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We consider the control of patient flow through physicians in emergency departments (EDs). The physi-

cians must choose between catering to patients right after triage, who are yet to be checked, and those

that are in-process (IP), who are occasionally returning to be checked. Physician capacity is thus modeled

as a queueing system with multiclass customers, where some of the classes face deadline constraints on

their time-till-first-service, while the other classes feedback through service while incurring congestion costs.

We consider two types of such costs: first, costs that are incurred at queue-dependent rates, and second,

costs that are functions of IP sojourn time. The former is our base-model, which paves the way for the

latter (perhaps more ED-realistic). In both cases, we propose and analyze scheduling policies that, asymp-

totically in conventional heavy-traffic, minimize congestion costs while adhering to all deadline constraints.

Our policies have two parts: the first chooses between triage and IP patients; assuming triage patients are

chosen, the physicians serve the one who is closest to violating the deadline; alternatively, IP patients are

served according to a Gcµ rule, in which µ is simply modified to account for feedbacks. For our proposed

policies, we establish asymptotic optimality, and develop some congestion laws (snapshot principles) that

support forecasting of waiting and sojourn times. Simulation then shows that these policies outperform some

commonly-used ones. It also validates our laws and demonstrates that some ED features, the complexity

of which reaches beyond our model (e.g., time-varying arrival rates, Leave-Without-Being-Seen (LWBS) or

Leave-Against-Medical-Advice (LAMA)), do not lead to significant performance degradation.

Key words : Emergency Department, Patient Flow Triage, ED or ER Crowding, Heavy Traffic, Feedback

Queues, Due Date Stochastic Control, ESI

1. Introduction

Control of patient flow is a major factor for improving hospital operations. Indeed, patient flow is

a central driver of a hospital’s operational performance, which is tightly coupled with the overall

quality and cost of health care (Armony et al. (2013), Pitts et al. (2008), Niska et al. (2010)). In

this work, we address the challenge of flow control at the main hospital “gate”—the Emergency

Department (ED). The challenge stems from two flow characteristics: deadlines and feedbacks.

First, arriving patients must be served within time-deadlines that are assigned after triage,

based on clinical considerations (Farrohknia et al. (2011), Mace and Mayer (2008)). Second,

ED flows have a significant feedback component that must be accounted for: in-process (IP)
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patients possibly return several times to physicians during their ED sojourn, before ultimately

being either released or hospitalized (Yom-Tov and Mandelbaum (2014), Table 2).

IP patients present both clinical concerns (e.g. stabilizing their conditions) and operational

concerns (e.g. they occupy beds). They should thus complete their treatments and leave the

ED as soon as possible. On the other hand, clinical Triage constraints should be adhered to,

so that arriving patients start their first treatment within pre-specified time windows. It is this

Triage-IP friction that we focus on, doing so from the viewpoint of the ED physician: when

becoming idle, what class should be served next—triage or in-process—after which one must

decide on the specific patient to be examined.

To this end, ED dynamics are captured by a multiclass queueing system, with multiple servers

(physicians), multiclasses of triage patients and multiclasses of in-process (IP) patients. (A

patient class could embody information such as treatment type, emergency level or age; see

Carmeli (2012).) Patients within each class are served on a First-Come-First-Served (FCFS)

basis. The triage patients arrive to the system exogenously and are yet to be examined by

a physician; each such patient must be served within a time-deadline from its arrival. After

completing their first service, triage patients join the queue of IP patients, or exit the system.

IP patients originate from either triage patients or from previous IP phases, and they require

further treatment. While waiting, the IP patients incur queueing costs. Our objective is to

minimize these cumulative costs, among all policies that satisfy the triage (deadline) constraints.

The objective can be achieved (asymptotically, see §5.2), if a physician that becomes idle

adopts the following guidelines (a two-step policy):

• First step – Triage or IP: Triage patients have priority if any triage patient’s deadline is

close to being violated;

• Second step (a) – Triage: Given that a triage patient is to be served, the priority goes to

the patient that is closest to violating a deadline;

• Second step (b) – IP: Given that an IP patient is to be served, a modified generalized

cµ-rule is used to decide which patient to serve.

Despite the apparent simplicity of its solution, the problem is not easy to solve. First, patients’

waiting times are random while the deadlines are deterministic; hence consistently satisfying

this deterministic constraint is too much to hope for, which calls for a rigorous formulation in

an asymptotic sense (see §4). Second, multiclass queueing with feedback is in itself challenging

to analyze, to which one adds deadline constraints.

Our mathematical framework is conventional heavy-traffic, where one analyzes a sequence

of systems that approach critical loading. Within this framework, IP analysis follows the Gcµ-

rule of van Mieghem (1995), after generalizing it to models with feedback. Triage analysis

combines the due-date scheduling in van Mieghem (2003) with the formulation of Plambeck

et al. (2001). The latter offers a rigorous meaning for adherence to (triage) time-constraints,
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by introducing “asymptotic compliance” as a relaxation for “feasibility”. Together, triage and

in-process controls yield what we prove to be asymptotically optimal flow-control policies:

they minimize IP congestion costs subject to triage compliance, that is, the above policy is

asymptotically feasible and asymptotically optimal among all asymptotically feasible policies.

In our analysis, we assume that the deadlines for triage patients are not short. This is not

necessarily true for all triage classes. Consider the Emergency Severity Index (ESI) for example

(Mace and Mayer (2008)): patients are separated into 5 triage classes, and the physician response

times for classes 1 and 2 patients should be within minutes. Our policy can be modified to

systems with patients facing short deadlines by assigning them the highest priority so that they

start treatment immediately upon their arrival. From State-Space-Collapse results (Bramson

(1998)), their queue lengths and waiting times would be negligible in heavy traffic scaling. Thus,

essentially without loss of generality, we focus on those patients whose deadlines are not short.

For the ESI, these are patients in triage classes 3, 4 and 5.

In addition to queueing costs, we consider also models with waiting costs and sojourn time

costs, and provide policies which minimize these costs while ensuring that triage deadline con-

straints are adhered to; see §6.

Why conventional heavy traffic? This is a relevant operational regime. Specifically, our expe-

rience suggests that, during peak load between late morning and late evening, the ED can be

usefully viewed as a critically-loaded stationary system (Armony et al. (2013)). Moreover, sim-

ulation experiments (§7 and §EC.9) demonstrate that our proposed policies actually perform

well over the whole (time-varying) day.

Beyond our ED models: Saghafian et al. (2012) remark that, due to the complexity of ED

operations, it is challenging to capture prevalent ED features within a single tractable analytic

model. While this is precisely what we do here, ours is by no means the final story. Additional

ED features that seek modeling include time-varying arrival rates, treatment times between

successive visits to the physician, limitation on the number of beds and ambulance diversion

(admission control), “non-interchangeable” physician service, and patients who Leave-Without-

Being-Seen (LWBS) or Leave-Against-Medical-Advice (LAMA). We comment on these features

and offer related conjectures in Section 8. Moreover, we simulated systems incorporating these

features and under various policies. The results, included in §7 and §EC.9, demonstrate that our

proposed policy outperforms commonly-used ones, even with these additional features taken

into account.

1.1. Literature review

There is ample medical literature about triage systems; we refer the reader to Farrohknia et al.

(2011), Mace and Mayer (2008). Our research focus here is operational (Marmor et al. (2012),

Wiler et al. (2010)) and, accordingly, so is the following literature review.
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To the best of our knowledge, our paper is the first to analyze the control of patient flow

in an ED from a queueing-theory perspective. (In contrast, there are practically hundreds of

simulation-based studies; e.g., Brailsford et al. (2009).) Since starting this project, additional

work has appeared on ED operations. The closest to ours are Saghafian et al. (2014, 2012):

Saghafian et al. (2014) discuss a complexity-based triage system, based on the number of

visits that patients pay to the ED physician (serving as an up-front proxy for complexity);

and Saghafian et al. (2012) analyze the advantage of streaming patients (separating them into

classes, e.g. by their admission vs. discharge status), comparing this practice against pooling

and, what they call, “virtual-streaming”. The latter supplements class-separation with dynamic

resource allocation, and it is shown to dominate the other two. There are additional papers that

cater to specific ED characteristics: Yom-Tov and Mandelbaum (2014) model the ED as a single-

class time-varying queueing system with feedback (Erlang-R), operating in the QED regime,

and in support of staffing physicians and nurses; Dobson et al. (2013) develop an overloaded

queueing network to analyze the impact of interruptions on ED throughput; Zayas-Caban et al.

(2013) considered a two-stage tandem queueing model for an ED triage and treatment process;

and Atar et al. (2012) is relevant to synchronization of ED activities (e.g. interpretations of a

blood-test and X-ray imaging must precede a visit to the ED physician), as it analyzes a fork-

join queueing network in heavy-traffic. Finally, Zaied (2012) models an ED as a time-varying

fork-join network; he then uses square-root staffing of physicians and/or nurses to stabilize ED

performance.

Our ED models and analysis follow two main lines of research: formulation of the triage

constraints is adapted from Plambeck et al. (2001), who analyze admission control; and our

IP control generalizes van Mieghem (1995), who solves a cost minimization problem for a

multiclass queue without feedback. The results in van Mieghem (1995) have been generalized by

Mandelbaum and Stolyar (2004) to a feedforward network of parallel queues, and both papers

establish asymptotic optimality of the generalized cµ-rule. Here we generalize van Mieghem

(1995) to a model with both feedback and deadlines, and prove asymptotic optimality of a

routing rule in which a modified generalized cµ-rule plays a central role.

Our model structure for IP patients resembles Klimov (1974, 1978), where the author con-

siders a dynamic scheduling problem of a multiclass M/GI/1 queueing system with Markovian

feedback. Unlike Klimov (1974, 1978), who minimizes a cost function that is linear in average

queue lengths and proves the optimality of a static routing policy, here we consider a mini-

mization problem with cumulative costs over a finite horizon, with cost rates that are convex

functions of queue lengths (or waiting times), which gives rise to asymptotic optimality of a

dynamic routing policy. Notably, our analysis of IP patients in fact covers Klimov: simply take

the deadlines and means of service times for triage patients to be 0. We thus establish, indi-

rectly, asymptotic optimality of the generalized cµ-rule also for Klimov’s model (with convex
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costs). Our method can also accommodate linear cost functions, for which a modified cµ-type

rule is asymptotically optimal; see Remark 3. A final related reference is Chen and Yao (1993),

which concerns dynamic scheduling of a multiclass fluid network with feedback.

Diffusion approximations for queueing systems with multiclass customers and Markovian

feedback have been analyzed in Reiman (1988) and Dai and Kurtz (1995), under the assumption

of a global FCFS service discipline among all classes. Our analysis can also be adapted to

prove convergence of the queue length processes there, as well as to other work-conserving

disciplines. Indeed, our present results yield convergence of the weighted queue length to a

reflected Brownian motion, under any work-conserving policy; then, proving convergence of

individual queue lengths, for each class, amounts to establishing state-space collapse, which will

follow from standard arguments (e.g. Bramson (1998)).

1.2. Contributions and outline

We view our main contributions to be the following:

• Methodological. We analyze multiclass queueing systems with feedback, in particular:

1. Identifying asymptotically optimal policies, which are simpler than the conjecture in Man-

delbaum and Stolyar (2004) regarding feedback;

2. Solving Klimov’s model with convex costs, for both queueing- and sojourn-costs;

3. Analyzing multiclass queueing systems with feedback, under any work-conserving policy;

4. Accommodating jointly delay constraints and congestion costs.

• Practical. We model and analyze the control of patient flow in EDs, from the point of

view of ED physicians, which naturally gives rise to a queueing perspective:

1. Our models capture the tradeoff between clinical (triage) vs. operational (IP) concerns;

2. They yield scheduling policies that are insightful and implementable (minimizing IP-

congestion subject to triage constraints);

3. They give rise to congestion laws that support forecasting of sojourn times.

With our method, one can also prove the conjecture in Mandelbaum and Stolyar (2004)

and analyze the value of information embedded in the ED process (e.g. number of physician

visits); see Huang (2013). Additional references will be provided in Section 8, where we propose

generalizations to our main models, accompanied by corresponding conjectures.

Paper Outline: The rest of the paper is organized as follows. We end this introduction with a

summary of notation. A detailed description of the basic ED model is given in §2. Heavy traffic

conditions, asymptotic compliance and optimality are introduced in §3 and §4, respectively.

The main results and some auxiliary propositions and extensions are presented in §5, with

their discussions in §6. In §7 we describe simulation experiments that validate our analysis

and proposed policies. We conclude with a discussion of future research directions in §8. The

proofs for the main theorems, as well as additional proofs (of propositions) and complements

are provided in the Appendix.
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1.3. Notation

We use the standard notation R+ to denote the set of nonnegative real numbers. For a real

number x, bxc is the maximal integer less than or equal to x; RJ+ and RK+ are the J-time

and K-time products of R+, respectively; ZK+ is the subset of RK+ with all components being

integers. Unless otherwise specified, all vectors are assumed to be column vectors. We reserve

the notation {ek} for the standard basis of RK . The transposition of a vector or a matrix is

indicated with a superscript T . Vector inequalities are understood to be componentwise; e.g.,

for x, y ∈ RK , x < y if and only if xi < yi, for all i= 1,2, . . . ,K. We use 0 to denote a column

vector with all components being 0, with the dimension being clear from the context. For a

matrix M , Mj· denotes the jth row, and M·k the kth column of M . The function 1(·) is the

indicator function, the value of which is 1 when the event within (·) prevails, and 0 otherwise.

We assume that all random variables are defined on a common probability space (Ω,F ,P).

Expectation with respect to P is E. Let D[0,∞) be the standard Skorohod space of right-

continuous left-limit (RCLL) functions, defined on [0,∞) and equipped with the Skorohod J1

topology. Similarly to D[0,∞), D[0, t] is the space of functions on [0, t]. The symbol ⇒ denotes

weak convergence of stochastic processes, and→ stands for convergence of non-random elements

in D[0,∞). The joint convergence of two or more processes will be understood implicitly from

the context; it will be denoted by j ∈ J or k ∈ K or both (see e.g. (17)). Finally, e(·) is the

1-dimensional identity function on R+, where e(t) = t, t≥ 0.

2. The basic model

Consider the N -server queueing system in Figure 1: it has J classes of triage customers, who

must adhere to deadline constraints, jointly with K classes of in-process (IP) customers who

incur queueing costs. To highlight the application to EDs, we use “patient” interchangeably

with “customer” and “physician” with “server”. Let J and K denote the index sets of triage

and IP patients, respectively: j ∈ J is an index for triage patients, and l, k ∈K are indices for

IP patients. It will be convenient to let J = {1,2, . . . , J} and K= {1,2, . . . ,K}, while keeping

in mind that the indices 1,2, . . . in J differ from those in K. To avoid ambiguity, we do write

j ∈J and l, k ∈K as necessary.

Remark 1 Due to our conventional heavy-traffic framework in §3, the N -physician system in

Figure 1 is (asymptotically) equivalent to the same system but with N = 1, in which the single

server is a “super” physician that is N -times faster than each of the original physicians (this

can be proved as in Chen and Shanthikumar (1994), and supported by simulation in §EC.9.4);

we thus assume hereafter that N = 1.
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Figure 1 Patient flow through the emergency department
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2.1. Triage patients

For each triage class j ∈J of patients, we are given two independent sequences of i.i.d. random

variables, {uj(i), i= 1,2, . . .} and {vj(i), i= 1,2, . . .}, as well as two real numbers λj and mj. We

assume E[uj(1)] = 1, E[vj(1)] = 1, and denote a2
j = var(uj(1)), b2

j = var(vj(1)). Among j-triage

patients, the interarrival time between the (i−1)st and ith arrivals is uj(i)/λj, and the service

time required for the ith patient is mjvj(i). As a result, λj is the arrival rate and mj is the

mean service time requirement of a j-triage patient. Assume λj > 0, for all j ∈J , then let ΛJ

be the vector with components λj, j ∈J . Denote by MJ the vector with components mj, j ∈J .

For t≥ 0 and j ∈J , let the renewal process

Ej(t) := max

{
n≥ 0 :

n∑
i=1

uj(i)≤ λjt

}

model the number of j-triage arrivals till time t, and the renewal process

Sj(t) := max

{
n≥ 0 :

n∑
i=1

mjvj(i)≤ t

}

denote the number of service completions after the physician has devoted t time units to j-triage

patients. Let µj = 1/mj, which is the service rate for j-triage patients.

Among each class of triage patients, the service discipline is First-Come-First-Served (FCFS).

After completing service, a j-triage patient will join the queue of k-IP patients, with probability

Pjk, or leave the system directly, with probability 1−
∑

k∈KPjk. Let the matrix PJK = (Pjk)J×K

be the triage-to-IP matrix. We use φj(n) to denote the indicator function recording the class

that the nth j-triage patient will transfer to: this patient will transfer to the queue of k-IP

patients if φj(n) = ek, or leave the system directly if φj(n) = 0. Then {φj(n), n≥ 1} is a sequence

of i.i.d. random vectors with P(φj(n) = ek) = Pjk, and P(φj(n) = 0) = 1−
∑

k∈KPjk.
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2.2. IP patients

For IP classes, there are no external arrivals. All IP patients are transferred from either triage

or IP patients. We use Ek(t) to denote the number of k-IP arrivals till time t. As with triage

patients, for each class k ∈ K, one is given a sequence of i.i.d. random variables {vk(i), i =

1,2, . . .} and a real number mk. We assume E[vk(1)] = 1 and denote b2
k = var(vk(1)). Among

k-IP patients, the service time required for the ith patient receiving service is mkvk(i). (Unless

specified otherwise, we do not require the service discipline within each IP class to be FCFS.)

Then, mk is the mean service time requirement of a k-IP patient. Denote by M the vector with

components mk, k ∈K.

For t≥ 0 and k ∈K, use the renewal process

Sk(t) := max

{
n≥ 0 :

n∑
i=1

mkvk(i)≤ t

}

to represent the number of service completions after the physician has devoted t time units to

k-IP patients. Let µk = 1/mk, which is the service rate for k-IP patients.

After completing service, an l-IP patient will join the queue of k-IP patients with probability

Plk, or exit the system with probability 1−
∑

k∈KPlk. Let P = (Plk)K×K denote the IP-to-IP

transition matrix and assume that its spectral radius is strictly less than 1. (Equivalently, each

IP patient eventually leaves the ED with probability one.) Let φl(n) be the indicator function,

showing which class the nth served l-IP patient will transfer to; that is, the nth l-IP patient

finishing service will join the queue of k-IP patients if φl(n) = ek, and leave the system if

φk(n) = 0. Then {φl(n), n≥ 1} is a sequence of i.i.d. random vectors with P(φl(n) = ek) = Plk

and P(φl(n) = 0) = 1−
∑

k∈KPlk.

