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Abstract. Service processes, for example in transportation, telecommunications
or the health sector, are the backbone of today’s economies. Conceptual models
of such service processes enable operational analysis that supports, e.g., resource
provisioning or delay prediction. Automatic mining of such operational models
becomes feasible in the presence of event-data traces. In this work, we target the
mining of models that assume a resource-driven perspective and focus on queueing
effects. We propose a solution for the discovery and validation problem of sched-
uled service processes - processes with a predefined schedule for the execution of
activities. Our prime example for such processes are complex outpatient treatments
that follow prior appointments. Given a process schedule and data recorded during
process execution, we show how to discover Fork/Join networks, a specific class
of queueing networks, and how to assess their operational validity. We evaluate
our approach with a real-world dataset comprising clinical pathways of outpatient
clinics, recorded by a real-time location system (RTLS). We demonstrate the value
of the approach by identifying and explaining operational bottlenecks.

1 Introduction

Service systems play a central role in today’s economies, for example in transportation,
finance, the health sector, and the public sector. The provisioning of services is often
realized by a service process [1, 2]. This can be broadly captured by a set of activities that
are executed by a service provider and designated to both attain a set of organizational
goals and add value to customers.

Independently of the domain, service processes can be classified by the amount
of interactions between service providers and customers and the level of demand pre-
dictability and capacity flexibility. A service can be multi-stage, in the sense that service
provisioning involves a series of interactions of a customer with a provider, or specific
resources at a provider’s end. Further, a process can be scheduled, meaning that the
number of customers to arrive is known in advance, up to last moment cancellations
and no-shows. Then, customers follow a pre-defined series of activities, with every
activity having a planned starting time for its execution, a duration, and a set of involved
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resources. Multi-stage scheduled processes are encountered, for instance, in outpatient
clinics, where various types of treatments are provided as a service to patients [3]. Here,
a schedule determines when a patient undergoes a specific examination or treatment.
Another example of multi-stage scheduled processes is public transportation, where
schedules determine which vehicle serves a certain route at a specific time [4].

In this work, we focus on the following operational question for multi-stage scheduled
service processes: how to assess the conformance of the schedule of a service process to
its actual execution? To address this question, we develop an approach that is based on
discovery and validation of resource-centered models. First, we discover a deterministic
model that represents a planned execution of a service process (schedule). Second, we
check the conformance of a schedule against a log of recorded process executions.

Our choice of formalism to capture a resource-centered view of service processes is
driven by two challenges that arise from multi-stage scheduled service processes, namely
dependencies and synchronization. Specifically, in multi-stage processes, customers go
through a complex network of resources prior to service completion. Hence, resource
demand does not arrive at random, and dependencies between arrivals at different
resources must be taken into account. Second, in scheduled processes, customers are
delayed not only due to scarce capacity of providers (resource queues), but also in
synchronization queues where customers, for whom activities are executed concurrently,
experience delays before they can proceed towards subsequent service phases.

A formalism that naturally captures the resource perspective in service processes
is queueing networks and more specifically, Fork/Join networks [5]. Adopting this
formalism, the contribution of this paper is summarized as follows:
(1) We propose a technique to discover a deterministic Fork/Join network from a

schedule of a service process.
(2) We present a conformance checking technique that assesses the validity of a deter-

ministic Fork/Join network based on recorded process executions.
We demonstrate the value of the proposed discovery and validation methods by applying
them to RTLS-based data from a real-world use-case of scheduling in a large outpatient
oncology clinic. Our experiments demonstrate the usefulness of the proposed methods
in detecting operational bottlenecks in the schedule, specifically longer-than-planned
synchronization delays, and diagnosing the root-cause to those problems.

The remainder of the paper is structured as follows. Section 2 presents a detailed
use-case of a process in an outpatient clinic. The models for schedules and log data
of service processes is outlined in Section 3. Fork/Join networks and their discovery
from a schedule are discussed in Section 4. The technique to check conformance of
schedule-driven models against recorded process executions is presented in Section 5.
An empirical evaluation of our approach is given in Section 6. Section 7 discusses related
work, followed by concluding remarks and future work (Section 8).

