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Emergency Department (ED) in Rambam Hospital
» Rambam Hospital is the largest hospital in northern Israel;
> The ED has 40 beds; 245 patients arriving daily;

» Patients: New vs. Work In Process (WIP);
» Canadian triage system:
e New (triage) patients are classified into 5 clinical classes:
o Resuscitation; Emergent; Urgent; Less Urgent; Non-urgent;

e Result in several classes of WIP patients;

» Existing scheduling policy (static priority);

Arrivals

» ED is blocked, long sojourn time (with mean 4.5 hours, 10%

over 6 hours);
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Research Questions

» Objective of the project:
e Design new scheduling policy within present triage system;

o New: Pre-specified requirements on time till first examination
— Clinical;
o WIP: Push them out as soon as possible — Operational;

e How do we make the tradeoff between clinical and
operational considerations?

o Minimize the congestion;
o Subject to the deadline constraints;

» Achievement:
e A “nearly” optimal and implementable dynamic scheduling
policy;
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A Good Hospital in China
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Emergency Departments in China
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» In 2011, the MOH of China proposed to introduce a triage
system to manage EDs;
e Improve the quality of care (safety of patients);

» Patients are classified into 4 levels according to their severity;

» A natural problem is how to schedule the patients;



Emergency Departments in the United States
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» ED environment has become more crowded (waiting time
increased by 25% (46.5 to 58.1 mins), from 2003 to 2009);

» The need for the tradeoff becomes more pronounced;
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Patient Flow in Emergency Departments (EDs)

Arrivals

»[Examinations

Complexities:

1. Multiclasses

2. Non trivial scheduling
rule

3. ..



Complexities and the State of the Arts

» Many simulation-based studies;
» Few analytical models;
> An analytical model:

e Manage patient flow in an ED, from a queueing-theory
perspective;
e Capture the most important features (what are they?);
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Example: The ED in Rambam Hospital

» Feedback
e Empirical analysis shows, on average, each patient visits the
physician for at least 3 times;
» Deadlines on time-till-first-treatment:
e Canadian Triage System — patients are classified into 5 levels:
o Resuscitation (Immediate);
o Emergent (15 mins); Urgent (30 mins); Less Urgent (60
mins); Non-urgent (120 mins);
» Congestion costs:
e Waiting costs; clinical costs; emotional costs; psychological
costs; others (long waits increase the probability of disaster);
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Example: The ED in Rambam Hospital

Cost
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100 200 300 400 500
Sojourn Time (mins)

e Triage class (3); age (4); decision after treatments (2);
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Example: The ED in Rambam Hospital

Cost
60000

50000
40000
30000
20000

10000

100 200 300 400 500
Sojourn Time (mins)

e Triage class (3); age (4); decision after treatments (2);

e Triage class 3 (urgent), Age>75, Discharged;
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Modeling

Operational
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Modeling

Operational
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Clinical v.s. Operational — How to BaIance?I
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Two ED Models

Queue Length Model

Sojourn Time Model

Congestion Cost

Queue Length

Sojourn Time

WIP Transition

Markovian

Deterministic
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Queue Length Model — Structure

Arrivals Triage-Patients
N
d]. d2 d_j
Exits
S -
WIP-Patients

Age (in system) of the head-of-the-line patient: 7;(t), then
deadline constraints: 7j(t) < dj,j € J.
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Queue Length Model — Structure

Arrivals Triage-Patients

[, 0
di do

Exits

WIP-Patients

Queue length at time t: Qk(t), incur queueing (holding) cost
at rate Cx(Qk(t)); the total cost rate: >, - Ci(Qx(t)).
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Problem Formulation:

Constrained optimization problem: for any T > 0,

s.t. Tj(t)gdj, VieJ and 0<t<T.
Example:
e Linear holding cost:

T T
Cl(X) =2x = -/0 Cl(Ql(l'))dt':2‘/0 Ql(t)dl’;

e 73(t) <30, 74(t) <60, 5(t) < 120;
Infeasibility: 7j,j € J random, d; deterministic;
Asymptotic framework:

e relax: “feasibility” — “asymptotical compliance (feasibility)";

e relax: “optimality” — “asymptotical optimality”.
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Main Result

Identified a scheduling policy that is “nearly” optimal when the

system is heavily loaded.

» The rigorous meaning of “nearly optimal” will be defined in
the asymptotic framework;
» Heavily loaded system:

e Intuitive: Arrival rate ~ service capacity;
e Rigorous: Traffic intensity p = %Zjej Ajm? ~ 1.
e Realistic: Crowded ED environment;

» What is the structure of the scheduling policy?
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Queue Length Model — Scheduling Policy
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Queue Length Model — Scheduling Policy

|

’Trlage or WIP?

g

Which Triage? Whlch WIP?
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Queue Length Model — Scheduling Policy

Arrivals Triage-Patients
R R
m1(t) \72(t) (1)
Exits
WIP-Patients
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Queue Length Model — Scheduling Policy

Arrivals Triage-Patients
(Tl(t) > dp — 6)

I R ’

m1(t) \72(t) (1)