Remark 2 Our main result, Theorem 1, does not require FCFS within each IP class. This

is because only queue lengths are involved and the service order within an IP class does not

affect the result of the theorem. In contrast, for results involving waiting times or sojourn times,

FCFS will either appear in the assumptions (e.g. Propositions 2-4), or as part of the policy (e.g.

Subsections 6.1 and 6.2). We shall then assume FCFS explicitly as needed.

The arrivals of triage classes, services and transitions of triage and IP classes, are all assumed

mutually independent. This is not necessary for our proofs, but it simplifies calculations and

notation (as in Plambeck et al. (2001)). Indeed, our theory prevails when arrivals of triage

classes are correlated with service times of triage and IP classes (Dai and Kurtz (1995)).

Introduce a K-dimensional vector Λ = (λk)k∈K, in which λk is interpreted as the effective

arrival rate for k-IP patients, through the following equations:

ΛT = (ΛJ )TPJK+ ΛTP. (1)
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Then Λ is given by

ΛT = (ΛJ )TPJK(I −P )−1. (2)

Define M e
J = (me

j)j∈J by

M e
J =MJ +PJK(I −P )−1M, (3)

and call me
j the effective mean service time of j-triage patients. Now let M e = (me

k)k∈K be

M e = (I −P )−1M, (4)

where me
k is called the effective mean service time of k-IP patients. Then (3) can be written as

M e
J =MJ +PJKM

e. (5)

We refer to me
j as “effective” because it is the expected total service requirement of a j-triage

patient, accumulated up to leaving the system (and similarly for me
k).

2.3. An infeasible problem

Service goals for triage and IP patients are different:

• Triage patients facing deadlines: A j-triage patient must be served within a deadline

of dj time units from its arrival time; that is, a patient arriving to the system at time t must

start service before time t+dj. Formally, denote by τj(t) the age of the head-of-the-line j-triage

patient at time t. Then a feasible policy must ensure τj(t)≤ dj, for j ∈J at all t≥ 0.

• IP patients incurring costs: Denote by Qk(t) the number of k-IP patients in the system

at time t. Those k-IP patients incur cost at rate Ck(Qk(t)), for some convex functions Ck, k ∈K.

Consequently, the total cost will be incurred at rate
∑

k∈KCk(Qk(t)).

A control policy is defined as π = {Tj, j ∈ J ; Tk, k ∈ K}, in which Tj(t), j ∈ J , and Tk(t),

k ∈ K, are, respectively, the cumulative time allocated to j-triage patients and k-IP patients

during the first t time units. Then our objective is to solve the following optimization problem,

for any T ≥ 0:

min
Π

∫ T

0

∑
k∈K

Ck(Qk(s))ds

s.t. τj(t)≤ dj, ∀j ∈J and 0≤ t≤ T.
(6)

Here π is implicit in the formulation, and π ∈Π, the set of all candidate control policies (to be

introduced later).

The above problem is infeasible as the age processes τj(·), j ∈J , are stochastic. Our first task

is to assign to (6) a plausible meaning. To this end, we shall consider a converging sequence

of systems with the same structure as above, and show that in the limit (conventional heavy

traffic), there is a plausible generalization of “feasibility” for the triage constraints.

As for the optimal policy: if the physician always gives priority to triage patients, the queue

length of the IP patients will become large and congestion cost high; on the other hand, if
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priority is always given to IP patients, this reduces cost but the triage patients are likely to

violate their deadlines. We thus propose a threshold policy that determines the priority between

triage and IP patients and we prove that this policy is asymptotically optimal in the following

sense: it is asymptotically feasible, and it stochastically minimizes total congestion cost among

all asymptotically feasible policies.

2.4. Our proposed policy

A physician that becomes idle at time t adopts the following guidelines:

• Triage or IP: Give priority to triage patients if there exists a j ∈J such that τj(t)≥ dj− ε,

where ε is small relative to the smallest dj. (Our theory suggests, and simulations confirm, that

ε can be chosen one order of magnitude smaller than dj. For example, with minj∈J dj = 30

minutes, one can use ε=3 or 4 minutes.)

• Triage (Shortest-Deadline-First): Given that a triage patient is to be served, choose the

head-of-the-line patient from the class with index

j ∈ arg min
j∈J , Qj(t)6=0

[dj − τj(t)] .

• IP (Modified generalized cµ-rule): Given that an IP patient is to be served, choose the

head-of-the-line patient from the class with index

k ∈ arg max
k∈K

C ′k(Qk(t))

me
k

.

Here C ′k(·) is the derivative of Ck(·).

2.4.1. The intuition behind our proposed policy. The idea behind our proposed pol-

icy is first to maximize service effort for IP patients; given the fixed physician capacity, this

is the same as minimizing effort for triage patients subject to adhering to their deadline con-

straints; then one allocates the physician capacity to IP patients to greedily minimize queueing

cost rate. The approach is reasonable since physician capacity is assumed to be close to the

arriving workload. As a result, in our critically loaded (heavy traffic) system, there is enough

physician capacity for the triage patients to “see” the system in light-traffic, which implies that

their needs can be accommodated essentially ad hoc. (From the simulation, most triage patients

can meet their deadlines even in a time-varying environment, in which the system can be very

crowded; see §EC.9 for further discussion.)

The driver of heavy-traffic dynamics is (total) workload. At time t, while conditioning on all

queue lengths, its definition is ∑
j∈J

me
jQj(t) +

∑
k∈K

me
kQk(t),

which can be interpreted as the average time that a single server would empty the system,

assuming there are no new arrivals after time t. The significance of the workload is due to the
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fact that it is invariant to, and minimized by, any work-conserving policy (Proposition 1 and

(EC.18)). Since most j-triage customers at time t arrived to the system during (t− τj(t), t], it

must be that Qj(t)≈ λjτj(t) and the workload equals approximately∑
j∈J

me
jλjτj(t) +

∑
k∈K

me
kQk(t).

The invariance of the potential workload now implies that minimizing
∑

k∈Km
e
kQk(t) (which is

in concert with minimizing IP congestion costs) is equivalent to maximizing
∑

j∈J m
e
jλjτj(t).

Triage vs. IP: By the deadline constraints, an upper bound for
∑

j∈J m
e
jλjτj(t) is ω =∑

j∈J λjdjm
e
j , and our policy should thrive to narrow their gap. It does so by assigning priority

to triage patients when their deadlines are getting dangerously close.

Triage selection: The selection rule among triage classes is designed to ensure that their

age processes are balanced so that one class of triage patients is about to violate its deadline

constraint if and only if all other classes are close to their deadlines as well. Several balancing

rules can achieve this goal. The Shortest-Deadline-First rule above is one example. Another

example is to ensure
τj(t)

dj
≈ τj′ (t)

dj′
, for any j, j′ ∈ J , at all times t, which implies that the age

of any one triage class reveals those of the others. (Such balancing rules are common in heavy

traffic; see the age processes of Plambeck et al. (2001) in conventional heavy traffic, and the

QIR controls of Gurvich and Whitt (2009) in the QED regime.) Simulations show that both

rules perform well, and the one with the shortest-deadline-first rule is slightly better.

IP selection: After applying the threshold guideline and the triage selection rule, one expects

that
∑

k∈Km
e
kQk(t) is minimized, thus invariant under any work conserving policy. To minimize

cumulative queueing cost, it suffices to minimize cost rates greedily at each time. We are thus

led to a convex optimization problem with linear constraints (10). The KKT condition now

yields our generalized cµ rule, as in van Mieghem (1995) but with the µ’s replaced by 1/me
k to

account for feedbacks.

The above outline also guides the proofs of our main results, Theorems 1–3. These results

are consequences of the parsimonious nature of heavy-traffic dynamics (developed in §3), which

is also manifested through some congestion laws that will now be described.

The Snapshot principle: This is again a common feature of heavy traffic (Reiman (1982))

which, as explained on page 187 of Whitt (2002) and adopted here, tells us that during the

sojourn time of a patient within the ED, the various queue lengths do not change significantly

(or rather negligibly in diffusion scale). In a sense, the ED is temporarily in “steady state”, which

leads one to expect that some congestion laws in steady state, for example Little’s Law, would

also prevail temporarily. This snapshot principle then enables predictions of virtual waiting and

sojourn times, as we proceed to explain.

Waiting times: When a patient of a particular class completes service, the queue length of

that class approximately equals the number of arrivals during this patient’s queueing time. (In
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heavy traffic, service duration is negligible relative to queueing time.) By the snapshot principle,

the queue length Qk and the virtual waiting time ωk are then related via Qk(t)≈ λkωk(t), with

λk being the arrival rate to class k. On the other hand, Qk(t)≈ λkτk(t), as those patients in

the queue at time t arrived during the interval (t− τk(t), t]. It follows that ωk(t)≈ τk(t), which

suggests that an estimate of the virtual waiting time (or the waiting duration, predicted at an

arrival time) is simply the age of the head-of-the-line patient (see §5.4, which is in the spirit of

Ibrahim and Whitt (2009)).

Sojourn times: By the snapshot principle, the ED sojourn time of a patient arriving at

time t constitutes the sum, over the patient’s route, of all virtual waiting times at time t.

Moreover, virtual waiting times remain unchanged during successive visits of the patient to

a specific queue. It follows that, asymptotically, the ED sojourn time of a j-triage patient is

ωj(t)+
∑

k∈K hkωk(t), given that the patient experiences hk physician visits as a class k patient.

Now replace waiting times on the route by the ages of the head-of-the-line patients at the time

of arrival. One concludes that τj(t) +
∑

k∈K hkτk(t) can serve as a forecast for the ED sojourn

time, over a pre-specified route of an arrival at time t (§5.5).

3. Heavy traffic condition

From now on, we consider a sequence of systems, as discussed in Section 2. The sequence will

be indexed by r ↑∞, and r will be appended as a superscript to denote quantities associated

with the rth system. Then, in the rth system, the arrival rate of j-triage class is λrj and the

effective arrival rate for k-IP class is λrk. The deadline for j-triage patients is drj , while the cost

function Ck for k-IP patients will be specified in the next section. We assume that the service

times and transition vectors are invariant with respect to r; hence there will be no superscript

for terms relating to service times and transition vectors.

The traffic intensity for the rth system is defined to be

ρr :=
∑
j∈J

λrjmj +
∑
k∈K

λrkmk.

By (2) and (3), it can also be represented as

ρr =
∑
j∈J

λrjm
e
j .

This underscores the meaning of me
j being the effective mean service time for j-triage patients.

Assume that the sequence of our systems is in (conventional) heavy-traffic, that is,

λrj→ λj, j ∈J , and

r(ρr− 1)→ β, as r→∞,
(7)

for some given λj > 0, j ∈J , and β ∈R. Let Λ = (λk)k∈K be the vector obtained from (2), with

ΛJ = (λj)j∈J in (7).
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Under condition (7), the queue lengths are expected to be O(r), and similarly the ages of

head-of-the-line triage patients. Hence, for each j ∈J , we assume the following convergence for

the deadline of j-triage patients:

drj
r
→ d̂j, as r→∞,

where d̂j > 0, j ∈ J , are given constants. We assume that the indices of triage classes are

ordered such that d̂j is increasingly in j.

Denote by Qr
j(t) and Qr

k(t) the number of j-triage and k-IP patients in the rth system at

time t, respectively. We assume that the following initial condition holds:

Assumption 1 As r→∞,

r−1Qr
j(0) ⇒ 0, j ∈J ,

r−1Qr
k(0) ⇒ 0, k ∈K.

4. Asymptotic compliance and optimality

A control policy πr = {T rj , j ∈ J ; T rk , k ∈ K} determines the age processes of the head-of-

the-line patients in the rth system, τ r(·) = {τ rj (·), j ∈ J }. Introduce the diffusion-scaled age

processes through

τ̂ rj (t) = r−1τ rj (r2t), j ∈J .

We now consider policies that are asymptotically compliant, which is a generalization of

“feasibility” for the optimization problem (6).

Definition 1 A family of policies {πr} is said to be asymptotically compliant if, for any fixed

T ≥ 0,

sup
0≤t≤T

[
τ̂ rj (t)− d̂j

]+

⇒ 0, as r→∞, for all j ∈J .

Introduce the diffusion-scaled number of k-IP patients in the system by

Q̂r
k(t) = r−1Qr

k(r
2t), k ∈K. (8)

We assume that, at time t (in diffusion scaling), k-IP patients incur a queueing cost at rate

Ck(Q̂
r
k(t)), for some function Ck. (Concrete assumptions on Ck will be provided in Assumption

2.) Then the cumulative queueing cost is

Ur(t) :=

∫ t

0

∑
k∈K

Ck

(
Q̂r
k(s)

)
ds. (9)

Our heavy-traffic adaptation of problem (6) is to stochastically minimize Ur(t), for t > 0, over

all asymptotically compliant families of policies. Formally:

Definition 2 A family of control policies {πr∗} is said to be asymptotically optimal if
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1. it is asymptotically compliant and

2. for every t > 0 and every x> 0,

limsup
r→∞

P{Ur∗ (t)>x} ≤ lim inf
r→∞

P{Ur(t)>x} ;

here {Ur∗} is the family of cumulative queueing costs defined through (9) under the family of

control policies {πr∗}, and {Ur} is the sequence of queueing costs corresponding to any other

asymptotically compliant family of policies {πr}.

5. Main results

5.1. Cost functions and an optimization problem

For any given a≥ 0, consider the following optimization problem over x= (xk)k∈K:

min
x

∑
k∈K

Ck(xk)

s.t.
∑
k∈K

me
kxk = a,

x≥ 0.

(10)

We assume that the cost functions Ck, k ∈ K, satisfy conditions that are analogous to van

Mieghem (1995). Specifically:

Assumption 2 (Cost regularity) The nondecreasing cost functions {Ck, k ∈K} are strictly

convex, continuously differentiable. In addition, for all a> 0, there is an optimal solution x∗ to

the optimization problem (10) such that x∗k > 0, k ∈K.

By this assumption and the KKT condition, a sufficient condition for a nonnegative vector

x∗ = (x∗k)k∈K to be optimal is the existence of α0 ∈R such that

C ′k(x
∗
k)−α0m

e
k = 0,∑

k∈K

me
kx
∗
k = a.

This optimal vector x∗ satisfies C ′l(x
∗
l )/m

e
l =C ′k(x

∗
k)/m

e
k, for all l, k ∈K. Then the proof of the

following is elementary:

Lemma 5.1 Denote the optimal solution to (10) by

x∗ = ∆K(a).

Then the function ∆K(·) : R+→RK+ is well defined, and ∆k(a) is nondecreasing in a, for each

k ∈K.

The mapping ∆K is part of the lifting mapping used in our state-space collapse result; see

Theorem 3.
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5.2. An asymptotically optimal policy

We propose the following sequence of scheduling policies, which we denote by {πr∗}:

• Fix a sequence of εr such that εr

r
→ 0, as r→∞.

• When becoming idle, the physician deploys a threshold rule to determine which type of

patient classes to serve next—a triage-type patient or an IP-type patient.

— If there exists a j ∈J such that τ rj (t)≥ drj − εr, priority is given to triage-type patients;

— Otherwise, priority is given to IP-type patients.

• If triage patients are chosen to be served at time t, the physician chooses the head-of-the-

line patient from the class with index

j ∈ arg min
j∈J , Qr

j (t) 6=0

[drj − τ rj (t)]. (11)

• If IP patients are chosen to be served at time t, the physician chooses the head-of-the-line

patient from the class with index

k ∈ arg max
k∈K

C ′k(Q̂
r
k(t))

me
k

. (12)

Our main result is the following theorem, which we prove in §EC.5.

Theorem 1 (Asymptotic Optimality) The family of control policies {πr∗} is asymptotically

optimal.

Remark 3 Though in the current work we assume that the cost functions are strictly convex

(Assumption 2), our analysis still applies to linear cost functions. In that case, (10) becomes

a linear optimization problem. Then the optimal policy can be modified to one using a cµ-type

rule, which is a static priority rule that gives higher priority to the class with larger ck
me

k
; here

ck is the cost rate parameter.

5.3. A roadmap to prove Theorem 1

The proof takes two steps. First in Theorem 2 we prove that under any asymptotically “feasible”

policy, queueing costs can be stochastically bounded from below. Then we show that, under

the proposed policy, the lower bound can be achieved. This entails the “state-space-collapse”

result in Theorem 3 which, together with Step 1, establishes the asymptotic optimality of our

proposed policies.

For j ∈J and k ∈K, introduce K ×K matrices Γj = (Γjll′) and Γk = (Γkll′) through

Γjll′ =

{
Pjl(1−Pjl′), if l= l′

−PjlPjl′ , if l 6= l′
and Γkll′ =

{
Pkl(1−Pkl′), if l= l′

−PklPkl′ , if l 6= l′
.



Huang, Carmeli, and Mandelbaum: Patient Flow Control in ED
16 Article submitted to Operations Research; manuscript no. (Please, provide the mansucript number!)

Define Q̂w = Φ(X̂); here Φ is the 1-dimensional Skorohod mapping (Theorem 6.1 in Chen and

Yao (2001)), and X̂ is a Brownian motion with drift rate β and variance

∑
j∈J

(me
j)

2λja
2
j +
∑
j∈J

(∑
k∈K

me
kPjk−me

j

)2

λjb
2
j +
∑
k∈K

(∑
l∈K

Pklm
e
l −me

k

)2

λkb
2
k

+
∑
j∈J

λj(M
e)TΓjM e +

∑
k∈K

λk(M
e)TΓkM e.

Finally let ω̂=
∑

j∈J λj d̂jm
e
j .

Theorem 2 (Lower Bound) Fix any asymptotically compliant family of policies, with the

corresponding cumulative costs Ur defined in (9). Then for any t, x > 0,

lim inf
r→∞

P{Ur(t)>x} ≥ P

{∫ t

0

∑
k∈K

Ck

(
∆k

(
(Q̂w(s)− ω̂)+

))
ds > x

}
.

This theorem is proved in §EC.2.

In proving Theorem 1, we show that the proposed policy tames the system in the sense that

the weighted queue length converges (Proposition 1), and there is state-space collapse for the

queue length processes (Theorem 3).

