Service Engineering: Data-Based Research and Teaching in support of Service Management

Avi(shai) Mandelbaum

Technion, Haifa, Israel

http://ie.technion.ac.il/serveng

ENBIS - Athens, September 2008

◆ロト ◆問 ト ◆ 恵 ト ◆ 恵 ・ 釣 Q C

Background Material (Downloadable)

Technion's "Service-Engineering" Course (\geq 1993): http://ie.technion.ac.il/ServEng

Background Material (Downloadable)

Technion's "Service-Engineering" Course (\geq 1993): http://ie.technion.ac.il/ServEng

Technion's **SEE Center / Laboratory** (≥ 2007): http://ie.technion.ac.il/Labs/ServEng

Background Material (Downloadable)

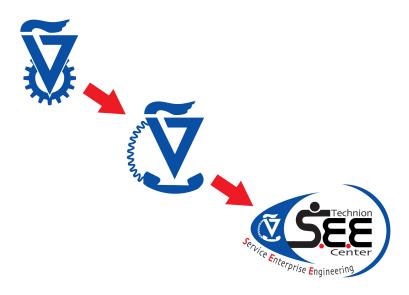
Technion's "Service-Engineering" Course (\geq 1993): http://ie.technion.ac.il/ServEng

Technion's **SEE Center** / **Laboratory** (≥ 2007): http://ie.technion.ac.il/Labs/ServEng

- Gans (U.S.A.), Koole (Europe), and M. (Israel):
 "Telephone Call Centers: Tutorial, Review and Research Prospects." MSOM, 2003.
- Brown, Gans, M., Sakov, Shen, Zeltyn, Zhao: "Statistical Analysis of a Telephone Call Center: A Queueing-Science Perspective." JASA, 2005.

▶ Math., Computer Science, Operations Research, Statistics

- ▶ Math., Computer Science, Operations Research, Statistics
- Queueing Theory
- Application: Service Operations
- ► Specialization: Telephone Call Centers


- Math., Computer Science, Operations Research, Statistics
- Queueing Theory
- Application: Service Operations
- ▶ Specialization: Telephone Call Centers
- Graduate Research Seminar: Service Networks
- ► Elective Theoretical course: joint graduate-undergraduate
- ► Elective Theoretical + Data-Based: Service Engineering
- Core Course

- Math., Computer Science, Operations Research, Statistics
- Queueing Theory
- Application: Service Operations
- ▶ Specialization: Telephone Call Centers
- Graduate Research Seminar: Service Networks
- ► Elective Theoretical course: joint graduate-undergraduate
- ► Elective Theoretical + Data-Based: Service Engineering
- Core Course
- Technion's SEE Center/Lab (Service Enterprise Engineering)
- ► Further Applications: Healthcare, Internet,...

Technion (Economy) Evolution

1. Simple Useful Models at the Service of Complex Realities.

1. Simple Useful Models at the Service of Complex Realities.

Note: Useful must be Simple; Simple could require Deep analysis

1. Simple Useful Models at the Service of Complex Realities.

Note: Useful must be Simple; Simple could require Deep analysis

2. Data-Based Analysis & Teaching is a Must & Fun.

Supported by **DataMOCCA** = Data **MO**dels for **Call Center Analysis**; Technion + Wharton **research** project, available for (academic) adoption. (eg. 2.5 years, 220M/40M telephone calls, 800 agents)

Simple Useful Models at the Service of Complex Realities.
 Note: Useful must be Simple: Simple could require Deep analysis

2. Data-Based Analysis & Teaching is a Must & Fun.

Supported by **DataMOCCA** = Data **MO**dels for **Call Center Analysis**; Technion + Wharton **research** project, available for (academic) adoption. (eg. 2.5 years, 220M/40M telephone calls, 800 agents)

3. Back to the **Basic-Research Paradigm** (Physics, Biology, ...): **Measure, Model, Experiment, Validate, Refine, etc.**

- Simple Useful Models at the Service of Complex Realities.
 Note: Useful must be Simple; Simple could require Deep analysis
- 2. Data-Based Analysis & Teaching is a Must & Fun.

Supported by **DataMOCCA** = Data **MO**dels for **Call Center Analysis**; Technion + Wharton **research** project, available for (academic) adoption. (eg. 2.5 years, 220M/40M telephone calls, 800 agents)

- **3.** Back to the **Basic-Research Paradigm** (Physics, Biology, ...): **Measure, Model, Experiment, Validate, Refine, etc.**
- 4. Yields scientifically-based design principles and tools (software), that support the balance of service quality, process efficiency and business profitability, from the often-conflicting views of customers, service-providers, managers and society:

 Service Engineering.

Staffing: How Many? When? What? Who?

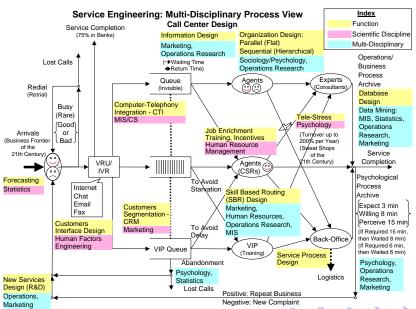
Fundamental challenge in Services: Healthcare, ..., Call Centers

Staffing: How Many? When? What? Who?

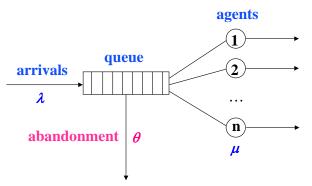
Fundamental challenge in Services: Healthcare, ..., Call Centers

- Reality Complex and becoming more so
- ▶ Staffing is based on The Erlang-C (M/M/n) model (1913!)
- ⇒ Solutions urgently needed.