2 A Service Process in an Outpatient Clinic

We illustrate the challenges that arise from operational analysis of multi-stage scheduled
service processes through a process in the Dana-Farber Cancer Institute (DFCI), a large
outpatient cancer center in the US. In this hospital, approximately 900 patients per
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Fig. 1. The control-flow perspective of patient flow in the day hospital

day are served by 300 health care providers, e.g. physicians, nurse practitioners, and
registered nurses, supported by approximately 70 administrative staff. The hospital is
equipped with a Real-Time Location System (RTLS). We use the movements of patients,
personnel, and equipment recorded by this system to evaluate our approach.

We focus on the service process for a particular class of patients, the on-treatment
patients (OTP). This process applies to 35% of the patients, yet it generates a large
fraction of the workload due to the long service times. Hence, operational analysis
to balance quality-of-service and efficiency is particularly important for this process.
Figure 1 depicts the control-flow perspective of the process as a BPMN diagram: Ar-
riving patients may directly receive examination by a physician, or shall undergo a
chemotherapy infusion. For these patients, a blood draw is the initial appointment. Then,
they either move to the infusion stage directly, or first see a provider for examination.
In our context, operational analysis covers the following dimensions [6]:

– Capacity analysis - the identification of resource-related bottlenecks.
– Time analysis - the analysis of sojourn and waiting times of customers.
– Sensitivity analysis - the test of potential operational scenarios by alternating model

parameters and gathering future performance measures.
– Optimization - the improvement of the process according to some notion of optimal-

ity, e.g., by determining the optimal resource and staff allocation for the activities.
To conduct operational analyses along these dimensions, we propose the use of models
that are grounded in Queueing Theory. These provide a resource perspective of service
processes operational analysis, that is based on analytical solutions or simulation. Bolch
et al. [7, Ch. 11] provide a thorough discussion on the advantages and disadvantages of
the two types of analysis.

For a specific part of the aforementioned chemotherapy infusion process, Fig. 2
illustrates a queueing network that captures the resource perspective of the process. This
model is a Fork/Join network, discussed in more detail in Section 4. It represents the
associated resources: clinical assistants, a pharmacy, and infusion nurses, as well as
dependencies between them that follow from the patient flow. Patients first fork and
enter two resource queues in parallel: one is the queue where they actually sit and wait
for a clinical assistant to take their vital signs; the other queue is virtual, where they wait
for their chemotherapeutic drugs to be prepared by the central hospital pharmacy. The
process can only continue once both of these parallel activities are completed, which
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explains the existence of synchronization queues in front of the join of the flows. After
the join, patients are enqueued to wait for a nurse and chair to receive infusion.

The provisioning of infusions in DFCI is scheduled. Therefore, each patient has a
schedule that assigns a planned time for execution by the respective activities. As such,
a schedule allows not only for discovery of the structure of a Fork/Join network, such
as the one in Fig. 2, but also its annotation in terms of arrival rates, service times, and
server capacities. Such a schedule-driven model reflects the performance of the planned
execution of the process, which raises the question whether the model accurately reflects
the actual process execution. Any deviation from the plan, e.g., because of aborted
activities or differences in resource scheduling policies, negatively impacts the validity
of the schedule-driven model. In the presence of recorded process executions, however,
conformance checking as presented in this work can be used to assess the behavioral,
conceptual, and operational validity of the schedule-driven model.

3 Schedules and Event Logs of Service Processes

In this work, we provide a multi-level analysis approach that exploits two types of input
data, namely a schedule and a log of recorded actual executions of activities. Such
multi-level representation enables analysis that is richer than the state-of-the-art. Below,
we formalize the models for schedules and event logs.

Schedule. A schedule represents the plan of a multi-staged service process for individual
customers. The schedule comprises tasks that relate customers to activities and which
are partially ordered. It further assigns resources, start times and durations to each of the
tasks. Let A be the domain of activities, R the set of all resource types (e.g. physicians,
nurses), and C the set of customers. We define a task to be a relation between customers
and activities, e.g., customer Smith is to perform a blood draw. We denote the universe
of tasks by T .