Proposition 1 in fact holds under any family of work-conserving policies. To state it, recall

Q̂r
k from (8) and define similarly the diffusion-scaled queue length processes for triage classes:

Q̂r
j(t) = r−1Qr

j(r
2t), j ∈J . The diffusion-scaled weighted queue length processes is given by

Q̂r
w(t) =

∑
j∈J

me
jQ̂

r
j(t) +

∑
k∈K

me
kQ̂

r
k(t). (13)

Proposition 1 (Invariance principle for work-conserving policies) Under any family

of work-conserving policies,

Q̂r
w ⇒ Q̂w, as r→∞. (14)

This proposition is proved in §EC.3.

For any a ∈ R+, let ∆J (a) = (∆j(a))j∈J be defined as follows (d̂0 = 0): if
∑

j∈J λjm
e
j(d̂j −

d̂j′)
+ ≤ a<

∑
j∈J λjm

e
j(d̂j − d̂j′−1)+, then

∆j1(a) =

{
λj1

(
d̂j1 − d̂j′ +

(
a−

∑
j∈J λjm

e
j(d̂j − d̂j′)+

)
/(
∑

j≥j′ λjm
e
j)
)
, for j1 ≥ j′,

0, for j1 < j
′.

(15)

The function pair (∆J , ∆K) is the lifting mapping in the state-space collapse result. Let Q̂r =

(Q̂r
j , j ∈J ; Q̂r

k, k ∈K) and recall that ω̂=
∑

j∈J λj d̂jm
e
j .

Theorem 3 (State-Space Collapse) Under the family of control policies {πr∗}, Q̂r ⇒ Q̂,

where Q̂= (Q̂j, j ∈J ; Q̂k, k ∈K) is specified by

Q̂j(t) = ∆j

(
min

(
Q̂w(t), ω̂

))
, j ∈J ,

Q̂k(t) = ∆k

(
(Q̂w(t)− ω̂)+

)
, k ∈K.
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This theorem is proved in §EC.4.

Remark 4 One can verify that ∆j(·) is increasing for all j ∈J , and ∆j(ω̂) = λj d̂j. As a result,

Q̂j(t) ≤ λj d̂j, which can be translated into “asymptotic compliance” of the family of control

policies {πr∗}; on the other hand, those limits Q̂k appear in the lower bound of Theorem 2, which

shows that the family of control policies {πr∗} achieves the lower bound asymptotically.

5.4. Virtual waiting times

In this and the next subsection, we analyze our family of control policies {πr∗}. For its complete

characterization, assume that the service order within each IP class is FCFS.

Define the virtual waiting time of a patient class at time t as the time that a virtual patient

of this class, arriving at t, would have to wait till completing the current phase of service. This

definition is notationally convenient in our case, but it is slightly different from the traditional

one, which is the waiting time till service starts. As the service time is negligible in heavy

traffic scaling, these two definitions yield the same result. Denote by ωrj (t) and ωrk(t) the virtual

waiting times for j-triage class and k-IP class respectively, and define the diffusion-scaled virtual

waiting time processes by

ω̂rj (t) = r−1ωrj (r
2t), j ∈J , and ω̂rk(t) = r−1ωrk(r

2t), k ∈K. (16)

Proposition 2 (Asymptotic Sample-Path Little’s Law) Consider the family of control

policies {πr∗}, with FCFS service discipline among each IP patient class. As r→∞, we have

ω̂rj − Q̂r
j/λ

r
j⇒ 0, j ∈J ,

ω̂rk− Q̂r
k/λ

r
k⇒ 0, k ∈K.

(17)

This proposition is proved in §EC.7.1.

Remark 5 From the convergence of Q̂r in Theorem 3, one deduces the convergence of the

vector of virtual waiting times under the family of control policies {πr∗}.

Recall that τ rj (t) is defined as the age of the head-of-the-line j-triage patient in the rth

system. Similarly, let τ rk (t) be the age of the head-of-the-line k-IP patient in the rth system, with

its diffusion scaling τ̂ rk (t) = r−1τ rk (r2t), k ∈ K. Our next proposition establishes a connection

between virtual waiting time and age. Thus patients, arriving at a queue, can estimate their

waiting time to be the age of the head-of-the-line patient at that queue. This kind of result is

often referred to as a snapshot principle: during the stay of a patient in the system, the state

of the system remains essentially unchanged.
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Proposition 3 (Snapshot Principle—Virtual Waiting Time and Age) Consider the

family of control policies {πr∗}, with FCFS among each IP patient class. As r→∞, we then

have

ω̂rj − τ̂ rj ⇒ 0, j ∈J ,

ω̂rk− τ̂ rk ⇒ 0, k ∈K.

This proposition is proved in §EC.7.2.

5.5. Sojourn times

We now consider sojourn times associated with specific routes through the system, as in Reiman

(1984). To this end, one associates a route vector h ∈ ZK+ with each patient going through the

system, where hk denotes the number of times that the patient visits the physician as a k-IP

patient before leaving the system. A vector h∈ZK+ is called j-feasible if it is possible (there is a

positive probability) that a patient entering the system as a j-triage patient has a route vector

h. Denote by W r
jh(t) the sojourn time of the first j-triage patient that arrives after time t with

route vector h. This gives rise to the diffusion-scaled processes

Ŵ r
jh(t) = r−1W r

jh

(
r2t
)
, j ∈J .

Proposition 4 (Snapshot Principle—Sojourn Time and Queue Lengths) Under the

family of control policies {πr∗}, with FCFS among each IP patient class, if a route vector h is

j-feasible, then as r→∞,

Ŵ r
jh−

Q̂r
j

λrj
−
∑
k∈K

hk
λrk
Q̂r
k ⇒ 0, j ∈J .

This proposition is proved in §EC.7.3.

Remark 6 From Theorem 3, as r→∞, we have

Q̂r
j

λj
+
∑
k∈K

hk
λk
Q̂r
k ⇒ ∆j

(
min

(
Q̂w, ω̂

))
+
∑
k∈K

hk
λk

∆k

(
(Q̂w− ω̂)+

)
.

Then Proposition 4 yields an estimator for the distribution of Ŵ r
jh(·):

∆j

(
min

(
Q̂w(·), ω̂

))
+
∑
k∈K

hk
λk

∆k

(
(Q̂w(·)− ω̂)+

)
.

The following is a direct corollary of Propositions 2, 3 and 4.

Corollary 1 (Snapshot Principle—Sojourn Time and Ages) Under the family of con-

trol policies {πr∗}, with FCFS among each IP patient class, if a route vector h is j-feasible, then

as r→∞,

Ŵ r
jh− τ̂ rj −

∑
k∈K

hkτ̂
r
k ⇒ 0, j ∈J .
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Remark 7 This corollary suggests that, upon arrival, patients can estimate their sojourn time

by using the current age of the head-of-the-line patients on their routes (assuming the route is

known apriori). As in Reiman (1984), the diffusion limit does not depend on the specific order

in which physician-queues are visited.

6. Extensions and further discussion

6.1. Waiting costs

Consider now waiting costs, instead of queueing costs. To this end, assume that the service

discipline among each IP class is FCFS. This is without loss of generality, since every policy

has another policy that is at least as good and which serves FCFS within each IP class (van

Mieghem (1995)). Recall that ωrk(t) is the virtual waiting time of a k-IP patient at time t, and

its diffusion scaling ω̂rk(t) is defined in (16). We seek to stochastically minimize the cost

Ũr(t) :=
∑
k∈K

∫ t

0

Ck (ω̂rk(s))d
¯̄Er
k(s), (18)

among all asymptotically compliant families of control policies. Here ¯̄Er
k(t) = r−2Er

k(r
2t).

We now slightly modify the control policy {πr∗} in Section 5. The first step, using a threshold

rule to determine priority between triage classes vs. IP classes, and the step using (11) to

determine priorities among triage patients, do not change. The service principle among each

class is FCFS. The step to determine priority among IP classes changes as follows:

• If the IP classes are chosen to be served at time t, the physician chooses the head-of-the-line

patient from the class with index

k ∈ arg max
k∈K

C ′k

(
Q̂r

k(t)

λr
k

)
me
k

.

Denote this family of modified policies by {π̃r∗}.

Proposition 5 (Waiting Time Cost) The family of control policies {π̃r∗} is asymptotically

compliant. It is also asymptotically optimal among all asymptotically compliant families of

work-conserving control policies, in the sense that for any fixed t > 0 and x> 0,

limsup
r→∞

P
{
Ũr∗ (t)>x

}
≤ lim inf

r→∞
P
{
Ũr(t)>x

}
,

where {Ũr∗} is the family of cumulative cost, defined through (18) under the family of control

policies {π̃r∗}, and {Ũr} is the corresponding cost under any other asymptotically compliant

family of work-conserving policies {πr}.

The outline of the proof can be found in §EC.7.4.
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6.2. An alternative criterion: IP sojourn time

In this subsection, we consider an alternative model. The structure is identical to Figure 1,

except that congestion cost is associated with each patient’s sojourn time in the IP stage (as

opposed to individual queueing and waiting costs previously). We now add the assumption that

the routing matrix P is upper-triangular. Then, by enlarging the number of IP classes, the

routing behavior in the IP stage can be assumed to be deterministic; that is, the routing is not

random now. With the upper-triangular assumption, the number of routing vectors is finite.

Thus, without loss of generality, we assume that each patient follows a deterministic routing

vector and there is a finite number of routing vectors. We use C0 to denote the set of starting

IP classes of routes. For k ∈ C0, let Ck denote all the classes on the route that starts at k, and

call any class in
⋃
k∈C0 Ck\{k} a subsequent class. If a patient with starting class k waits ωk′ , as

a k′-IP patient (k′ ∈ Ck), then the sojourn time of this patient is
∑

k′∈Ck
ωk′ . Our problem is to

stochastically minimize the cost

S̃r(t) =
∑
k∈C0

∫ t

0

Ck

∑
k′∈Ck

ω̂rk′(s)

d ¯̄Er
k(s), (19)

among all asymptotically compliant families of control policies, for all t > 0.

We propose the following routing policy: The first step, using a threshold rule to determine

priority between triage classes and IP classes, and the step using (11) to determine priorities

among triage patients, do not change. The service principle among each class is FCFS. The

step determining the priority among IP classes changes as follows:

• Assign priority to all subsequent classes, while allocating the remaining physician capacity

to all starting classes by choosing the head-of-the-line patient from the class with index

k ∈ arg max
k∈C0

C ′k

(
Q̂r
k(t)/λ

r
k

)
me
k

. (20)

Here Q̂r
k is the diffusion-scaled queue length of the starting classes k ∈ C0, and me

k is the

corresponding effective mean service time.

We denote this family of policies by {π̃r∗∗}.

Proposition 6 (Sojourn Time Cost) The family of control policies {π̃r∗∗} is asymptotically

compliant. It is asymptotically optimal among all asymptotically compliant families of control

policies in the sense that, for any fixed t > 0 and x> 0,

limsup
r→∞

P
{
S̃r∗∗(t)>x

}
≤ limsup

r→∞
P
{
S̃r(t)>x

}
;

here {S̃r∗∗} is the family of cumulative cost defined through (19) under the family of control

policies {π̃r∗∗}, and {S̃r} is the corresponding cost under any other asymptotically compliant

family of policies {πr}.
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The outline of the proof can be found in §EC.7.5.

Giving priority to all subsequent classes when serving IP classes is consistent with the obser-

vation in Saghafian et al. (2012), where it is referred to as ‘Prioritize Old’ policy.

7. Numerical experiments

We use simulation to assess the relevance of our theory and the performance of our proposed

policy (§5.2). We simulate several systems. One system has stationary arrival rates plus only

the features analyzed in our paper. The other systems have time-varying arrival rates, delays

between successive visits to physicians, finite ED capacity, multiple servers and abandonment

(LWBS+LAMA), separately or jointly. These are features that were not assumed in our model.

As observed in the simulations, our proposed policy performs very well, and it outperforms

commonly-used alternatives in all systems. In §7.1–7.3, we present the parameters and sim-

ulation results for the stationary model. We check the robustness of the proposed policy in

§7.4 and §EC.9: §7.4 includes a model with several features, and §EC.9 provides more detailed

simulations.

7.1. Parameters

The empirical characteristics of our models are taken from 4 sources: the ED data at the

Technion SEELab (see SEELab Link), Carmeli (2012), Yom-Tov and Mandelbaum (2014) and

Armony et al. (2013). In our ED, there are 5 triage classes. We do not consider triage classes 1

and 2; they correspond to patients in critical condition and, hence, are treated separately and

with the highest priority. We thus focus on triage classes 3, 4 and 5, which we index by 1, 2,

3. This means that our j-triage patients are triage class j + 2 patients in practice, j = 1,2,3.

The deadlines for those three classes are 30, 60 and 120 minutes. In the ED we use, on average,

there were 302 patients (from all 5 triage classes) arriving at the ED each weekday in January

2004. Figure 2 depicts the shape (percentage) of daily arrivals per hour.

Figure 2 Hourly % of arrivals to an Israeli ED (January 2004)
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The arrival rates will be approximated here as stationary from 9:00 to 22:00 (Armony et al.

(2013)). During these hours, the average arrival rates of all patients to the ED is 17.82 per hour.

As Triage 1 and 2 patients are excluded, we assume that the average arrival rate of Triage 3, 4
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and 5 patients (hence 1-triage, 2-triage and 3-triage patients) is 14 per hour, that is, 14/60 per

minute. The relative weights of those three triage classes are 10%, 40% and 50% (see Carmeli

(2012)). The overall arrival process is taken to be Poisson, with Markovian split into the 3

triage classes.

IP patients may be classified into several classes, according to several factors such as treatment

type, emergency level and age; see Carmeli (2012). In our ED, patients experience 1-5 IP phases

(doctor visits): 28% go through 1 phase only and are then released, 30% have 2 phases, 28%

- 3, 11% - 4, and 3% go through 5 IP phases. For the sake of illustration, we classify the IP

patients into classes according to their number of IP visits, where we combine phases 3, 4 and

5 into a single phase. As a result, we have 3 IP classes, with the following transition matrices

(that is, after phase 1, 100 − 28% = 0.72 of the patients move on to class 2; after phase 2,

(72%− 30%)/72% = 0.58 of the patients switch to class 3):

PJK =

 1 0 0
1 0 0
1 0 0

 and P =

 0 0.72 0
0 0 0.58
0 0 0

 .

Average service times depend on the class of the patients. Generally, it varies from 5.8 minutes

(or 4.8 minutes if we include the trauma class) to 6.7 minutes (see Table 2 in Yom-Tov and

Mandelbaum (2014)). Service times are assumed to follow exponential distributions with mean

6.5 minutes. (This is without loss since only expectations determine our policy.) There are

typically 4–6 physicians working simultaneously in the ED, and sometimes this number reaches

8 physicians. In our model we assume that there are 5 physicians. This induces a service time

of a corresponding “super” physician (single-server), which is taken to be 6.5/5 = 1.3 minutes.

It follows that the traffic intensity is 0.9517.

Cost functions are generally difficult to estimate. Discussions with the director of our partner

ED suggested quadratic cost functions: Ck(x) = ckx
2 (see Carmeli (2012)). We assume that the

parameters ck are 1, 1.5, 2 for the 3 IP classes respectively.

7.2. Guideline on choosing ε in our proposed policy

Our recommendation for the threshold part is as follows: Assign priority to triage classes if,

for some j ∈ J , τj(t) ≥ dj − ε. Here ε is one order of magnitude smaller than the deadlines,

and its specific value depends on the target percentage of patients who violate the deadlines.

From our simulation experiments, when the minimum deadline is about 20 times longer than

the single-server’s service time, ε is to be chosen 2 or 3 times the service time so that less than

5% of the patients violate their deadlines. In our stationary model, the minimum deadline is

30 minutes. The average service time of the “super” single-server is 1.3 minutes. This gives rise

to ε = 3 ≈ 2.3× 1.3 minutes. Note that ε = 3 is about 1/2 of 6.5 minutes, the real physician

service time. If the ratio between the deadlines and the service time is larger, we can choose

an even larger ε. In systems with time-varying arrival rates (when there is a long period during
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which the system is overloaded), we propose to use a different ε for different classes, which

may be somewhat larger than in the stationary case. (For example, in §EC.9.3, where there

is a long period with traffic intensity that exceeds 1.2, we use ε = 4,6,8 for the three triage

classes with deadlines 30, 60, 120, respectively.) In systems with finite ED capacity and patient

abandonment, ε can be chosen slightly smaller (§7.4).

7.3. Simulation outcomes

We first simulate the ED under our recommended policy (denoted by TGcµ) to gain insight into

system performance. Then we compare this policy to three alternatives: global FCFS (denoted

FCFS), IP-patients-First (denoted IPF) and Triage-patients-First (denoted TrF). See Appendix

(§EC.9.1) for more detailed descriptions of these three policies.

We ran the system over 380 days (with time unit of 1 minute, the duration is 60 ∗ 24 ∗ 380 =

547,200 minutes). The initial period of 15 days is a warm-up period and hence excluded from our

output analysis. In particular, we excluded the initial triage patients: 14∗24∗15∗ (0.1,0.4,0.5),

who are roughly those arriving during the first 15 days. For each policy, we simulated 160

sample paths. Here we present the results for the stationary model with no other features.

(Other models, which may have time-varying arrivals, delays between physician visits, and other

features, separately or jointly, are described in §EC.9 and §7.4.)

Figure 3 displays a typical sample path under our proposed policy. (Corresponding histograms

will be shown and explained momentarily.) We plot the waiting times for all three triage classes

(in the figures except the low-right one: X-axes count the number of patients and Y -axes

represent waiting times in minutes), as well as the queue lengths of 3-triage patients and 1-IP

patients (in the low-right figure: X-axis represents time (in minutes) and Y -axis represents

queue sizes). The reason we chose these two classes is because 3-triage has the longest queue

length among the 3 triage classes (as expected) and 1-IP has the longest among the 3 IP classes.

Moreover, our simulated sample paths exhibit state-space collapse, hence the evolution of these

two classes determines that of the others.

Figure 3 A typical sample path of the system under our proposed policy (waiting time in minutes)
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From Figure 3 we make the following observations:

1. Most triage patients meet their deadlines: The ages of most triage patients are bounded

by their corresponding deadlines. Even if some violate the deadlines, these violations are very

small: Over the 160 sample paths, the fractions of violations are 4.61%, 4.57%, 4.57%, for 1-

triage, 2-triage and 3-triage patients respectively; the fractions of triage deadline violations by

more than 10% of their corresponding deadlines are negligible (less than 1%).