Exits

WIP-Patients
(Tl(t) <d — 6)
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Queue Length Model — Scheduling Policy

Arrivals

Triage-Patients
(r(t) = di —€)

7i(t)
d;

d; ~——argmax;c 7

Exits

An Example:

Deadlines (d;) 30 60 120
Ages (77) 15 20 50
7/d; 05 033 042




Queue Length Model — Scheduling Policy

~——argmax,cx —=

WIP-Patients
(Tl(t) < d1 —

=
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Queue Length Model — Scheduling Policy

Exits

=
my

WIP-Patients
(Tl(t) < d1 — C)

C(Qk(1))

~——argmax,cx —=

?

e
my =

my+ my + ms



Queue Length Model — Scheduling Policy

Klimov's model

modified Gcp-rule

Exits

Co(Qu(1)

47argr‘naxkelc m

WIP-Patients
(Tl(t) < d1 — C)

e
k

\

?

Surprising: a “Gcu'"-rule for Klimov's model!



Queue Length Model — Scheduling Policy

Gcp-rule:

cl(~)l @(-)l ch(-)

(ke = )

my N\ m2 mg

argmax C/ (Qu(t)) ek
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Queue Length Model — Scheduling Policy

Klimov's model

modified Gcp-rule

Exits

~——argmax,cx —= me

WIP-Patients
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Effective Mean Service Time

v

Effective mean service time of a patient is the expectation
of the total potential service requirement of that patient after

entering into that class;

v

An example:

0.4 e e
)
0.6(3)—(5)

mi = my +0.4m5 + 0.6m§

> Me = (m¢)kex of WIP patients!:
Me=M+PM® = Me=[l—P]'M;
> MS = (mf)jej of Triage patients:

M; = Mj+ Pj]cMe;

"My = (mp)jes, Prc = [P, M = (mi)kex, P = [Pul;
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Sojourn-Time Model

Deadline constraints on triage patients do not change;
For WIP visits, each patient has a deterministic routing
vector;

e Realistic: blood test —+ X-ray — ECG — ..;

Co: the starting classes of any route;
Ck: all classes on a route starting with k € Cop;

Ukec, Ck\{k}: subsequent classes;

—(D—@—E— a=1{135
C, ={2,4,6}

A w2 + Wy + We
Congestion cost:

Ex(t)
SO=3 3 G Y w);
keCy i=1 k'eCy
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Sojourn Time Model —

Structure

Arrivals
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Triage-Patients

Exits

GQ) G)
Rl

Individual Cost

WIP-Patients

Starting classes Cg

26

43



Sojourn Time Model — Structure

Arrivals Triage-Patients

i
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d>

Exits

WIP-Patients
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Sojourn Time Model — Scheduling Policy
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Triage-Patients
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WIP-Patients




Sojourn Time Model — Scheduling Policy

Arrivals

Triage-Patients
(r(t) = dh —€)

Exits

WIP-Patients
(Tl(t) <d — C)
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Sojourn Time Model — Scheduling Policy

Arrivals Triage-Patients
(Tl(t) > di — 6)

7i(t)
dj

d; +———argmax;cs

TJ(t)

Exits
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Sojourn Time Model — Scheduling Policy

WIP-Patients
(Tl(t) <d — C)
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Sojourn Time Model — Scheduling Policy

WIP-Patients
(Tl(t) <d — C)

Subsequent classes
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Sojourn Time Model — Scheduling Policy

Exits

WIP-Patients
(Tl(t) <d — E)

Starting classes, argmaXcc,

Cim(t)

e
my
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Interim Summary

> Analyze the emergency departments;

e Capture the tradeoff between triage- vs. WIP-patients;
» Build two queueing models;

e Queue Length Model;

e Sojourn Time Model;

» Provide good and implementable scheduling policies;

Table : Comparison of Two Models

Queue Length Model | Sojourn Time Model

Congestion Cost Queue Length Sojourn Time

WIP Transition Markovian Deterministic

WIP Policy Queue Length Age
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An ED Case Study: Value of Information

» Data is from ED in Rambam; sojourn time model;

# WIP visits 1 2 3 4 5
Proportion | 0.28 | 0.30 | 0.28 | 0.11 | 0.03
A & D Status Admitted | Discharged
Proportion/Cost function | 0.40, t? | 0.60, 2t2

> Is it worthy to estimate these two kinds of information upon a

patient’s arrival?

» Patients are classified into different classes according to the

availability of these two kinds of information:

Case 1 Case 2 Case 3
# WIP visits N Y Y
A & D Status N N Y
Congestion Cost | Benchmark | {}18.01% | 1/26.8%
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An ED Case Study: Value of Information

Data is from ED in Rambam; sojourn time model;

# WIP visits 1 2 3 4 5
Proportion | 0.28 | 0.30 | 0.28 | 0.11 | 0.03
A & D Status Admitted | Discharged
Proportion/Cost function | 0.40, t? | 0.60, 2t2

Is it worthy to estimate these two kinds of information upon a

patient’s arrival?

