stimulate New Models / Theory.

Practice: OM Tools (Scenario Analysis), Mktg (Trends, Benchmarking).
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Little’'s Law, L= \- W

US Bank: Retail calls, May 2002
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Little’'s Law, L= \- W

Israeli ED, October 1999, Day Resolution
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Little’'s Law, L= \- W

US Bank: Telesales Calls, October 10, 2001
A, Throughput Rate W, Average Waiting Time
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Little’'s Law, L= \- W

Israeli ED, Hour Resolution

# Patients in the ED (average)
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Workload and Offered-Load

o Workload: Stochastic process, representing the amount of
work present at time t, under the assumptions of infinitely
many resources (service commences immediately upon
arrival).

o Offered-Load: Function of time t > 0, representing the
average of the workload at time t.

The Offered-Load, R(t), determines staffing level via c-staffing
(c = 0.5 is conventional square-root staffing):

N(t) = R(t) + 6 - [R(2)]

137



Offered-Load Representations (or Time-Varying Little)

For the M;/GI/N; + Gl queue, the offered-load
R = {R(t), t > 0}, has the following representations:

t

R(t) = E[L(t)] = /

—00

Au)- P(S > t— u)du = E[A(t) At 5)] _

= E[/tis )\(u)du] = E[\(t - Se)] - E[S],

where

A= {A(t), t > 0} is the Arrival process;
S is a generic service time;

Se is a generic excess (residual) service.

In stationary models, where A(t) = A, the offered-load R(t) is the
familiar A - E[S] (or A\/p), measured in Erlangs.
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Imputing Service Times of Abandoning Customers

In calculating the offered-load, one must account for service-times
of abandoning customers.

A prevalent assumptions is that service times and (im)patience
times are independent. Experience suggests that this assumption is
often violated.

For example, it is not unreasonable that customers who anticipate
longer service times, will be willing to wait more for service before
abandoning.
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Service Times: Stochastic Order

Small Israeli Bank: Survival Functions by Type

Survival

Time
L . st st st
Service times stochastic order: S, < Sp,s < Sy < S,

st st st
Patience times stochastic order: 7, < Ty < Tps < Tye
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Relationship Between Service-Time and (Im)Patience

Ongoing research (w/ M. Reich, Y. Ritov) develops a procedure for
calculating the function E(S|T = w):

1. Introduce g(w) = E(S|7 > W = w), which is the mean
service time of those who waited exactly w units of time and
were served. Then calculate g via the non-linear regression:

Si=g(Wj)+ei,
where i indexing served customers.

2. Calculate E(S|T = w) via the (established) relation

g'(w)
E = = —
(Slr = w) = g(w) = £,
where h-(w) is the hazard-rate function of (im)patience, to
be estimated via un-censoring.

Finally, extend the above to calculate the distribution of S, given
w, which is then used to impute service-times for calculating the

offered-load.
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Daily Arrivals to Service: Time-Inhomogeneous (Poisson?)

Intraday Arrival-Rates (per hour) to Call Centers

December 1995 (700 U.S. Helpdesks)
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Arrivals to an Emergency Department (ED)
Large Israeli ED, 2006

e R
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o Second peak at 19:00 (vs. 15:00 in call centers).

@ How much stochastic variability ?
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Intraday Arrival Rates: Does a Day have a Shape ?

Arrival Patterns, Israeli Telecom
Arrivals, Avg. Weekdays/1-4/2005

Average number of cases
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Intraday Arrival Rates: Does a Day have a Shape ?

Arrival Patterns, Israeli Telecom
Arrivals, Avg. Weekdays/1-4/2005
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A (Common) Model for Call Arrivals

Whitt (99'), Brown et. al. (05’), Gans et. al. (09'), and others:

Doubly-stochastic (Cox, Mixed) Poisson with instantaneous rate
A(t) = A(t) - X,

where fOT A(t)dt =1.

o A(t) = “Shape” of weekday [Predictable variability]

o X = Total # arrivals [Unpredictable variability]

w/ Maman & Zeltyn (09'):
Above assumes “too-much” stochastic variability!
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Over-Dispersion (Relative to Poisson), Maman et al. ('09)

Israeli-Bank Call-Center
Arrival Counts - Coefficient of Variation (CV), per 30 min.

Sampled CV - solid line, Poisson CV - dashed line
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o 263 regular days, 4/2007 - 3/2008.
o Poisson CV = 1/v/mean arrival-rate.
o Sampled CV's > Poisson CV's = Over-Dispersion.
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Over-Dispersion: Fitting a Regression Model

In(Standard Deviation)

In(STD) vs. In(AVG)

Tue-Wed, 30 min resolution

y =0.8027x - 0.1235

R?=0.9899
y =0.8752x - 0.8589
R? = 0.9882
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In(Average Arrival)
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In(Standard Deviation)

Tue-Wed, 5 min resolution

y =0.7228x - 0.0025
R? = 0.9937

y =0.7933x - 0.5727
R’ =0.9783

In(Average)

= 00:00-10:30 * 10:30-00:00

Significant linear relations (Aldor & Feigin):

In(STD) = c - In(AVG) + a

5D




Over-Dispersion: Random Arrival-Rate Model

The linear relation between In(STD) and In(AVG) motivates the
following model:

Arrivals distributed Poisson with a Random Rate

A=X+ XX, 0<c<1;

o X is a random-variable with E[X] = 0, capturing the
magnitude of stochastic deviation from mean arrival-rate.
o c determines scale-order of the over-dispersion:
¢ =1, proportional to A;
¢ =0, Poisson-level, same as 0 < ¢ < 1/2.

In call centers, over-dispersion (per 30 min.) is of order
A¢, ¢~ 0.8 —0.85.
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Over-Dispersion: Distribution of X ?

o Fitting a Gamma Poisson mixture model to the data:
Assume a (conjugate) prior Gamma distribution for the arrival

rate \ < Gamma(a, b).
Then, ¥ < Poiss(A) is Negative Binomial.

o Very good fit of the Gamma Poisson mixture model, to data
of the Israeli Call Center, for the majority of time intervals .

o Relation between our c-based model and Gamma-Poisson
mixture is established.

o Distribution of X derived, under the Gamma prior assumption:
X is asymptotically normal, as A — oo.
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Over-Dispersion: The QED-c Regime

QED-c Staffing: Under offered-load R = X - E[S],

n =R+ 8-R°, 05<c<l1

Performance measures:

a. Delay probability: P{Wyz >0} ~ 1—F(p)
E[X —
b. Abandonment probability: P{Ab} ~ %
E[X —
c. Average offered wait: E[V] ~ %
n - 80
d. Average actual wait: Enn[W] ~ Epn[V]
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ispersion: The Case of ED's

Israeli-Hospital Emergency-Department

Arrival Counts - Coefficient of Variation, per 1-hr. & 3-hr.

One-hour resolution Three-hour resolution

coefficient of variation
045 = = = inverted sq. root of mean

coefficient of variation
01 = = = inverted sq. root of mean

00 120 10 160 10 15 20 25 30 35 40 45 50 55
m(erval

e 194 weeks 1/2004 10/2007 (excludlng 5 weeks war in 2006).
@ Moderate over-dispersion: ¢ = 0.5 reasonable for hourly resolution.
o ED beds in conventional QED (Less var. than call centers ! 7).
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