2. The queue lengths of IP classes are away from 0 only when the triage patients are close

to violating their deadlines. Alternatively, if triage deadlines are not tight then IP queues are

close to 0, which is expected from our theory.

Figure 4 depicts three histograms of waiting times for the three triage classes: the top one is

for 1-triage patients, the middle for 2-triage and the third for 3-triage (X-axes represent time

in minutes). Those histograms include data of all 160 sample paths, for a visualization of how

the triage patients violate their deadlines.

Figure 4 Histograms of patient waiting times under our proposed policy
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We see ample 1-triage patients whose waiting times are short, which is what we seek to

achieve since 1-triage patients are likely to be in a more serious medical state. This is due to

the fact that the deadline of 1-triage patients is much shorter than the other two deadlines:

1-triage patients are more likely to enjoy high priority because their d1 − τ1(t) is conceivably

the shortest (recall that d1 = 30, d2 = 60 and d3 = 120).

We also compare our policy with the above-mentioned three policies. We summarize our

findings in the following table, where Pj, j = 1,2,3, is the fraction of j-triage patients who violate

their corresponding deadline. “Cost Rate” is IP-cost per time-unit, averaged over samples. (The

numbers in parenthesis are half-length 95% confidence intervals.)

Our proposed policy (TGcµ) outperforms the global FCFS policy. The cost rate for IP-

patients-First (IPF) is small, but a large fraction of triage patients violate the deadlines. Triage-

patients-First (TrF) has patients that satisfy the deadline constraints, while its cost rate exceeds

3 times that of TGcµ. In summary, our proposed policy (TGcµ) clearly dominates the other

three alternatives.



Huang, Carmeli, and Mandelbaum: Patient Flow Control in ED
Article submitted to Operations Research; manuscript no. (Please, provide the mansucript number!) 25

Table 1 Comparison of the four policies

Policy P1 P2 P3 Cost Rate
TGcµ 4.61% (0.10%) 4.57% (0.09%) 4.57% (0.09%) 125.21 (10.36)
FCFS 31.27% (0.49%) 10.16% (0.38%) 1.15% (0.16%) 187.46 (7.20)
IPF 21.26% (0.48%) 21.28% (0.48%) 21.26% (0.48%) 0.88 (0.07)
TrF 0.00% (0.00%) 0.00% (0.00%) 0.00% (0.00%) 523.69 (20.11)

7.4. Robustness of the proposed policy

As will be elaborated on in §8, there are several ED features that have been theoretically left

out in our model. We now analyze the robustness of the proposed policy with respect to such

features, focusing on the ones that are most significant. To this end, we simulate a queueing

system incorporating these features jointly, which can be viewed as a proxy for a real ED. More

simulation results can be found in the Appendix (§EC.9).

Customers arrive according to a time-varying arrival rate, as in Figure 2. The average total

arrivals of 1-triage, 2-triage and 3-triage patients per day is 14 ∗ 24 = 336. (Notice that this is

even more than the actual arrival rate including triage 1 and 2 patients.) We further assume

constant arrival rates per hour, which are then given by 9.13, 7.00, 4.72, 5.31, 3.77, 2.71, 3.29,

5.09, 10.61, 17.51, 22.76, 24.51, 21.81, 20.16, 20.43, 18.36, 16.66, 17.88, 19.90, 20.80, 19.58, 17.77,

14.43, 11.83. We assume that there are 5 physicians and the mean service time is 6.5 minutes.

Then the traffic intensity varies from 0.1839 to 1.6663. We modify the TGcµ policy to the

following: give priority to triage classes if τ1(t)>d1− 4, or τ2(t)>d2− 4, or τ3(t)>d3− 5. The

ED capacity is fixed as 70. This number is chosen as a compromise between Armony et al. (2013)

and Bolandifar et al. (2014). The ED in Armony et al. (2013) is an Israeli one with 40 beds, and

patients can be served after waiting on chairs; the ED in Bolandifar et al. (2014) is a US one

with 70 beds. The length of delays between transfers follows an exponential distribution with

mean 60 minutes. When patients stay in the delayed queues, they still occupy beds; thus no IP

patient is blocked, i.e., only triage patients can be blocked. Let PBj be the blocking probability

of j-triage patients, j = 1,2,3. Finally, patients may leave the system without completing all

treatments. To be specific, each patient has a patience time when they join a queue, and a new

patience time starts after transfer to another queue. If the patience time expires when a patient

waits in the queue, that patient leaves the ED without further treatments and will never return.

The patience times are assumed to be exponential with the same rate θ = 0.001 for all classes

(mean patience time is about 16 hours). Let P(Ab) denote the fraction of abandoning patients,

among all patients who join the system; recall that it is the sum of LWBS and LAMA. We

simulate the systems under the four policies and the results are summarized in Table 2.

From Table 2, our proposed (TGcµ) policy still outperforms the other three policies. Most of

the triage patients (more than 96%) meet the deadline constraints, and the cost rate is much

smaller than those under the FCFS policy and the IPF policy. The FCFS policy can neither

meet the deadline constraint nor minimize cost rate. The IPF policy minimizes cost rate, but all

three triage classes violate their deadlines (about 35% of the patients). The TrF policy incurs

the highest cost among all four policies.
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Table 2 System performances under the four policies

Policy P1 P2 P3 P(Ab) PB1 PB2 PB3 Cost Rate
TGcµ 3.90% 3.76% 3.02% 6.80% 7.27% 7.30% 7.27% 43.27
FCFS 39.60% 0.90% 0.00% 7.18% 9.53% 9.53% 9.53% 139.47
IPF 37.42% 35.03% 34.24% 6.80% 6.11% 6.10% 6.10% 15.94
TrF 0.00% 0.00% 0.00% 7.21% 10.93% 10.93% 10.93% 261.26

8. Some future research directions

We considered the control problem of a multiclass queueing system with feedback and deadlines,

motivated by its application to EDs. While our model, as is, captures usefully the dynamics

of ED patient flow, it does leave out several noticeable ED characteristics, for example, delays

between physician visits, time-varying arrivals, finite ED capacity and patient abandonment;

all these have been incorporated in our simulation (§7.4 and §EC.9). The simulation results

suggest that our proposed policy still works better than its competitors. These, and other ED

features, are research worthy and will now be discussed.

8.1. Adding delays between physician visits

ED patients experience delays between successive visits to physicians. In Yom-Tov and Man-

delbaum (2014), the delay phases are modeled as infinite-server queues (content phases). One

would expect that, if the delays are short, those delays will have no impact asymptotically; at

the other extreme, if the delays are long, then those patients experiencing long delays can be

regarded as new arrivals and the system’s performance will change accordingly. The question is

how to make precise the meaning of “short” and “long”, which we now formalize as a conjecture

on the duration of delays.

Consider the basic (queue-length) model as an example. Following Yom-Tov and Mandelbaum

(2014), we model delays between visits to physicians as infinite-server queues with exponential

service times—these include the service time as well as the waiting time in say lab tests or for

X-ray results. The individual service rate for the infinite-server queue between j-triage patients

and k-IP patients is assumed to be rαjkµjk, and the one between l-IP patients and k-IP patients

is rαlkµlk; here µjk and µlk are fixed positive constants. The magnitude of the α’s will determine

“short” delays (large α) vs. “long” (small). Specifically, we conjecture that when α>−2 (for all

α’s), the delays are then short enough to leave our results intact. Conversely, αjk <−2 (for all

j, k) decouples the triage from IP—both can be controlled separately; and αlk <−2 (for all l, k)

pushes the IP feedback far enough into the future so that the IP sub-system can be analyzed

as a queueing system without feedback. All other cases require further thought and plausibly

a more delicate analysis. We provide an additional brief discussion in §EC.8.

Simulations in §EC.9.2 show that, even with relatively long delays, our proposed policy still

outperforms its competitors. Moreover, the queue lengths of IP classes are away from 0 only if

the triage patients are close to violating the deadlines, which suggests that our proposed policy

is still asymptotically optimal. However, the latter is yet to be proved.
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8.2. Time-varying arrival rates

Emergency departments, like many other service systems, must cope with arrival rates that are

significantly time-varying (Figure 2). In the present paper, we have focused our attention on

the ED afternoon-to-evening peak, which renders relevant a stationary critically-loaded model.

Nevertheless, it is still of interest, and theoretically challenging, to view the ED as a time-

varying queueing system. This is especially true when physician capacity cannot be matched

well with demand—an unfortunate recurring scene in EDs—in which case the system could

alternate between underloaded and overloaded periods of a day (Mandelbaum and Massey

(1995), Liu and Whitt (2012)). The triage part of the time-varying ED flow control is analyzed

in Carmeli (2012), where the following problem is solved, in a fluid framework and for a single

triage-class: Minimize physician capacity for triage patients subject to adhering to their triage

constraints. A corresponding IP part is carried out in Bäuerle and Stidham (2001). Combining

these two results could provide the starting point for solving the flow control problem for a

time-varying ED, within a fluid framework.

On the practical side, in §EC.9.3 we simulated an ED with time-varying arrival rates, using

parameters collected from a real ED. In this simulation, the traffic intensity exceeds 1.2 for a

long period of the day. Yet it shows that, under the proposed policy, most of the triage patients

meet their corresponding deadlines. The proposed policy also outperforms the three commonly-

used alternatives. One is thus left to theoretically explain the success of our proposed policy in

the face of time-varying arrivals.

8.3. Finite ED capacity

In our current work, we assume that ED capacity is infinite. This is true in many Israeli EDs

(including the ED of our partner hospital), as well as other EDs around the world (in which

patients can stay not only on beds, but also say in chairs). We showed that (theoretically and

via simulation), our proposed policy can keep the number of IP patients under control, which

may ameliorate the need for ample ED capacity. However, finite ED capacity is also one of

the major reasons for ED congestion; see for example Batt and Terwiecsch (2012), Hoot and

Aronsky (2008). As a result, it is of interest to understand the impact of finite ED capacity,

which would give rise to an admission control problem, as in Plambeck et al. (2001) and Ward

and Kumar (2008). Interestingly, admission control problems, with costs incurred by blocked

customers, in fact motivated Plambeck et al. (2001) and Ward and Kumar (2008).

We simulated EDs with finite ED capacity in §EC.9.5. Under realistic parameters, we varied

the ED capacity from 10 to 200 beds. The simulation results show that systems with large ED

capacity (larger than 100) are almost the same as systems with infinite ED capacity; hence our

results can be applied to systems with large ED capacity. For systems with moderate to small

ED capacity, a new theory is called for, but simulations still show that our proposed policy

outperforms its competitors.
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8.4. Length-of-Stay constraints

Many EDs implement, or at least strive for, an upper bound on patients’ overall Length of

Stay (LoS). The goal of our ED-Partner, for example, is to release a patient within at most

4 hours. Note, however, that if there are too many patients within the ED, LoS constraints

could simply become infeasible. As in §8.3, one could or, perhaps, should apply a rationalized

admission control—a rare protocol in our ED-Partner, but relatively prevalent in U.S. EDs in

the form of ambulance diversion (Deo and Gurvich (2011), Allon et al. (2013)).

8.5. On “non-interchangeable” physicians

In the current paper, we assume that the N -physicians are interchangeable, which is then

asymptotically equivalent to a system with a single “super” physician. In reality, ED physicians

are often “non-interchangeable”: a patient that starts service with a physician must remain

with that physician through all successive visits. This “non-interchangeable” system is not

work-conserving. However, we conjecture that it is still asymptotically equivalent to the system

analyzed in the present paper. Here is a brief discussion to justify such a conjecture.

When physicians are “non-interchangeable,” a physician cannot handle the patients being

assigned to other physicians; thus they can be viewed as N parallel service stations. Conse-

quently, the system has an inverted-V structure with N service stations, with each station

having a queue in which patients can wait for treatment. Since servers are i.i.d., we conjecture

that there is a “state-space-collapse” between the workload of those stations (Bramson (1998)).

Denote by Ŵ r
n(t) the diffusion-scaled workload at station n. Then, for every T > 0, we expect

to find a sequence δr ↓ 0 with P(sup0≤t≤T supm,n |Ŵ r
n(t)− Ŵ r

m(t)| ≥ δr) ≤ δr. Then, if there is

one physician whose diffusion-scaled workload exceeds δr, other physicians cannot be idle (with

probability 1−δr). With such a sequence of δr’s, one can apply Theorem 4.1 of Williams (1998),

which would imply that the diffusion limit of all servers’ workload is equivalent to one that

arises from “interchangeable” physicians.

8.6. Adding abandonment to triage or IP patients

Empirical evidence shows that the fraction of registered emergency patients who ‘Leave With-

out Being Seen’ (LWBS) is non-negligible (Armony et al. (2013), Green et al. (2006)). This has

become a growing concern in overcrowded EDs, as those LWBS patients may miss their nec-

essary care and be exposed to unnecessary medical risk (see for example Batt and Terwiecsch

(2013), Bolandifar et al. (2014)). The ‘LWBS’ phenomenon corresponds to adding abandon-

ment in our model. Customer abandonment has been analyzed in service systems such as call

centers, and has proved significant in affecting system performance and optimal decisions: see

Ward and Glynn (2005), Reed and Ward (2008) for single-server systems; Garnett et al. (2002),

Mandelbaum and Zeltyn (2009) for many-server systems; and Ward (2011) for a comprehensive

summary.
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Abandonment also significantly impact the structure of optimal policies. For systems without

feedback, Kim and Ward (2013) considered linear cost, with hazard rate scaling of patience time

distributions, and Ata and Tongarlak (2012) covered general cost functions with exponential

patience time distributions. Both works analyze the corresponding Brownian control problem,

and then interpret the results back to the original queueing system. They show that the cµ (or

the generalized cµ) is no longer an optimal policy. As a result, for systems with feedback, it

is also natural to conjecture that the generalized cµ rule is not optimal. More fundamentally,

a theoretical understanding of the impact of abandonment on systems with feedback is still

lacking.

Being practical, we simulated EDs with patient abandonment over a widely varied level of

impatience (§EC.9.6). Patient abandonment is costly, but it reduces both violation probabilities

and cost rates. The simulations show that our proposed policy outperforms its competitors

across all abandonment rates (though a new theory is required for rate exceeding 1%).
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Proofs

EC.1. Preliminary analysis

In this section, we derive some consequences of the asymptotically compliant assumption. We

also set up system dynamic equations that apply to all policies. These results will be used in

subsequent sections.

We start with an analysis that covers any asymptotically compliant family of control policies.

An implicit corollary from asymptotic compliance is that {τ̂ rj , j ∈J } are stochastically bounded,

which gives rise to many useful stochastic boundedness results on other processes.

For any j-triage class, j ∈J , introduce diffusion-scaled processes

Êr
j (t) = r−1

(
Er
j (r

2t)−λrjr2t
)
,

Ŝrj (t) = r−1(Sj(br2tc)−µjr2t), T̂ rj (t) = r−1
(
T rj (r2t)−λrjmjr

2t
)
,

and fluid-scaled processes

¯̄Qr
j(t) = r−2Qr

j(r
2t), ¯̄Er

j (t) = r−2Er
j (r

2t),

¯̄T rj (t) = r−2T rj (r2t), ¯̄Srj (t) = r−2Sj(r
2t).

From Donsker’s Theorem, as r→∞,

(Êr
j , Ŝ

r
j , j ∈J ) ⇒ (Êj, Ŝj, j ∈J ); (EC.1)

here (Êj, j ∈ J ) and (Ŝj, j ∈ J ) are independent driftless Brownian motions, with the corre-

sponding covariance matrices

diag(λja
2
j), diag(µjb

2
j).

The following lemma follows from the fact that the customers in queue at time t are those

customers arriving during the waiting time of the head-of-the-line customer.

Lemma EC.1.1 Under any asymptotically compliant family of control policies, and for all

T ≥ 0,

max
j∈J

sup
0≤t≤T

∣∣∣Q̂r
j(t)−λj τ̂ rj (t)

∣∣∣ ⇒ 0, as r→∞. (EC.2)

Proof: For each triage class j ∈ J , the patients in queue at time t are those patients arriving

between [t− τ rj (t), t], thus ∣∣Qr
j(t)−

(
Er
j (t)−Er

j

(
(t− τ rj (t))−

))∣∣≤ 1.

Then ∣∣∣Q̂r
j(t)−λrj τ̂ rj (t)

∣∣∣≤ ∣∣∣Êr
j (t)− Êr

j

(
(t− ¯̄τ rj (t))−

)∣∣∣+ 1

r
, j ∈J , (EC.3)

where ¯̄τ rj (t) = r−2τ rj (r2t). From the definition of asymptotic compliance, ¯̄τ rj ⇒ 0 and τ̂ rj are

stochastically bounded for all j ∈ J . Together with (EC.1) and (7), (EC.2) is easily proved

from (EC.3), in view of the Random-Time-Change theorem. �
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The following is a direct corollary, which translates the asymptotic compliance condition to

the language of queue length processes. As a result, the queue lengths of the triage patients

have upper bounds.

Corollary 2 Under any asymptotically compliant family of control policies, as r→∞,

sup
0≤t≤T

[
Q̂r
j(t)/λj − d̂j

]+

⇒ 0, j ∈J .

In the following lemma, we analyze the fluid busy time for triage patients, under any asymp-

totically optimal policy. We also prove that Q̂r
j(·) + µjT̂

r
j (·) converge, though we cannot (and

need not) prove that each of the summands converges individually. An important corollary is

stochastic boundedness, which will help us in choosing the appropriate scaling in the lower

bound proof.

Lemma EC.1.2 Under any asymptotically compliant family of control policies, as r→∞,

¯̄T rj (·) ⇒ λjmje(·), (EC.4)

Q̂r
j(·) +µjT̂

r
j (·) ⇒ Êj(·)− Ŝj (λjmje(·)) . (EC.5)

Consequently, Q̂r
j and T̂ rj are stochastically bounded.