Patients are classified into different classes according to the

availability of these two kinds of information:

Case 1 Case 2 Case 3
# WIP visits N Y Y
A & D Status N N Y
Congestion Cost | Benchmark | {}18.01% | 1/26.8%

Good news: A well trained nurse can estimate both kinds of

information very accurately!
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Intuition for the Queue Length Model

» A(t): total potential service requirement brought into the ED;

» T(t): amount of service requirement has been served;
» W(t) = A(t) — T(t): total potential service requirement left:

e minimized by work-conserving policy;
e invariant to any work-conserving policy;

e conditional on the queue length processes,

W(t) =~ > mex Qi)+ Y mg x Qu(t)

Jjeg kek

> Asaresult, > i 7 mf x Qi(t) + D jex mi x Qi(t) is
minimized and invariant to any work-conserving policy;

32/43



Intuition on the Policy

min - > rexc Ch(Qk(t)) Myopic

st. 7(t)<d;, jeJT,;
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Intuition on the Policy

min ZkelC Ck(Qk(t))

st. 7(t)<d;, jeJ;

Doker M X Qu(t) +22,c 7 mf x Qi(t) =~ W(t);
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Intuition on the Policy

min ZkelC Ck(Qk(t))

st. 7(t)<d;, jeJ;

D oker M X Q(t) = W(t) = >2ic 7 mf x Q;(t);
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Intuition on the Policy

min > e Ce(Qi(1))

s.t.

D ker M X Qu(t) = (W(t) — Zjej )\jdjmj‘?)+
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Intuition on the Policy

min >y Ce(Qi(t))

s.t.

D ker M X Qu(t) = (W(t) — Zjej )\jdjmj‘?)+

KKT

CUOL1) _ C(Qu(®) “Geyt-rule

e
my mk/
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Analysis — Asymptotic Framework

What is “nearly optimal”?
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Asymptotic Framework

A sequence of systems, indexed by r 1 oo :

Arrival rate for class j triage patients Af = A >0, jed,;

Service requirement & routing behavior do not change;

Traffic intensity. p" =3 ;c 7 ATm?;

e
J

(Conventional) heavy traffic condition: there exists a € R,

r(pf —1)— B, as r— oo.

A family of control policies {7"} is called asymptotically

compliant (feasible) if for any fixed T > 0, as r — oo,

drt
sup [?j'(t)—q =0, jeJ.
0<t<T r

1_r(,2 T
77/ (r°t) — diffusion scaled age processes w.r.t {r"}.
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Asymptotic Optimization
» Diffusion scaled queue length processes:

~ 1
Qu(t) = ;o;(r%), ke K.

» Cumulative queueing cost:

Ur(t) == /Ot Y G (a,:(s)) ds.

ke

» A family of control policies {7} is said to be asymptotically
optimal if
> it is asymptotically compliant and
> it stochastically minimizes the cumulative cost:
limsupUy(t) <s: liminfU"(t),
r—o0 r—oo
{U!'} — queueing cost corresponding to {n’};
{U"} — corresponding to any asymptotically compliant policies.

The proposed family of control policies is asymptotically optimal. I
3




A Roadmap for the Proofs

» There is a lower bound for any asymptotically compliant
family of policies;
» The proposed family of scheduling policies achieves the lower
bound;
e State-Space-Collapse (SSC);
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Conclusions — Contributions

» Practical: model and analyze the control of patient flow in
EDs:
e Give rise to insightful and implementable scheduling policies;
e Capture the tradeoff between triage- vs. WIP-patients;
e Enable analysis of the value of information in a real ED setup.
» Theoretical: analyze multiclass queueing systems with
feedback:
e Prove the conjecture in Mandelbaum and Stolyar (OR, 2004),
improve upon it with simpler asymptotically optimal policies;
e Gcu rule for Klimov's model with convex costs (queue length,
individual waiting times and cumulative sojourn times);
e Analyze multiclass queueing systems with feedback, under any

work-conserving policy;

39
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Future Directions

Arrivals

Hospital

» Other features:

Time varying arrival rate;

Adding delays between transfers;

Adding global constraint on sojourn times;
Adding abandonment (LWBS, LAMA);

Examinations

Hourof Day
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Thank You!
Questions?
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st. 7(t)<d;, jeJ;
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Intuition on the Policy
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D okere M X Qu(t) = W(t) — > ;7 ms x Qj(t);
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Intuition on the Policy

min > o Cu(Qk(t))
st. 7(t)<d;, jeJ; (Qi(t) = Aj7i(t))

D okere M % Qu(t) = W(t) — > ;7 ms x Qj(t);
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Intuition on the Policy

min - > rexc Ch(Qk(t))

st. 7(t)<d;, jeJ; (Qi(t) = Nj7i(t))

D okere M % Qu(t) =W(t) — > ;7 ms x Qj(t);

Minimize
(W(t) - Zjej /\jdjmf)+

l How?

A threshold policy
ZjeJ Ajmej(t) vs. Zje] Ajmsd;
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Intuition on the Policy

min ZkelC Ck(Qk(t))
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Intuition on the Policy

min >y Ce(Qi(t))

s.t.

> ker M X Qu(t) =~ (W(t) — Zjej /\jcljmj‘?)+

KKT

Q) _ CL(Qu(®)
m; me,
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