Staffing: How Many? When? What? Who?


Fundamental challenge in Services: Healthcare, ..., Call Centers

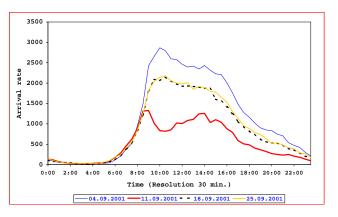
- Reality Complex and becoming more so
- Staffing is based on The Erlang-C (M/M/n) model (1913!)


⇒ Solutions urgently needed.

Consider, for example, Palm/Erlang-A: a simple (but not too simple) Mathematical Model of the complex reality of call centers.

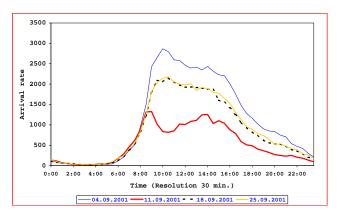
Complex Reality: Call-Center Network

Simple Model: Palm/Erlang-A



Erlang-A Parameters (Math. Assumptions):

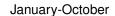
- λ **Arrival** rate (Poisson)
- μ **Service** rate (Exponential)
- θ **Impatience** rate (Exponential)
- ▶ n Number of Service-Agents.


Arrivals to Service: Poisson-Relatives Arrival Rates on Tuesdays in a September – U.S. Bank

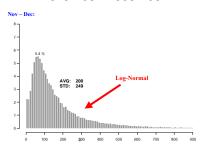
- ► Tuesday, September 4th: Heavy, following Labor Day
- ► Tuesdays, September 18 & 25: Normal

Arrivals to Service: Poisson-Relatives

Arrival Rates on Tuesdays in a September – U.S. Bank

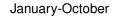


- ► Tuesday, September 4th: Heavy, following Labor Day
- ▶ Tuesdays, September 18 & 25: Normal
- ► Tuesday, September 11th, 2001.

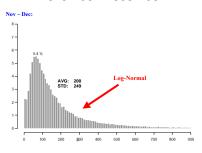

Service Durations: The LogNormal Law

Service Durations in a Typical (?) Call Center

Jan - Oct: 7.2 % 4 4 4 2 0 AVG: 185 STD: 238

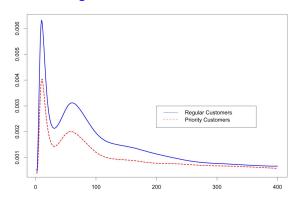

November-December

▶ Lognormal service times prevalent in call centers


Service Durations: The LogNormal Law

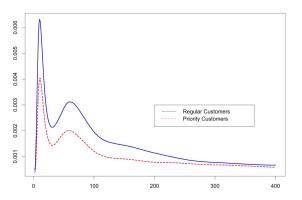
Service Durations in a Typical (?) Call Center

November-December


- Lognormal service times prevalent in call centers
- ▶ 7.2% Short-Services: Agents' "Abandon" (improve bonus, rest)
- Distributions, not only Averages, must be measured.

(Im)Patience While Waiting: Palm's Law of Irritation

Hazard Rates of (Im)Patience – Israeli Bank:


Regular over VIP Customers

(Im)Patience While Waiting: Palm's Law of Irritation

Hazard Rates of (Im)Patience – Israeli Bank:

Regular over VIP Customers

- Peaks of abandonment at times of Announcements
- ▶ VIP are more Patient (Needy) than the Others
- ► Call-by-Call Data (DataMOCCA) required (Un-Censoring).

► Simple: 4CallCenters calculator (download in our Website)

► Simple: 4CallCenters calculator (download in our Website)

All Palm/Erlang-A assumptions are violated. **Yet** the model often fits very well, so much so that the model is

- ▶ Useful: Replaces Erlang-C as the WFM standard
- Robust: QED asymptotics (moderate-to-large systems)
- Insightful: Square-Root Staffing rules; E.O.S.
- Optimal: Could save significant \$'s

► Simple: 4CallCenters calculator (download in our Website)

All Palm/Erlang-A assumptions are violated. **Yet** the model often fits very well, so much so that the model is

- ▶ Useful: Replaces Erlang-C as the WFM standard
- ► Robust: QED asymptotics (moderate-to-large systems)
- Insightful: Square-Root Staffing rules; E.O.S.
- Optimal: Could save significant \$'s
- ▶ and Generalizable: Time-Varying, CRM/SBR, ...,

Simple: 4CallCenters calculator (download in our Website)

All Palm/Erlang-A assumptions are violated. **Yet** the model often fits very well, so much so that the model is

- Useful: Replaces Erlang-C as the WFM standard
- Robust: QED asymptotics (moderate-to-large systems)
- Insightful: Square-Root Staffing rules; E.O.S.
- Optimal: Could save significant \$'s
- and Generalizable: Time-Varying, CRM/SBR, ...,

Still has its Limitations, theoretical & practical, all of which simulates

⇒ Current Research

Back to Main Messages: Summary of Erlang-A

- 1. Simple useful model, requiring and stimulating deep analysis.
- Supported by Data-Based research & teaching.(DataMOCCA, available for (academic) adoption.)
- **3.** Takes one back to the **basic-research** paradigm: Measure, Model, Experiment, Validate, Refine, etc.
- Generates scientifically-based design principles, tools (software) and teaching material, downloadable at the

Service-Engineering Course website http://ie.technnion.ac.il/ServEng

SEE Center/Laboratory website http://ie.technion.ac.il/Labs/ServEng