Proof: For j ∈J , as

Qr
j(t) =Qr

j(0) +Er
j (t)−Sj(T rj (t)),

then

¯̄Qr
j(t) = ¯̄Qr

j(0) + ¯̄Er
j (t)−λrjt−

[
¯̄Srj

(
¯̄T rj (t)

)
−µj ¯̄T rj (t)

]
+µj

[
λrjmjt− ¯̄T rj (t)

]
(EC.6)

and

Q̂r
j(t) = Q̂r

j(0) + Êr
j (t)− Ŝrj ( ¯̄T rj (t))−µjT̂ rj (t). (EC.7)

From Corollary 2 and the Functional Law of Large Numbers, for any T ≥ 0, as r→∞,

sup
0≤t≤T

¯̄Qr
j(t)⇒ 0, sup

0≤t≤T

∣∣∣ ¯̄Er
j (t)−λrjt

∣∣∣⇒ 0, (EC.8)

sup
0≤t≤T

∣∣∣ ¯̄Srj ( ¯̄T rj (t)
)
−µj ¯̄T rj (t)

∣∣∣≤ sup
0≤t≤T

∣∣∣ ¯̄Srj (t)−µjt∣∣∣⇒ 0, (EC.9)

and (EC.4) can be easily obtained from (EC.6). Then (EC.1) and (EC.7), together with the

Random-Time-Change theorem, imply (EC.5). �

We next discuss system dynamics, without assuming a specific policy. Thus the following

discussion (till the end of this subsection) can be applied to all policies.

Recall that φj(n) is the indicator function recording the class to which the nth j-triage

patient transfers (§2.1), and φl(n) the indicator function recording the class to which the nth
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l-IP patient transfers (§2.2). We use φjk(n) to denote (φj(n))k, the kth element of φj(n), and

introduce

Φjk(n) :=
n∑
i=1

φjk(i),

to record the transition to k-IP patients from the first n j-triage patients. Similarly we use

φlk(n) to denote (φl(n))k, the kth element of φl(n) and then

Φlk(n) :=
n∑
i=1

φlk(i),

records the transition to k-IP patients from the first n served l-IP patients. Since the transition

vectors are assumed invariant with respect to r, there is no superscript to Φjk and Φlk.

Define the diffusion-scaled processes for j ∈J , l, k ∈K:

Êr
k(t) = r−1(Er

k(r
2t)−λrkr2t),

Ŝrk(t) = r−1(Sk(r
2t)−µkr2t), T̂ rk (t) = r−1(T rk (r2t)−λrkmkr

2t),

Φ̂r
jk(t) = r−1

(
Φjk(br2tc)−Pjkr2t

)
, Φ̂r

lk(t) = r−1
(
Φlk(br2tc)−Plkr2t

)
.

Then from Donsker’s Theorem, as r→∞,(
Φ̂r
jk(·), Φ̂r

lk(·), Ŝrk(·); j ∈J , l, k ∈K
)

⇒
(

Φ̂jk(·), Φ̂lk(·), Ŝk(·); j ∈J , l, k ∈K
)

;
(EC.10)

here (Φ̂jk(·), k ∈K), j ∈J , (Φ̂kl(·), l ∈K), k ∈K, (Ŝk(·), k ∈K) are independent driftless Brow-

nian motions, with covariance matrices

Γj, j ∈J , Γk, k ∈K, and diag(b2
k),

respectively.

Recall that Er
k(t) is the arrival process for k-IP patients, k ∈K. Then

Qr
k(t) =Qr

k(0) +Er
k(t)−Sk(T rk (t)), (EC.11)

and

Er
k(t) =

∑
j∈J

Φr
jk

(
Sj
(
T rj (t)

))
+
∑
l∈K

Φr
lk (Sl (T

r
l (t))) .

From this and (1), similarly to (EC.7),

Q̂r
k(t) = Q̂r

k(0) + Êr
k(t)− Ŝrk( ¯̄T rk (t))−µjT̂ rk (t)

= Q̂r
k(0) + Êrk(t)− Ŝrk( ¯̄T rk (t)) +

∑
j∈J

PjkµjT̂
r
j (t) +

∑
l∈K

PlkµlT̂
r
l (t)−µkT̂ rk (t);

(EC.12)

here

Êrk(t) =
∑
j∈J

Φ̂r
jk

(
¯̄Srj

(
¯̄T rj (t)

))
+
∑
l∈K

Φ̂r
lk

(
¯̄Srl

(
¯̄T rl (t)

))
+
∑
j∈J

PjkŜ
r
j

(
¯̄T rj (t)

)
+
∑
l∈K

PlkŜ
r
l

(
¯̄T rl (t)

)
.

(EC.13)
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Now introduce the following processes (Q̂r
w(t) is recalled from (13) for convenience):

Q̂r
w(t) =

∑
j∈J

me
jQ̂

r
j(t) +

∑
k∈K

me
kQ̂

r
k(t),

X̂r
w(t) =Q̂r

w(0) + r(ρr− 1)t+
∑
j∈J

me
j

[
Êr
j (t)− Ŝrj

(
¯̄T rj (t)

)]
+
∑
k∈K

me
k

[
Êrk(t)− Ŝrk

(
¯̄T rk (t)

)]
,

T̂ r+(t) =r−1

(
r2t−

∑
j∈J

T rj (r2t)−
∑
k∈K

T rk (r2t)

)
.

(EC.14)

From (5) and (4), one can verify that

−me
jµj +

∑
k∈K

Pjkµjm
e
k =−1, (EC.15)

−me
kµk +

∑
l∈K

Pklµkm
e
l =−1. (EC.16)

Multiplying (EC.7) by me
j , (EC.12) by me

k, and summing them up, one has for all t≥ 0:

Q̂r
w(t) = X̂r

w(t) + T̂ r+(t),

Q̂r
w(t)≥ 0,

T̂ r+(·) is nondecreasing with T̂ r+(0) = 0.

(EC.17)

Note that the policy at hand needs not be work-conserving, thus it is possible for T̂ r+ to increase

at t while still Q̂r
w(t)> 0. Hence

Q̂r
w(t)≥Φ(X̂r

w)(t), (EC.18)

for all t≥ 0, here Φ is the 1-dimensional Skorohod mapping; see for example, Theorem 6.1 in

Chen and Yao (2001). Equality in (EC.18) holds when the system operates under any work-

conserving policy.

EC.2. Proof of Theorem 2: Lower Bound

We prove Theorem 2, the lower bound, in this section. We relate the event in the probability

to three events. For the first, we can establish the desired lower bound; the second enables

flexibility to construct a new converging sequence with the desired lower bound; and the third

is negligible in probability.

Proof of Theorem 2: Fix an arbitrary family of control policies {πr}, which is asymptotically

compliant. Define

Γr1(t) =

{
Ur(t)>x, max

k∈K
sup

0≤s≤t

¯̄Qr
k(s)≤

1

r1/4

}
,

Γr2(t) =

{
max
k∈K

sup
0≤s≤t

¯̄Qr
k(s)>

1

r1/4

}
,

Γr3(t) =

{
Ur(t)≤ x, max

k∈K
sup

0≤s≤t

¯̄Qr
k(s)>

1

r1/4

}
.
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Here ¯̄Qr
k is the fluid-scaled number of k-IP patients in the system, defined via

¯̄Qr
k(t) = r−2Qr

k(r
2t), k ∈K.

Then

{Ur(t)>x}= (Γr1(t)∪Γr2(t))\Γr3(t). (EC.19)

First we prove

lim
r→∞

P{Γr3(t)}= 0. (EC.20)

For notational simplicity, denote Ir(s,ϑ) = [s, s+ 1

ϑr1/4
] and ϑ0 = 4maxk∈K µk. For s < u, let

Srk(s,u) = Sk (T r(r2s) + r2(u− s))−Sk (T r(r2s)), and ¯̄Srk(s,u) = r−2Srk(s,u). By the strong law

of large numbers for renewal processes, one can prove that

lim
r→∞

P

{
max
k∈K

sup
0≤s≤t

sup
u∈Ir(s,ϑ0)

¯̄Srk(s,u)>
1

2r1/4

}
= 0.

Note that, for all k ∈K and u> s, Qr
k(r

2s)≤Qr
k(r

2u) +Srk(s,u), because Srk(s,u) is the number

of departures of k-IP patients during [r2s, r2u], if the physician allocates all the capacity to

k-IP patients during this period. Thus ¯̄Qr
k(s)− ¯̄Qr

k(u)≤ ¯̄Srk(s,u) and

lim
r→∞

P

{
max
k∈K

sup
0≤s≤t

sup
u∈Ir(s,ϑ0)

[
¯̄Qr
k(s)− ¯̄Qr

k(u)
]
>

1

2r1/4

}
= 0.

It follows that

lim
r→∞

P{Γr3(t)} ≤ limsup
r→∞

P
{
Ur(t)≤ x,max

k∈K
sup

0≤s≤t
inf

u∈Ir(s,ϑ0)

¯̄Qr
k(u)>

1

2r1/4

}
≤ limsup

r→∞
P
{

min
k∈K

2

ϑ0r1/4
Ck

(
1

2
r3/4

)
≤ x,max

k∈K
sup

0≤s≤t
inf

u∈Ir(s,ϑ0)

¯̄Qr
k(u)>

1

2r1/4

}
≤ limsup

r→∞
P
{
r1/2

ϑ0

min
k∈K

2

r3/4
Ck

(
1

2
r3/4

)
≤ x
}

= 0.

This completes the proof of (EC.20).

We conclude from (EC.19) and (EC.20) that,

lim inf
r→∞

P{Ur(t)>x}= lim inf
r→∞

P{Γr1(t)∪Γr2(t)} . (EC.21)

Next we derive a lower bound for the latter term.

Denote

Γr0(t) =

{
max
k∈K

sup
0≤s≤t

¯̄Qr
k(s)≤ r−1/4

}
.

We first prove that, on the sets Γr0(t), the following is true in D[0, t]:

¯̄T rk (·) ⇒ λkmke(·), k ∈K. (EC.22)

This is similar to (EC.4), but for IP patients. It basically shows that, in fluid scaling, the

physician allocates the desired amount of time to k-IP patients.
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For s≤ t, define T̃ rj (s) = r−1T̂ rj (s), for j ∈J , and

Q̃r
k(s) = r−1Q̂r

k(s), Ẽrk(s) = r−1Êrk(s),

S̃rk(s) = r−1Ŝrk(s), T̃ rk (s) = r−1T̂ rk (s),

Φ̃r
jk(s) = r−1Φ̂r

jk(s), Φ̃r
lk(s) = r−1Φ̂r

lk(s),

for j ∈J , l, k ∈K. Then from (EC.12),∑
l∈K

PlkµlT̃
r
l (s)−µkT̃ rk (s) = Q̃r

k(s)− Q̃r
k(0)− Ẽrk(s) + S̃rk

(
¯̄T rk (s)

)
−
∑
j∈J

PjkµjT̃
r
j (s). (EC.23)

On Γr0(t), we know that sup0≤s≤t Q̃
r
k(s)⇒ 0. Together with (EC.4), the expression of Ẽrk in

(EC.13), and ¯̄T rk (s) ≤ s for all k ∈ K (those hold for all asymptotic compliant policies). We

deduce that the terms on the right-hand side of (EC.23) converge to 0. Then, on Γr0(t),∑
l∈K

PlkµlT̃
r
l (·)−µkT̃ rk (·)⇒ 0, in D[0, t].

Introducing the K-dimensional process T̃ rµ(s) = (µkT̃
r
k (s))k∈K in D[0, t], the above is then

(P T − I)T̃ rµ(·)⇒ 0, on Γr0(t).

Since P T − I is invertible, and all µk, k ∈K, are nonzero, we have

T̃ rk (·)⇒ 0, k ∈K in D[0, t],

which is equivalent to (EC.22).

For s≤ t, define X̂ r
0 (s) = X̂r

w(s) on Γr0(t), and otherwise,

X̂ r
0 (s) =

∑
j∈J

me
jQ̂

r
j(0) +

∑
k∈K

me
kQ̂

r
k(0) + r(ρr− 1)s

+
∑
j∈J

me
j

[
Êr
j (s)− Ŝrj

(
λrjmjs

)]
+
∑
k∈K

me
k

[
ˇ̂E
r

k(s)− Ŝrk (λrkmks)
]

;

here for k ∈K,

ˇ̂E
r

k(s) =
∑
j∈J

Φ̂r
jk

(
λrjs
)

+
∑
l∈K

Φ̂r
lk (λrl s) +

∑
j∈J

PjkŜ
r
j

(
λrjmjs

)
+
∑
l∈K

PlkŜ
r
l (λrlmls) .

From (EC.22) on Γr0(t), (EC.4) and λrk→ λk, k ∈K, one deduces that

X̂ r
0 ⇒ X̂,

in D[0, t], as r→∞. Here X̂ is the Brownian motion defined in §5.3. For s≤ t, introduce

Ẑr+(s) =

(
Φ(X̂ r

0 )(s)−
∑
j∈J

me
j(Q̂

r
j(s)−λrj d̂j)+−

∑
j∈J

me
jλ

r
j d̂j

)+

.

Then, by the continuity of Φ and the definition of asymptotic compliance, in D[0, t] as r→∞,

Ẑr+(·) ⇒
(
Q̂w(·)− ω̂

)+

.
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From (EC.18), on Γr0(t), ∑
k∈K

meQ̂r
k(s)≥ Ẑr+(s), s≤ t.

By the definition of ∆K and the nondecreasing property of ∆k, for all k ∈K, we have

Γr1(t)∪Γr2(t) ⊇

{∫ t

0

∑
k∈K

Ck

(
∆k(Ẑr+(s))

)
ds > x,max

k∈K
sup

0≤s≤t

¯̄Qr
k(s)≤ r−1/4

}
∪Γr2(t)

⊇

{∫ t

0

∑
k∈K

Ck

(
∆k(Ẑr+(s))

)
ds > x

}
.

Combined with (EC.21),

lim inf
r→∞

P{Ur(t)>x} ≥ lim inf
r→∞

P

{∫ t

0

∑
k∈K

Ck

(
∆k(Ẑr+(s))

)
ds > x

}
.

From the convergence of Ẑr+, the right-hand side is exactly the lower bound in Theorem 2. This

completes the proof. �

EC.3. Proof of Proposition 1: Invariance principle for work-conserving
policies

In this section we prove Proposition 1, which is the invariance principle for all work-conserving

policies. From the discussion after (EC.18), one has the expression Q̂r
w(t) = Φ(X̂r

w)(t). As a

result, it is enough to prove the convergence of X̂r
ω. The challenge is to establish the fluid limits

needed for the Random-time-change theorem: these are in the form of (EC.4) and (EC.22), and

they can be derived using the stochastic boundedness of the queue lengths. Then Proposition 1

can be proved using the Continuous mapping theorem together with the Random-time-change

theorem. We now carry out these steps.

Proof of Proposition 1: For any family of work-conserving policies, in addition to (EC.17),

the following holds as well:

T̂ r+ increases at t only when Q̂r
w(t) = 0.

As a result, equality holds in (EC.18).

From (EC.10), (EC.1) and the fact that ¯̄T rj (s)≤ s, j ∈ J , and ¯̄T rk (s)≤ s, k ∈K, one can see

that X̂r
w in (EC.14) is stochastically bounded. By the Lipschitz continuity of Φ (Theorem 6.1 in

Chen and Yao (2001)), Q̂r
w is stochastically bounded, which implies the stochastic boundedness

of Q̂r
j , j ∈ J , and Q̂r

k, k ∈ K. Then ¯̄Qr
j ⇒ 0, for j ∈ J . Note that (EC.6) is still true (under

work-conserving policies). One then has

¯̄T rj (·) ⇒ λjmje(·), j ∈J . (EC.24)

For k ∈K, following the procedure in proving (EC.22) in the proof of Theorem 2, one also has

¯̄T rk (·) ⇒ λkmke(·), k ∈K. (EC.25)
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Now (EC.24) and (EC.25), together with (EC.10), (EC.1) and the Random-Time-Change the-

orem, imply that, as r→∞,

X̂r
w⇒ X̂. (EC.26)

By the continuity of the mapping Φ, (14) follows. �

EC.4. Proof of Theorem 3: State-Space Collapse

We now analyze the family of control policies {πr∗} and prove Theorem 3. We follow the standard

framework in Bramson (1998) to prove State-space collapse.

EC.4.1. Hydrodynamic limit

Under the policies {πr∗}, the following dynamic equations hold:

Qr
j(t) =Qr

j(0) +Er
j (t)−Dr

j (t), j ∈J ,

Dr
j (t) = Sj

(
T rj (t)

)
, j ∈J ,

Qr
k(t) =Qr

k(0) +Er
k(t)−Dr

k(t), k ∈K,

Er
k(t) =

∑
j∈J

Φr
jk

(
Sj
(
T rj (t)

))
+
∑
l∈K

Φr
lk (Sl (T

r
l (t))) , k ∈K,

Dr
k(t) = Sk (T rk (t)) , k ∈K,∑

j∈J

[
T rj (t)−T rj (s)

]
+
∑
k∈K

[T rk (t)−T rk (s)]≤ t− s, for s < t,

Y r(t) = t−

(∑
j∈J

T rj (t) +
∑
k∈K

T rk (t)

)
,

∫ ∞
0

(drj − τ rj (t)− min
j′∈J ,Qj′ (t)6=0

{
drj′ − τ rj′(t)

})+

∧ 1

dT rj′(t) = 0, j′ ∈J ,

∫ ∞
0

1

(
max
j∈J

(τ rj (t)− drj)>−εr
)
d
∑
k∈K

T rk (t) = 0,

∫ ∞
0

(
max
k′∈K

C ′k′(Q̄k′(t))

me
k′

− C
′
k(Q̄k(t))

me
k

)+

dT̄k(t) = 0, k ∈K,∫ ∞
0

1

(
max
j∈J

(τ rj (t)− drj)≤−εr,
∑
k∈K

Qr
k(t)> 0

)
d
∑
j∈J

T rj (t) = 0,

∫ ∞
0

1

(∑
j∈J

me
jQ

r
j(t) +

∑
k∈K

me
kQ

r
k(t)> 0

)
dY r(t) = 0.

Introduce the hydrodynamic scaled processes for j-triage classes, j ∈J , by

Ēr
j (t) = r−1Er

j (rt), S̄rj (t) = r−1Sj(rt), τ̄ rj (t) = r−1τ rj (rt),

T̄ rj (t) = r−1T rj (rt), Q̄r
j(t) = r−1Qr

j(rt), D̄r
j (t) = r−1Dr

j (rt),

and for k-IP classes, k ∈K,

Ēr
k(t) = r−1Er

k(rt), S̄rk(t) = r−1Sk(rt),

T̄ rk (t) = r−1T rk (rt), Q̄r
k(t) = r−1Qr

k(rt), D̄r
k(t) = r−1Dr

k(rt).
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First we prove the following lemma, which is similar to Lemma EC.1.1. This lemma helps to

express age processes of triage patients in terms of their queue lengths.

Lemma EC.4.1 For any T > 0, sup0≤t≤T

∣∣λrj τ̄ rj (t)− Q̄r
j(t)
∣∣⇒ 0.

Proof: For each triage class j ∈ J , the patients in queue at time t are those patients arriving

between [t− τ rj (t), t]. Thus

∣∣Qr
j(t)−

(
Er
j (t)−Er

j

(
(t− τ rj (t))−

))∣∣≤ 1,

which implies ∣∣Q̄r
j(t)−

(
Ēr
j (t)− Ēr

j

(
(t− τ̄ rj (t))−

))∣∣≤ 1

r
, j ∈J . (EC.27)

The lemma now follows from the functional law of large numbers, sup0≤t≤T |Ēr
j (t)− λrjt| ⇒ 0,

and (EC.27). �

With Lemma EC.4.1, similarly to Plambeck et al. (2001), we have the following

Proposition 7 Assume Q̄r
j(0)⇒ Q̄j(0), j ∈ J , and Q̄r

k(0)⇒ Q̄k(0), k ∈ K, as r →∞. Then

under the proposed family of control policies, almost surely, every sequence {r} contains a

subsequence {rn} such that, the hydrodynamic scaled processes (Ērn
j , S̄

rn
j , τ̄

rn
j , T̄ rnj , Q̄rn

j , D̄
rn
j , j ∈

J ; Ērn
k , S̄

rn
k , T̄

rn
k , Q̄rn

k , D̄
rn
k , k ∈ K), converge uniformly on compact time sets to limit processes

(Ēj, S̄j, τ̄j, T̄j, Q̄j, D̄j, j ∈J ; Ēk, S̄k, T̄k, Q̄k, D̄k, k ∈K), which satisfy the following equations:

Q̄j(t) = Q̄j(0) +λjt− D̄j(t), j ∈J , (EC.28)

D̄j(t) = µjT̄j(t), j ∈J , (EC.29)

Q̄k(t) = Q̄k(0) + Ēk(t)− D̄k(t), k ∈K, (EC.30)

Ēk(t) =
∑
j∈J

µjPjkT̄j(t) +
∑
l∈K

µlPlkT̄l(t), k ∈K, (EC.31)

D̄k(t) = µkT̄k(t), k ∈K, (EC.32)

λj τ̄j(t) = Q̄j(t), j ∈J , (EC.33)∑
j∈J

[T̄j(t)− T̄j(s)] +
∑
k∈K

[T̄k(t)− T̄k(s)]≤ t− s, for s < t, (EC.34)

Ȳ (t) = t−

(∑
j∈J

T̄j(t) +
∑
k∈K

T̄k(t)

)
, (EC.35)

∫ ∞
0

(dj − Q̄j(t)

λj
− min
j′∈J ,Q̄j′ (t) 6=0

{
dj′ −

Q̄j′(t)

λj′

})+

∧ 1

dT̄j(t) = 0, j ∈J , (EC.36)

∫ ∞
0

1

(
max
j∈J

(Q̄j(t)−λj d̂j)> 0

)
d
∑
k∈K

T̄k(t) = 0, (EC.37)

∫ ∞
0

(
max
k′∈K

C ′k′(Q̄k′(t))

me
k′

− C
′
k(Q̄k(t))

me
k

)+

dT̄k(t) = 0, k ∈K, (EC.38)
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∫ ∞
0

1

(
max
j∈J

(Q̄j(t)−λj d̂j)< 0,
∑
k∈K

Q̄k(t)> 0

)
d
∑
j∈J

T̄j(t) = 0, (EC.39)

∫ ∞
0

1

(∑
j∈J

me
jQ̄j(t) +

∑
k∈K

me
kQ̄k(t)> 0

)
dȲ (t) = 0. (EC.40)

Remark 8 We call any S̄ = (Ēj, S̄j, τ̄j, T̄j, Q̄j, D̄j, j ∈ J ; Ēk, S̄k, T̄k, Q̄k, D̄k, k ∈ K) satisfying

(EC.28)–(EC.40) a hydrodynamic model solution. One can prove that any hydrodynamic model

solution is Lipschitz, hence absolutely continuous and differentiable almost everywhere.

Proposition 8 Any hydrodynamic model solution satisfies∑
j∈J

me
jQ̄j(t) +

∑
k∈K

me
kQ̄k(t) =

∑
j∈J

me
jQ̄j(0) +

∑
k∈K

me
kQ̄k(0).

Proof: From the fact that
∑

j∈J λjm
e
j = 1, (EC.15)–(EC.16) and (EC.28)–(EC.32), one gets∑

j∈J

me
jQ̄j(t) +

∑
k∈K

me
kQ̄k(t) =

∑
j∈J

me
jQ̄j(0) +

∑
k∈K

me
kQ̄k(0) + Ȳ (t).

From (EC.40), (EC.34) and (EC.35), we deduce that Ȳ (·) = 0. This completes the proof. �

EC.4.2. State-space collapse

First we prove a state-space collapse result for any hydrodynamic model solution. Here is the

idea: the queue length of a class cannot be too small, otherwise that class will not receive

service and its queue length will increase; conversely, queue length of a class cannot be too

large, otherwise high priority will be assigned to that class and the queue length will decrease.

Proposition 9 (State-space collapse for hydrodynamic model solutions) Fix C > 0.

For any hydrodynamic model solution with
∑

j∈J m
e
jQ̄j(0) +

∑
k∈Km

e
kQ̄k(0)<C, there exists a

constant T0 such that, for all t≥ T0,

Q̄J (t) = ∆J

(
min

(∑
j∈J

me
jQ̄j(t) +

∑
k∈K

me
kQ̄k(t), ω̂

))
,

Q̄K(t) = ∆K

(∑
j∈J

me
jQ̄j(t) +

∑
k∈K

me
kQ̄k(t)− ω̂

)+
 .

Furthermore, if

Q̄J (0) = ∆J

(
min

(∑
j∈J

me
jQ̄j(0) +

∑
k∈K

me
kQ̄k(0), ω̂

))
,

Q̄K(0) = ∆K

(∑
j∈J

me
jQ̄j(0) +

∑
k∈K

me
kQ̄k(0)− ω̂

)+
 ,

then Q̄J (t)≡ Q̄J (0) and Q̄K(t)≡ Q̄K(0), for all t≥ 0.
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Proof: We first prove the results for triage patients. For j ∈J , define

fj(t) =
1

λj d̂j

(
Q̄j(t)−∆j

(
min

(∑
j∈J

me
jQ̄j(0) +

∑
k∈K

me
kQ̄k(0), ω̂

)))−
, t≥ 0.

If fj(t)> 0 and fj is differentiable at t, then we claim

f ′j(t) =− 1

d̂j
< 0.

Indeed, if this is not the case, then T̄ ′j(t) > 0 and from (EC.36), one has d̂j − Q̄j(t)/λj =

minj′∈J ,Q̄j′ (t) 6=0{d̂j′ − Q̄j′(t)/λj′}. Together with fj(t) > 0, one can prove by contradiction

that Q̄j(t)< λj d̂j, which then implies maxj′∈J (Q̄j′ − λj′ d̂j′)< 0. Then from (EC.39), one has

Q̄k(t) = 0, for all k ∈K. This, together with fj(t)> 0 and d̂j − Q̄j(t)/λj = minj′∈J ,Q̄j′ (t)6=0{d̂j′ −

Q̄j′(t)/λj′}, contradict the definition of ∆j.

As a result, fj will decrease to 0 in a finite time (denoted by T1) and once becoming 0, it will

never be positive again. Now there are a finite number of triage classes, hence, after a finite

time (denoted by T2 ≥ T1), all fj will be 0 and will never become positive again.

For t≥ T2, we have fj(t) = 0, for all j ∈J . Define

gj(t) =
1

λj d̂j

(
Q̄j(t)−∆j

(
min

(∑
j∈J

me
jQ̄j(0) +

∑
k∈K

me
kQ̄k(0), ω̂

)))+

, t≥ 0.(EC.41)

We can assume g1(t)> 0 whenever
∑

j∈J λj d̂jmjgj(t)> 0. Otherwise, if g1(t) = 0 and there is

another j ∈J such that gj(t)> 0, then from the definition of ∆J , d̂1− Q̄1(t)/λ1 >minj∈J [d̂j −

Q̄j(t)/λj], and from (EC.36), T̄ ′1(t) = 0 and g′1(t) = 1

d̂1
> 0. Hence right after t, g1(·)> 0 holds.

Now, as fj(t) = 0, for all j ∈J and over t≥ T2, together with g1(t)> 0 and the definition of

∆j, we have
∑

j∈J m
e
jQ̄j(t) +

∑
k∈Km

e
kQ̄k(t)> ω̂,

∑
k∈K Q̄k(t)> 0, and for 1∈J , Q̄1(t)>λ1d̂1.

Then from (EC.37),
∑

k∈K T̄
′
k(t) = 0. From (EC.40),

∑
j∈J T̄

′
j(t) = 1. As a result, the derivative

of
∑

j∈J λj d̂jmjgj(t) is ∑
j∈J

λjmj − 1 < 0.

Thus in finite time (denoted by T3 ≥ T2),
∑

j∈J λj d̂jmjgj(t) will hit 0. It follows that, for all

t≥ T3, fj(t) = gj(t) = 0, j ∈J . Finally, from Proposition 8,

Q̄J (t) =∆J

(
min

(∑
j∈J

me
jQ̄j(0) +

∑
k∈K

me
kQ̄k(0), ω̂

))

=∆J

(
min

(∑
j∈J

me
jQ̄j(t) +

∑
k∈K

me
kQ̄k(t), ω̂

))
, for t≥ T3.

Now we turn to the IP patients. From the above discussion, for all t≥ T3,

∑
k∈K

me
kQ̄k(t) =

(∑
j∈J

me
jQ̄j(0) +

∑
k∈K

me
kQ̄k(0)− ω̂

)+

.
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Recall the definition of ∆k in Lemma 5.1 and let

Q̄0 = ∆K

(∑
j∈J

me
jQ̄j(0) +

∑
k∈K

me
kQ̄k(0)− ω̂

)+
 .

Then for any k, l ∈K,
C′k(Q̄0k)

me
k

=
C′l(Q̄0l)

me
l
. We now prove that there exists a constant T0 such that,

for all t≥ T0,

Q̄K(t) = Q̄0. (EC.42)

If (EC.42) does not hold at a certain t, then there exists a k+ such that, for all k− ∈{
k ∈K, C

′
k(Q̄k(t))

me
k
− C′k(Q̄0k)

me
k

< 0
}

,

C ′k+(Q̄k+(t))

me
k+

>
C ′k+(Q̄0k+)

me
k+

=
C ′k−(Q̄0k−)

me
k−

>
C ′k−(Q̄k−(t))

me
k−

.

From (EC.38) we then have T̄ ′k−(t) = 0, which implies Q̄′k−(t) = λk > 0. As a result,
C′k−(Q̄k−(t))

me
k−

is increasing in t. As there is a finite number of IP classes, there must be a finite time T0

such that, for all t≥ T0,
C′k(Q̄k(t))

me
k
≥ C′k(Q̄0k)

me
k

, for all k ∈ K, which is equivalent to Q̄k(t)≥ Q̄0k.

However, we have ∑
k∈K

me
kQ̄k(t) =

∑
k∈K

me
kQ̄0k,

hence Q̄k(t) = Q̄0k, for all k ∈K and t≥ T0. This completes the proof. �

Our main result in this subsection is the following proposition, which establishes state-space

collapse for triage patients. The proof follows from Proposition 9 and the framework of Bramson

(1998). For completeness, we include it here.

Proposition 10 Under Assumption 1 and the proposed family of control policies, as r→∞,

sup
0≤t≤T

∣∣∣Q̂r
j(t)−∆j

(
min

(
Q̂r
w(t), ω̂

))∣∣∣ ⇒ 0,

sup
0≤t≤T

∣∣∣∣Q̂r
k(t)−∆k

((
Q̂r
w− ω̂

)+
)∣∣∣∣ ⇒ 0.

Proof: Lemma 9 implies Assumption 3.2 of Bramson (1998). Then from Theorem 5 of Bramson

(1998), we deduce “multiplicative state-space collapse” (Equation (3.41) there):

sup0≤t≤T

∣∣∣Q̂r
j(t)−∆j

(
min

(
Q̂r
w(t), ω̂

))∣∣∣
sup0≤t≤T Q̂

r
w(t)∨ 1

⇒ 0,

sup0≤t≤T

∣∣∣∣Q̂r
k(t)−∆k

((
Q̂r
w− ω̂

)+
)∣∣∣∣

sup0≤t≤T Q̂
r
w(t)∨ 1

⇒ 0.

Note that here Q̂r
w(t) plays the role of Ŵ r in Theorem 5 of Bramson (1998).
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Next, our Proposition 1 implies that sup0≤t≤T Q̂
r
w(t)∨1 is stochastically bounded. As a result,

sup
0≤t≤T

∣∣∣Q̂r
j(t)−∆j

(
min

(
Q̂r
w(t), ω̂

))∣∣∣ ⇒ 0,

sup
0≤t≤T

∣∣∣∣Q̂r
k(t)−∆k

((
Q̂r
w− ω̂

)+
)∣∣∣∣ ⇒ 0,

which proves the proposition. �

Proof of Theorem 3: This can be deduced from Propositions 1 and 10. �

EC.5. Proof of Theorem 1: Asymptotic Optimality

Proof of Theorem 1: First, it can be verified that ∆j(min (x, ω̂)) ≤ λj d̂j, for any x and

j ∈J . Then from Theorem 3, under the proposed policies {πr∗}, Q̂r
j⇒ Q̂j ≤ λj d̂j. An analysis of

work-conserving policies (Lemma EC.6.2) shows that (EC.2) still holds for any work-conserving

policy. This implies that Q̂r
j ⇒ Q̂j ≤ λj d̂j is equivalent to “asymptotic compliance” for work-

conserving policies. As a result, the family of policies {πr∗} is asymptotically compliant.

By Theorem 3, together with the continuity of the cost functions, we also have∫ t

0

∑
k∈K

Ck

(
Q̂r
k(s)

)
ds ⇒

∫ t

0

∑
k∈K

Ck

(
Q̂k(s)

)
ds=

∫ t

0

∑
k∈K

Ck

(
∆k

(
(Q̂w(s)− ω̂)+

))
ds.

Hence, under the family of the proposed policies, the lower bound in Theorem 2 is attained. As

a result, the family of the proposed policies is asymptotically optimal. �

EC.6. Additional results for work-conserving policies

We now establish some additional results for work-conserving policies which, in particular,

apply to our proposed family of control policies {πr∗}. We first prove stochastic boundedness

of the arrival processes for IP classes, and the busy time processes of triage and IP classes.

This stochastic boundedness will be then used to prove that the fluid virtual waiting times

converge to 0. Finally, we prove that the queue length and the age process for triage patients

are close in diffusion scale. Notice that we are now considering work-conserving policies, instead

of asymptotically compliant policies as in Lemma EC.1.1. Consequently, we do not have at our

disposal the stochastic boundedness of τ̂ rj for work-conserving policies, until we justify such

boundedness independently.

From the discussion in the proof of Proposition 1, Q̂r
j , j ∈ J , are stochastically bounded

and (EC.24) holds for any work-conserving policies. With these facts, notice that (EC.7) still

prevails under work-conserving policies; hence we can verify the convergence (EC.5). As Q̂r
j ,

j ∈J , are stochastically bounded, T̂ rj , j ∈J , are also stochastically bounded.

Next consider IP patients. Define ŶrK = (Ŷrk)k∈K, k ∈K, by

Ŷrk(t) = Q̂r
k(t)− Q̂r

k(0)− Êrk(t) + Ŝrk(
¯̄T rk (t))−

∑
j∈J

PjkµjT̂
r
j (t),
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and recall that Êrk is defined in (EC.13). Denote T̂ rµ = (µkT̂
r
k )k∈K. Then from (EC.12),

T̂ rµ = (P T − I)−1ŶrK. (EC.43)

We can easily verify the stochastic boundedness of ŶrK from the facts ¯̄T rj (s)≤ s and ¯̄T rk (s)≤ s,

for all j ∈J , k ∈K and s≥ 0. This implies the stochastic boundedness of T̂ rµ , and consequently

the stochastic boundedness of T̂ rK = (T̂ rk )k∈K.

Note that, for all k ∈K,

Êr
k(t) = Êrk(t) +

∑
j∈J

PjkµjT̂
r
j (t) +

∑
l∈K

PlkµlT̂
r
l (t). (EC.44)

The stochastic boundedness of Êr
k can be then obtained from the stochastic boundedness of Êrk ,

T̂ rj and T̂ rl (j ∈J , k, l ∈K).

Define the fluid-scaled virtual waiting time processes as

¯̄ωrj (t) = r−2ωrj
(
r2t
)
, j ∈J , ¯̄ωrk(t) = r−2ωrk

(
r2t
)
, k ∈K.

First we prove the following:

Lemma EC.6.1 Under any family of work-conserving policies, with FCFS among each IP

class, as r→∞,

¯̄ωrj ⇒ 0, j ∈J , (EC.45)

¯̄ωrk ⇒ 0, k ∈K. (EC.46)

Proof: We only prove the results for j ∈J , as the proof for k ∈K is the same. First note that,

for any ε > 0, if ωrj (t)≥ ε,

Sj
(
T rj (t+ ε)

)
≤Qr

j(0) +Er
j (t).

Then ¯̄ωrj (t)≥ ε ensures

Ŝrj

(
¯̄T rj (t+ ε)

)
+µjT̂

r
j (t+ ε) +λrjrε≤ Q̂r

j(0) + Êr
j (t).

Hence, for any fixed T > 0 and ε > 0, we have

P
{

sup
0≤t≤T

¯̄ωrj (t)≥ ε
}
≤ P

{
λrjrε≤ sup

0≤t≤T

∣∣∣Q̂r
j(0) + Êr

j (t)− Ŝrj
(

¯̄T rj (t+ ε)
)
−µjT̂ rj (t+ ε)

∣∣∣} .
However, the stochastic boundedness of sup0≤t≤T

∣∣∣Q̂r
j(0) + Êr

j (t)− Ŝrj
(

¯̄T rj (t+ ε)
)
−µjT̂ rj (t+ ε)

∣∣∣,
together with the fact that λrjrε→∞, implies that the probability on the right-hand side above

converges to 0. Hence

lim
r→∞

P
{

sup
0≤t≤T

¯̄wrj (t)≥ ε
}

= 0.

This completes the proof. �
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Lemma EC.6.2 Under any family of work-conserving policies, for any given T > 0, as n→∞,

we have

sup
0≤t≤T

∣∣∣λrj τ̂ rj (t)− Q̂r
j(t)
∣∣∣ ⇒ 0, j ∈J .

Proof: The proof follows exactly that of Lemma EC.1.1, by starting with sup0≤s≤t ¯̄τ rj (s)⇒ 0;

the latter is a consequence of Lemma EC.6.1 and sups≤t τ
r
j (s) ≤ sups≤tω

r
j (s), for all t and j.

Note that the assumptions here slightly differ from Lemma EC.1.1. In the latter, the stochastic

boundedness of τ̂ rj , j ∈ J , follows from asymptotic compliance, while here we do not have the

stochastic boundedness of τ̂ rj , j ∈J , in advance. �

EC.7. Proofs of Propositions 2–6

EC.7.1. Proof of Proposition 2: Asymptotic Sample-Path Little’s Law

Lemma EC.7.1 Under the family of control policies {πr∗}, as r→∞,(
T̂ rj , j ∈J ; Êr

k, T̂
r
k , k ∈K

)
⇒
(
T̂j, j ∈J ; Êk, T̂k, k ∈K

)
,

for some continuous processes
(
T̂j, j ∈J ; Êk, T̂k, k ∈K

)
satisfying

µjT̂j(t) =−Q̂j(t) + Êj(t)− Ŝj (λjmjt) , (EC.47)

Êk(t) = Êk(t) +
∑
j∈J

PjkµjT̂j(t) +
∑
l∈K

PlkµlT̂l(t), (EC.48)

(P T − I)
(
µkT̂k

)
k∈K

= ŶK. (EC.49)

Here

Êk(t) =
∑
j∈J

Φ̂jk (λjt) +
∑
l∈K

Φ̂lk (λlt) +
∑
j∈J

PjkŜj (λjmjt) +
∑
l∈K

PlkŜl (λlmlt) ,

Ŷk(t) = Q̂k(t)− Êk(t) + Ŝk(λkmkt)−
∑
j∈J

PjkµjT̂j(t).

Proof: From (EC.7), (EC.44) and (EC.43), we have (T̂ rµ = (µkT̂
r
k )k∈K)

T̂ rj (t) =
[
Q̂r
j(0)− Q̂r

j(t) + Êr
j (t)− Ŝrj

(
¯̄T rj (t)

)]
/µj, (EC.50)

Êr
k(t) = Êrk(t) +

∑
j∈J

PjkµjT̂
r
j (t) +

∑
l∈K

PlkµlT̂
r
l (t), (EC.51)

T̂ rµ(t) = (P T − I)−1ŶrK(t), (EC.52)

where

Êrk(t) =
∑
j∈J

Φ̂r
jk

(
¯̄Srj

(
¯̄T rj (t)

))
+
∑
l∈K

Φ̂r
lk

(
¯̄Srl

(
¯̄T rl (t)

))
+
∑
j∈J

PjkŜ
r
j

(
¯̄T rj (t)

)
+
∑
l∈K

PlkŜ
r
l

(
¯̄T rl (t)

)
,

Ŷrk(t) = Q̂r
k(t)− Q̂r

k(0)− Êrk(t) + Ŝrk(
¯̄T rk (t))−

∑
j∈J

PjkµjT̂
r
j (t).
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As a result,
(
T̂ rj , j ∈J ; Êr

k, T̂
r
k , k ∈K

)
can be represented as a continuous mapping from(

Q̂r
j , Ê

r
j , Ŝ

r
j ,

¯̄T rj , Φ̂
r
jk, Φ̂

r
lk, Q̂

r
k, Ŝ

r
k,

¯̄T rk , j ∈J , l, k ∈K
)

, the convergence of which can be obtained

from the assumptions and Theorem 3. The expressions (EC.47)–(EC.49) in the lemma can be

verified from (EC.50)–(EC.52). This completes the proof. �

Proof of Proposition 2: We prove the result only for j-triage patients. For k-IP patients,

the proof is similar. The convergence of Q̂r
j , together with Lemma EC.6.1, ensure that for any

T > 0,

sup
0≤t≤T

∣∣∣Q̂r
j(t)− Q̂r

j

(
t+ ¯̄ωrj (t)

)∣∣∣ ⇒ 0, as r→∞.

Thus it is enough to prove

sup
0≤t≤T

∣∣∣λrj ω̂rj (t)− Q̂r
j

(
t+ ¯̄ωrj (t)

)∣∣∣ ⇒ 0, as r→∞.

Note that the j-triage patients that are present at time t+ωrj (t) arrived during the time interval

(t, t+ωrj (t)], and those j-triage patients arriving during this interval will remain in this class,

or finish this stage of service at t+ωrj (t). Hence

Qr
j

(
t+ωrj (t)

)
≤Er

j (t+ωrj (t))−Er
j (t)≤Qr

j

(
t+ωrj (t)

)
+ ∆Srj

(
t+ωrj (t)

)
; (EC.53)

here, with some abuse of notation, ∆Srj
(
t+ωrj (t)

)
= Sj

(
T r(t+ωrj (t))

)
− Sj

(
T r(t+ωrj (t)−)

)
.

From this last relationship, we deduce the following for the diffusion-scaled processes:∣∣∣λrj ω̂rj (t)− Q̂r
j

(
t+ ¯̄ωrj (t)

)∣∣∣≤ ∣∣∣Êr
j

(
t+ ¯̄ωrj (t)

)
− Êr

j (t)
∣∣∣+4Ŝrj (t+ ¯̄ωrj (t)) +µj4T̂ rj (t+ ¯̄ωrj (t)).

(EC.54)

Here 4Ŝrj (t+ ¯̄ωrj (t)) = Ŝrj

(
¯̄T rj (t+ ¯̄ωrj (t))

)
− Ŝrj

(
¯̄T rj (t+ ¯̄ωrj (t)−)

)
and 4T̂ rj

(
t+ ¯̄ωrj (t)

)
= T̂ rj (t+

¯̄ωrj (t))− T̂ rj (t+ ¯̄ωrj (t)−). From the convergence of Ŝrj (
¯̄T rj (·)) and T̂ rj (·), both 4Ŝrj (·+ ¯̄ωrj (·)) and

4T̂ rj
(
·+ ¯̄ωrj (·)

)
converge to 0. Together with Lemma EC.6.1 and the convergence of Êr

j , j ∈J ,

the processes on the right-hand side in (EC.54) will converge to 0; thus the process on the

left-hand side will also converge to 0, which completes the proof. �

EC.7.2. Proof of Proposition 3: Snapshot Principle—Virtual Waiting Time and Age

Lemma EC.7.2 Under the family of control policies {πr∗}, for any given T > 0, as r→∞,

sup
0≤t≤T

∣∣∣λrkτ̂ rk (t)− Q̂r
k(t)

∣∣∣ ⇒ 0, k ∈K.

Proof: The proof follows exactly the one for Lemma EC.1.1. For k ∈K, note that the conver-

gence of Êr
k has been proved in Lemma EC.7.1. On the other hand, sups≤t τ

r
k (s)≤ sups≤tω

r
k(s),

for all t and k; hence, from Lemma EC.6.1 we have sup0≤s≤t ¯̄τ rk (s)⇒ 0. �

Proof of Proposition 3: This can be deduced from Proposition 2, Lemmas EC.6.2 and EC.7.2.

�
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EC.7.3. Proof of Proposition 4: Snapshot Principle—Sojourn Time and Queue Lengths

The argument here is adapted from Reiman (1984). Introduce the following notation: τ rjh(t) is

the time at which the patient of interest to us arrives to the system, and ζrjki(t) is the time at

which this patient becomes a k-IP patient for the ith time (it is also related to h, but we omit

h to simplify notation). Then

t≤ ζrjki(t)≤ τ rjh(t) +W r
jh(t). (EC.55)

Define the fluid-scaled processes

¯̄ζrjki(t) = r−2ζrjki(r
2t), ¯̄W r

jh(t) = r−2W r
jh(r2t), ¯̄τ rjh(t) = r−2τ rjh(r2t).

Lemma EC.7.3 Under the family of control policies {πr∗}, with FCFS among each IP class,

if h is j-feasible, then for any T ≥ 0, as r→∞,

sup
0≤t≤T

¯̄W r
jh(t) ⇒ 0, (EC.56)

sup
0≤t≤T

[
¯̄τ rjh(t)− t

]
⇒ 0. (EC.57)

Consequently, as r→∞,

sup
0≤t≤T

[
¯̄ζrjki(t)− t

]
⇒ 0. (EC.58)

We first assume that this last lemma prevails and prove Proposition 4.

Proof of Proposition 4: The sojourn time W r
jh(t) can be represented as

W r
jh(t) = ωrj (τ

r
jh(t)) +

∑
k∈K

hk∑
i=1

ωrk
(
ζrjki(t)

)
.

From this we get

Ŵ r
jh(t)−

[
Q̂r
j(t)

λrj
+
∑
k∈K

hk
λrk
Q̂r
k(t)

]

= ω̂rj (¯̄τ rjh(t)) +
∑
k∈K

hk∑
i=1

ω̂rk

(
¯̄ζrjki(t)

)
−

[
Q̂r
j(t)

λrj
+
∑
k∈K

hk
λrk
Q̂r
k(t)

]

=

[
ω̂rj (t)−

Q̂r
j(t)

λrj

]
+
∑
k∈K

hk

[
ω̂rk(t)−

Q̂r
k(t)

λk

]

+
[
ω̂rj
(
¯̄τ rjh(t)

)
− ω̂rj (t)

]
+
∑
k∈K

hk∑
i=1

[
ω̂rk

(
¯̄ζrjki(t)

)
− ω̂rk(t)

]
.

From Lemma EC.7.3 and the convergence of ω̂rj , j ∈J and ω̂rk, k ∈K,

[
ω̂rj
(
¯̄τ rjh(t)

)
− ω̂rj (t)

]
+
∑
k∈K

hk∑
i=1

[
ω̂rk

(
¯̄ζrjki(t)

)
− ω̂rk(t)

]
⇒ 0.

Together with Proposition 2, the conclusion is immediate. �
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Proof of Lemma EC.7.3: We first prove (EC.56). It is enough to show that, for any ε > 0,

there exists an N <∞ such that, for all r≥N ,

P
{

sup
0≤t≤T

¯̄W r
jh(t)≥ ε

}
≤ ε.

Similarly to Reiman (1984), denote ‖h‖=
∑K

k=1 hk. Then we have

P
{

sup
0≤t≤T

¯̄W r
jh(t)≥ ε

}
≤max

k∈K
P
{

sup
0≤t≤T+ε

¯̄ωrk(t)≥
ε

‖h‖+ 1

}
+P

{
sup

0≤t≤T+ε

¯̄ωrj (t)≥
ε

‖h‖+ 1

}
.

(EC.59)

From Lemma EC.6.1, the right-hand side of (EC.59) converges to 0, hence (EC.56) holds.

Let Lri,j,h = min{n> i;hr(j,n) = h}, where hr(j,n) is the visit vector associated with the nth

j-triage patient. We can write

P
{

sup
0≤t≤T

[¯̄τ rjh(t)− t]≥ ε
}

≤ P
{

inf
0≤t≤T

[Er
j (r

2t+ r2ε)−Er
j (r

2t)]<
1

2
λjr

2ε

}
+P

{
Er
j (r

2T )> 2λjr
2
}

+P

{
sup

1≤i≤2λjr
2

[Lri,j,h− i]>
1

2
λjr

2ε

}
.

The first two terms on the right-hand side converge to zero by the strong law of large numbers.

The j-triage patients have i.i.d. paths and hence i.i.d. visit vectors. Let the probability of a

particular j-triage patient, having visit vector h, be gh, where gh > 0 since h is j-feasible. Define

ĝh = 1− gh. Then

P

{
sup

1≤i≤2λjr
2

[Lri,j,h− i]>
1

2
λjr

2ε

}
≤ 1−

[
1− ĝ

1
2λkr

2ε

h

]2λkr
2

= 1−

[
1− r

2ĝ
1
2λkr

2ε

h

r2

]2λkr
2

.

The same reasoning as in Reiman (1984) implies that the latter expression vanishes, as r→∞.

This establishes (EC.57).

Combining (EC.56), (EC.57) with (EC.55), now yields (EC.58). �

Proof of Corollary 1: This is implied by Propositions 4, 2 and 3. �

EC.7.4. Outline of the proof for Proposition 5: Waiting Time Cost

We outline the proof of the lower bound, which is similar to Theorem 2. Then one can prove that

the family of modified policies {π̃r∗} attains the lower bound, following the discussion in §EC.4;

in particular, one requires similar state-space collapse results. Thus, {π̃r∗} is asymptotically

optimal.

For all work-conserving policies, Proposition 1 and Lemma EC.6.1 hold. Then, similarly to

the proof of Proposition 4 in van Mieghem (1995), we can prove that for any 0≤ a< b≤ T ,

1
¯̄Er
k(b)− ¯̄Er

k(a)

(∫ b

a

τ̂ rkd
¯̄Er
k −
∫ b

a

Q̂r
k(s)ds

)
⇒ 0.
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Next, as in Proposition 6 and the discussion prior to Proposition 8 of van Mieghem (1995), the

following is true:

lim inf
r→∞

P
{
Ũr(t)>x

}
≥ P

{∫ t

0

∑
k∈K

λkCk

(
∆̂k

(
(Q̂w(s)− ω̂)+

)
/λk

)
ds > x

}
.

Here ∆̂K = (∆̂k)k∈K is defined, for any a≥ 0, as the solution x∗ = ∆̂K(a) to the following:

min
x

∑
k∈K

λkCk(xk/λk)

s.t.
∑
k∈K

me
kxk = a,

x≥ 0.

(EC.60)

EC.7.5. Proof of Proposition 6: Sojourn Time Cost

We first provide an outline for proving an asymptotic lower bound for all asymptotically compli-

ant policies. Whenever there are IP patients in the ED, the physician should not be idle, as the

physician can always serve an IP patient to reduce that patient’s sojourn cost. Thus, we restrict

our discussion to asymptotically compliant policies, in which the physician does not idle if there

are IP patients. Then, for any asymptotically compliant family of control policies, one can

prove that the family {Q̂r
ω} is stochastically bounded, in particular the diffusion-scaled queue

length processes of IP patients are stochastically bounded. Then (EC.45) and (EC.46) hold

under asymptotically compliant policies, assuming that physicians are non-idle if IP patients

are presented. Similarly to the proof of Proposition 4 in van Mieghem (1995), we can prove

that, for any 0≤ a< b≤ T ,

1
¯̄Er
k(b)− ¯̄Er

k(a)

(∫ b

a

τ̂ rkd
¯̄Er
k −
∫ b

a

Q̂r
k(s)ds

)
⇒ 0.

Now, following Proposition 6 and the discussion prior to Proposition 8 of van Mieghem (1995),

we can prove that

lim
r→∞

P
(
S̃r(t)>x

)
≥ P

(∫ t

0

∑
k∈K

λkCk

(
∆̂∗k

(
(Q̂w(s)− ω̂)+

)
/λk

)
ds > x

)
.

Here ∆̂∗K = (∆̂∗k)k∈K is defined, for any a≥ 0, via the solution to the following:

min
x

∑
k∈C0

λkCk

(∑
j∈Ck

xj/λk

)
s.t.

∑
k∈C0

∑
k′∈Ck

me
k′xk′ = a,

x≥ 0.

(EC.61)

One can prove that the proposed family of control policies {π̃r∗∗} attains the lower bound by

showing the corresponding state-space collapse. Here we give some structural insights into the

optimal solution of (EC.61). For classes in Ck, we know that if
∑

k′∈Ck
me
k′xk′ is fixed, then the
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solution minimizing Ck(
∑

j∈Ck
xj/λk) has necessarily xk as non-zero, while all other xj with

j ∈ Ck\{k} are 0 (this is because me
k >m

e
j , for all j ∈ Ck\{k}). As a result, if the problem has an

optimal solution with some k′ ∈ Ck\{k}, for some k, then one can always find a better solution,

which is a contradiction. The problem has been thus reduced to the following one:

min
x

∑
k∈C0

λkCk (xk/λk)

s.t.
∑
k∈C0

me
kxk = a,

x≥ 0.

(EC.62)

Following the solution of (10) (using the KKT conditions), we can define a new function, in

analogy to ∆̂K(·) from (EC.60) (but now with subscript C0), and under {π̃r∗∗}, this function

plays the role of a lifting mapping in the corresponding state-space collapse.

EC.8. Discussing the conjecture in §8.1: Adding delays between physician
visits

In this section, we briefly discuss our conjecture on the duration of delays. An analysis of the

infinite-server queue with fast service rate will be useful, which we provide at the end of the

present section.

The ED system with delays between physician visits: Let Qr
jk(t) denote the number

of patients in the delayed system between j-triage and k-IP patients at time t; similarly, Qr
kl(t)

is the number of patients in the delayed system between the k-IP and l-IP patients at time t.

The number of k-IP patients at time t is

Qr
k(t) = Qr

k(0) +
∑
j∈J

(
Φjk

(
Sj
(
T rj (t)

))
+Qr

jk(0)−Qr
jk(t)

)
+
∑
l∈K

(Φlk (Sl (T
r
l (t))) +Qr

lk(0)−Qr
lk(t))−Sk (T rk (t))

= Qr
k(0) +

∑
j∈J

Φr
jk

(
Sj
(
T rj (t)

))
+
∑
l∈K

Φr
lk (Sl (T

r
l (t)))−Sk (T rk (t))

−
∑
j∈J

(
Qr
jk(t)−Qr

jk(0)
)
−
∑
l∈K

(Qr
lk(t)−Qr

lk(0)) , k ∈K.

(EC.63)

Ignoring the changes of T rj , j ∈ J and T rk , k ∈ K, the difference between (EC.63) and (EC.11)

is
∑

j∈J

(
Qr
jk(t)−Qr

jk(0)
)

+
∑

l∈K (Qr
lk(t)−Qr

lk(0)), which is the total change in the number of

patients within the infinite-server queues that experience delays between services.

First we argue that the fluid limits of those T rj , j ∈ J and T rk , k ∈ K, are the same as the

fluid limits in the system without delays between physician visits. This, together with Random-

time-change, ensures that the diffusion approximation of Qr
k(0) +

∑
j∈J Φr

jk

(
Sj
(
T rj (t)

))
+∑

l∈KΦr
lk (Sl (T

r
l (t)))− Sk (T rk (t)) is the same as in the system without delays. It is enough to

prove that the fluid limit of
∑

j∈J

(
Qr
jk(t)−Qr

jk(0)
)

+
∑

l∈K (Qr
lk(t)−Qr

lk(0)) is 0. Indeed, if we

have the latter fact, we can first argue that the fluid limit of
∑

j∈J m
e
j

¯̄Qr
j +
∑

k∈Km
e
k

¯̄Qr
k equals

that in the system without delays, and then follow the steps in §EC.2 to prove that the fluid
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limit for the busy time processes is also the same, namely these limits are λjmjt, for j ∈J , and

λkmkt, for k ∈K.

We now prove that the fluid limit of
∑

j∈J

(
Qr
jk(t)−Qr

jk(0)
)

+
∑

l∈K (Qr
lk(t)−Qr

lk(0)) is 0.

Notice that the delayed queues are infinite-server queues and the arrival processes for these

queueing systems are part of the departure process from the physician. We can then verify that

the requirements for the fluid approximation of the G/M/∞ with fast service rates (in §EC.8.1)

hold, in particular the sequence of the fluid-scaled arrival processes is tight. As a result, those

delayed queues remain constant in fluid scaling, meaning that the delays will have no impact

on the fluid limit of the ED model. Hence the fluid limits of T rj , j ∈ J , and T rk , k ∈ K, remain

constant.

Next we discuss the diffusion-scaled processes. From the differences between (EC.63) and

(EC.11), to prove that
∑

j∈J m
e
jQ̂

r
j +
∑

k∈Km
e
kQ̂

r
k is invariant to all work-conserving policies,

it is enough to argue that the following holds, for each k ∈K:

1

r

[∑
j∈J

(
Qr
jk(r

2t)−Qr
jk(0)

)
+
∑
l∈K

(
Qr
lk(r

2t)−Qr
lk(0)

)]
⇒ 0.

As those are infinite-server queues with fast service rates, from the discussion at the end of this

section, it is enough to prove that the diffusion scaled arrival processes to the delayed queues

are tight. This is a gap that we are leaving for future research.

EC.8.1. Infinite-server queues with fast service rates

Here we develop the fluid and diffusion approximation for a sequence of infinite-server queues

with fast server rates, which are used in our conjecture on the duration of the delays. We will

use the following analytical result.

From Lemma 3.4 of Atar and Solomon (2011), we know that for any given sequence of xn ∈D,

there are yn ∈D satisfying the following equation:

yn(t) = xn(t)−µn
∫ t

0

yn(s)ds. (EC.64)

Furthermore, if µn→∞ and the sequence of {xn} is tight with xn(0)→ 0, then yn→ 0. We

shall use this result in the following discussion, to gain insight into infinite-server queues.

Consider a sequence of infinite-server queueing systems G/M/∞. In the rth system, the

arrival process is Er(·), with individual service rate µr = µrα, in which α>−2.

We first establish fluid approximation. Assume that the fluid-scaled arrival processes ¯̄Er are

tight. Here

¯̄Er(t) = r−2Er(r2t).

Denote by S a unit rate Poisson process, with its fluid scaling ¯̄Sr(t) = r−2(S(r2t)− r2t). Then

the fluid-scaled queue length process ¯̄Xr = r−2Xr(r2t) can be represented as

¯̄Xr(t) = ¯̄Xr(0) + ¯̄Er(t)− ¯̄Sr
(
µr2+α

∫ t

0

¯̄Xr(s)ds

)
−µr2+α

∫ t

0

¯̄Xr(s)ds.
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Fix a T > 0, and assume that there is M > 0 such that limsupr→∞
¯̄Er(T ) < M/2. Define a

sequence of stopping times (indexed by r) via

σr = inf

{
t > 0, µr2+α

∫ t

0

¯̄Xr(s)ds >M

}
∧T.

Using (EC.64), if ¯̄Xr(0)⇒ 0, then one can show that ¯̄Xr(σr ∧ ·)⇒ 0. Following the proof of

(39) in Atar and Solomon (2011), we can also prove σr⇒ T . As a result, ¯̄Xr⇒ 0 on [0, T ]. As

this T is arbitrary, we have ¯̄Xr⇒ 0 on [0,∞).

Now we develop the diffusion approximation. For the above sequence of G/M/∞ systems,

fix a sequence of {λr}, and denote X̂r(t) = r−1(Xr(r2t)−λr/µr), as well as

Êr(t) = r−1(Er(r2t)−λrr2t), and Ŝr(t) = r−1(S(r2t)− r2t).

We then have

X̂r(t) = X̂r(0) + Êr(t)− Ŝr
(
µr2+α

∫ t

0

¯̄Xr(s)ds

)
−µr2+α

∫ t

0

X̂r(s)ds.

Suppose that there is a sequence of {λr} with (i) λr → λ, for some λ > 0, (ii) X̂r(0) ⇒

0, and (iii) making {Êr} tight. Then, from the fluid limit argument, we can prove that

Ŝr
(
µr2+α

∫ t
0

¯̄Xr(s)ds
)

converge to a driftless Brownian motion with variance λ; using (EC.64),

we can now deduce that X̂r(·)⇒ 0.

EC.9. More simulation outputs

We provide here more simulation results that complement §7.

EC.9.1. Descriptions of the other three policies

We start with descriptions of the alternative three policies, used for comparison in §7.

• FCFS: The patients are served on a global First-Come-First-Served basis, as in Dai and

Kurtz (1995) and Reiman (1988);

• IP-patients-First (IPF): Priority is always given to IP patients if there are any. Among all

triage classes, one determines the priority according to the Shortest-Deadline-First rule (11),

while among all IP classes, the priority is according to the modified generalized cµ rule;

• Triage-patients-First (TrF): Priority is always given to triage patients if there are any.

Among all triage classes, one determines the priority according to the Shortest-Deadline-First

rule (11), while among all IP classes, the priority is according to the modified generalized cµ

rule.
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Table EC.1 EDs under different durations of delays

Duration P1 P2 P3 Cost Rate LoS
No delay 4.61% (0.10%) 4.57% (0.09%) 4.57% (0.09%) 125.21 (10.36) 68.96
1 minute 4.46% (0.11%) 4.45% (0.10%) 4.43% (0.10%) 133.38 (10.96) 73.17

10 minutes 4.62% (0.11%) 4.47% (0.10%) 4.46% (0.11%) 132.80 (10.55) 93.59
60 minutes 5.44% (0.09%) 5.00% (0.09%) 4.89% (0.09%) 138.46 (9.73) 204.42
120 minutes 5.80% (0.10%) 5.35% (0.10%) 5.15% (0.10%) 141.60 (11.79) 335.23

EC.9.2. On the duration of delays between physician visits

We now incorporate in the simulations delays between successive visits to physicians. These

delays model services and waiting times beyond physicians (e.g., X-ray, lab tests). We consider

the following delays (all in minutes): 0, 1, 10, 60 and 120. (Delays are assumed exponentially

distributed). Other parameters are identical to those in §7.1. The performance measures of our

TGcµ policy are shown in Table EC.1.

In the table, we observe small changes in Pj and cost, over delays between visits that range

from the very short up to 120 minutes. For a better grasp of the effects of delays, we also exhibit

Length of Stay (LoS, or sojourn time), which predictably increase as the delays increase.

EC.9.3. Simulating a time-varying ED with delays

In this subsection, we present simulation results for an ED with time-varying arrival rates, as

well as delays between successive visits to physicians.

Daily arrival rates are time-varying, as in Figure 2, such that the average total arrivals of

1-triage, 2-triage and 3-triage patients per day is 14 ∗ 24 = 336. We further assume constant

arrival rates per hour, which are then given by 9.13, 7.00, 4.72, 5.31, 3.77, 2.71, 3.29, 5.09,

10.61, 17.51, 22.76, 24.51, 21.81, 20.16, 20.43, 18.36, 16.66, 17.88, 19.90, 20.80, 19.58, 17.77,

14.43, 11.83. Service rates do not vary with time. Then the traffic intensity varies from 0.1839

to 1.6663.

Assume also constant transition probabilities, with delays between successive physician vis-

its. Delay duration may depend on the class. Table 2 in Yom-Tov and Mandelbaum (2014)

summarizes the duration of delays between physician visits for different classes. From the table,

we conclude that 60 minutes is reasonable for the average duration of delays. We thus model

the delays as infinite-server queues (with exponential service times), all with 60 minutes as their

average service times.

In time-varying environments, we recommend a slight change in ε of our proposed policy.

Specifically, our simulations gave rise to the following rule: assign priority to triage classes if

τ1(t) > d1 − 4, or τ2(t) > d2 − 6, or τ3(t) > d3 − 8 (in order to achieve at most 5% violations

of delay). Our theory can be easily modified to accommodate different εj’s, and all remains

intact. Other parameters, such as distributions and cost rates, are assumed equal to those in

the system without delays and with constant arrival rates, as in §7.1.
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Similarly to the stationary model in §7, we plot a representative sample path of the system

under the proposed policy, with histograms of the triage waiting times for service. We then

compare our proposed policy against the 3 alternatives FCFS, IPF and TrF (Table EC.2).

Figure EC.1 A sample path of the time-varying system under the proposed policy
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In Figure EC.1, we observe a phenomenon similar to Figure 3. After summarizing all 160

sample paths, the fraction of triage patients who violate their corresponding deadlines are

4.54%, 3.14% and 2.64%, respectively; the fractions who violate their deadlines by more than

10% of their corresponding deadlines are negligible (less than 1%). As the system is overloaded

most times (load is often above 1.2 and can be as high as 1.6663), this suggests that our

proposed policy would also work well in overloaded systems.

Figure EC.2 includes the histograms of triage waiting times.

Figure EC.2 Histogram of triage waiting times in the time-varying system under our proposed policy
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We now compare our policy with the three alternatives, as done in the stationary case (§7).

The performances of these four policies appear in Table EC.2.

From Table EC.2, we note that the TGcµ policy performs reasonably well. The cost rate in

the IP-patients-First (IPF) is very small, but a very large fraction of triage patients violate

their deadlines. The same problem exists for FCFS policy. Triage-patients-First (TrF) policy

does ensure that triage patients adhere to their deadlines, but its cost rate is about 2 times the

TGcµ policy. In summary, our proposed policy TGcµ clearly outperforms its competitors.
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Table EC.2 Comparison of the four policies

Policy P1 P2 P3 Cost Rate LoS
TGcµ 4.44% (0.04%) 3.21% (0.02%) 2.75% (0.02%) 1561.89 (40.02) 368.64
FCFS 76.29% (0.19%) 56.81% (0.28%) 17.63% (0.31%) 1160.82 (15.72) 371.93
IPF 68.95% (0.21%) 69.82% (0.21%) 74.04% (0.20%) 7.33 (0.01) 305.42
TrF 0.00% (0.00%) 0.00% (0.00%) 0.00% (0.00%) 3251.88 (44.39) 412.86

EC.9.4. Multiple physicians

In our theoretical analysis, we argued that a multiple-server system is asymptotically equivalent

to a single-server system. This is theoretically true due to conventional heavy-traffic theory;

see, e.g., Chen and Shanthikumar (1994). In this subsection, we use simulation to support this

claim.

We keep the arrival rates, transition probabilities and cost functions the same as in §7.1. We

vary the number of servers from 1 to 8 and denote the number of servers by i. As discussed

in §7.1, the single super-server, with mean service time 1.3 minutes, is a combination of the

i physicians. Then the mean service time in a system with i physicians is 1.3i minutes. We

simulate the systems under our proposed policy. The performance metrics are plotted in Figure

EC.3.

Figure EC.3 System performances under our proposed policy, but with multiple-servers (one to eight)
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The X-axes in both figures of Figure EC.3 represent the number of physicians. The left figure

shows cost rates (mean and the upper and lower boundaries of the 95% confidence interval),

while the right one shows the fraction of 1-triage patients who violate their triage deadlines.

The violation probabilities of the other two triage classes are close to those of 1-triage patients,

hence we omit them here.

In Figure EC.3, as the number of physicians increases, the cost rate increases, while the viola-

tion probability decreases. This can be explained as follows: with more physicians, patients have

a greater likelihood to start their treatments earlier (hence the violation probability of triage

patients decreases), but are less likely to complete their treatments as the service time increases

and more physician capacity is shared by other classes (hence the cost rate of IP patients

increases). The changes are not significant, which confirms the claim that in conventional heavy

traffic, the number of physicians does not matter (in diffusion scaling).
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EC.9.5. Finite ED capacities

Here we investigate the impact of finite ED capacity on system performances, under different

policies, as discussed in §8.3.

The parameters are identical to those in §7.1, except that the ED capacity is now finite and

varies from 10 to 200. That is, the emergency department is modeled as a system with finite

waiting capacity. When a triage patient arrives at the ED and finds that the waiting room is

full, the patient is blocked. For those patients already entering the system, their occupied beds

are not released between class transfers. As a result, no IP-patient is blocked. We simulate the

system under the four policies, and the performance metrics are plotted in Figure EC.4.

Figure EC.4 System performances under different policies and different ED capacities
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The X-axes in both figures of Figure EC.4 represent the ED capacities. The left figure shows

the cost rates under different policies, while the right one shows the violation probability of

1-triage patients. Here we make the following observations:

• For systems with moderate to large ED capacities (30 to 200), our proposed (TGcµ) policy

and the Triage-patients-First (TrF) policy can ensure that most triage patients (more than 95%)

adhere to their deadlines, but the TrF policy incurs much larger cost rates. A large proportion

of 1-triage patients under the FCFS and IP-patients-First (IPF) policies cannot meet their

deadline constraints. As a result, our proposed policy outperforms the other three alternatives

for systems with moderate to large sizes.

• For systems with small ED capacities (10 to 20), all 4 policies can ensure that most triage

patients (more than 95%) adhere to their deadline constraints. The cost rates incurred by our

proposed policy and the IPF policy are the smallest.

• As ED capacity decreases, the cost rates and the violation probabilities decrease. The

changes in violation probabilities are non-negligible when ED capacity is smaller than 60. Due

to the quadratic cost rate functions, the cost rates decrease a little faster. This is because long

queues have a significant impact on quadratic costs, and finite ED capacity can reduce the

probability of such long queues.
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We plot the blocking probabilities for 1-triage patients in Figure EC.5. The blocking prob-

abilities for the other two triage classes are almost the same; thus Figure EC.5 can also be

viewed as approximations for the total blocking probabilities.

Figure EC.5 Blocking probabilities for 1-triage patients under different policies and different ED capacities
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From Figure EC.5, IPF policy incurs the smallest blocking probabilities, and the blocking

probabilities of our proposed policy (TGcµ) are almost the same as those of the IPF policy.

This suggests that our proposed policy may also be able to reduce blocking probability for

systems with finite ED capacities.

EC.9.6. Adding abandonment (LWBS and LAMA)

As discussed in §8.6, patients in EDs may leave before completing all desired treatments (LWBS

or LAMA). This can be modeled as customer abandonment. In this subsection, we use simula-

tion to investigate the impact of abandonment on system performance under the four policies.

ED parameters are kept the same as those in §7.1, except that patients waiting for service, at

any phase of their ED process, may abandon. To be specific, each patient has a patience time

when they join a queue, and a new patience time starts after transfer to another queue. If the

patience time expires when a patient waits in the queue, that patient leaves the ED without

further treatments and will never return. The patience times are assumed to be exponential

with the same means for all classes. We denote this common mean by 1/θ and call θ the

individual abandonment rate. For concreteness, we control the probability of abandonment

(LWBS+LAMA) below 4%, which corresponds to abandonment rate θ varying from 10−3 to

10−6; this is the same as average patience varying between 16 hours and infinity (and it is in

concert with Wiler et al. (2013), who report that 4.1% LWBS, having 10.68 (±7.76) hours of

average patience). (Note that the LWBS+LAMA in §7.4 is around 7%. This is higher than the

4% here since, in §7.4, one is facing a higher control challenge: arrival rates are time-varying,

and the system is overloaded during a significant part of the day.)

We simulate the systems under the four policies, and their performance metrics are plotted

in Figure EC.6 (congestion cost rates and violation probability) and Figure EC.7 (probability

of abandonment). The X-axes in both figures of Figure EC.6 and the one in Figure EC.7
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represent abandonment rates. The left figure in Figure EC.6 shows the cost rates under the

four policies, while the right one shows the violation probability of 1-triage patients. Here are

some observations from the figures:

Figure EC.6 System performances under different policies and different abandonment rates

 

 

 

 

 

 

 

 

 

0
100
200
300
400
500
600

Cost Rates 

TGc\mu FCFS TrF IPF

0
0.05

0.1
0.15

0.2
0.25

0.3
0.35

Violation Probability of 1-Triage Patients 

TGc\mu FCFS TrF IPF

Figure EC.7 Probabilities of abandonment under different policies and different abandonment rates
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• Our proposed (TGcµ) policy and the Triage-patients-First (TrF) policy can ensure that

most triage patients (more than 95%) meet their deadlines, but the TrF policy incurs a much

higher cost. Generally, a significant fraction of 1-triage patients under the FCFS and the IPF

policies cannot adhere to their deadline constraints. Consequently, our proposed policy outper-

forms the other three policies.

• As the abandonment rate increases, the cost rates and the violation probabilities decrease.

Due to the quadratic cost rate functions, the cost rates decrease somewhat faster. The expla-

nation is the same as for blocking probabilities when ED capacity is finite: long queues have a

significant impact on quadratic costs, and customer abandonment can reduce the probability

of such long queues.

• An essentially infinite patience corresponds to LWBS+LAMA less than 1%. This is not

implausible for an ED reality where patients do need emergency care (excluding perhaps triage

class 5 patients). Alternatively, and as already mentioned, average patience less than 16 hours

gives rise to abandonment that exceeds 4%. In this case, 3 out of the 4 policies perform well, in
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terms of both violation probability (less than 5%) and congestion costs (negligible). The cost

rate of the IPF policy is the smallest, and more than 95% patients adhere to their deadlines.

Our proposed policy ensures that more than 99% of the triage patients meet their deadlines,

and the cost rate is comparable to the one under IPF.

• Systems under IPF policy and our proposed (TGcµ) policy enjoy the smallest probabilities

of abandonment. (IPF has a slightly smaller abandonment probability, but the differences with

our policy are negligible.) This suggests that our proposed policy would fare well also against

LWBS+LAMA.
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