Definition 1 (Schedule). A schedule is a set of planned tasks, TP ⊆ T , having a schema
(set of functions) σP = {ξp, πp, τp, ρp, δp}, where

– ξp : T → C assigns a customer to a task.
– αp : T → A assigns an activity to a task.
– ρp : T → R assigns a resource to a task.
– τp : T → N+ assigns a timestamp representing the planned start time to a task.
– δp : T → N+ assigns a duration to a task.

The timestamps assigned by τp induce a partial order of tasks, denoted by≺P⊆ TP×TP .
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Log. A log contains the data recorded during the execution of the service process, e.g., by
a Real-Time Location System (RTLS) as in our use-case scenario (Section 2). Events in
the log relate to a specific customer, resource, activity, and the timestamps of execution.

Definition 2 (Log). An log is a set of sequences of executed tasks, TA ⊆ T ∗, having a
schema σA = {ξa, ρa, αa, τstart, τend}, where

– ξa : T → C assigns a customer to a task.
– αa : T → A assigns an activity to a task.
– ρa : T → R assigns a resource to a task.
– τstart : T → N+ assigns a timestamp representing the observed start time to a task.
– τend : T → N+ assigns a timestamp representing the observed end time to a task.

4 Discovering Queueing Networks For Scheduled Processes

This section first defines Fork/Join networks (Section 4.1). Then, we elaborate on the
discovery of a Fork/Join networks from a schedule of a service process (Section 4.2).

4.1 F/J Queueing Networks: Structure and Dynamics

Queueing networks are directed graphs, with each node corresponding to either a server
node (a resource node) or a queue, see Fig. 2. For our purposes, we consider single-class
(all customers are of the same type), open (customers arrive from outside the system and
depart eventually), Fork/Join (F/J, where customer may ‘split’ into multiple customer
instances) queueing networks [5]. F/J networks extend ‘classical’ queueing networks
and -support splitting and joining of customer instances, so that we consider them to be
particularly suited to model concurrent actions, as often arise in service processes.

To define F/J networks, we first need to specify server dynamics. To capture these
dynamics, we adopt a version of Kendall’s notation [8], so that every server is character-
ized by, A/B/C + P where A is the arrival rate for queues with external arrivals, given
as the joint distribution of inter-arrival times; B is the service time of processing a single
customer, given as the distribution of this time; and C is the capacity, given as the number
of resources. Note that arrivals, service times, and resource capacity may be defined in a
time-varying manner. Further, component P is the service policy that sets both the order
of entry-to-service, among the enqueued customers, and selects the resource, among
available resources, to serve a customer. For example, the most well-known service
policy for queues is the First-Come First-Served Policy (FCFS), which is often combined
with a server selection strategy that choses the first server that becomes available.

F/J networks support two types of queues, namely resource queues that are formed
because of limited capacity of resources, and synchronization queues that result from
simultaneous processing by several resources. Servers can be of three types, namely
regular (services with capacity), fork, and join. A routing matrix defines the flow between
servers and queues. Then, with K being the universe of possible dynamics models for a
server, we define F/J network as follows.

Definition 3 (F/J Network). An F/J network is a quadruple 〈S,Q,W, b〉, where
– S = SR ∪ SF ∪ SJ is a set of servers, with SR being a set of resources and SF , SJ

being sets of forks and joins, respectively;
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– Q = QR ∪QS is a set of queues, with QR being a set of resource queues and QS
being a set of synchronization queues;

– W : (Q × S) ∪ (S × Q) → [0, 1] is a routing matrix that assigns weights (or
probabilities) to edges between servers and queues;

– b : S → K assigns a dynamics model to servers.

We consider forks and joins to be zero-delay, single-server nodes. Further, the entries of
the routing matrix for forks and joins are binary. For a fork s ∈ SF , a customer always
continues in all downstream queues q ∈ Q for which W (s, q) = 1. For a join s ∈ SJ ,
a customer needs to be selected from all upstream queues q ∈ Q with W (q, s) = 1
before continuation. An F/J network for which the complete routing matrix is binary is
deterministic, otherwise the network is probabilistic.

As an example, consider the F/J network in Fig. 2. It contains three resources, a fork,
a join, three resource queues (preceding resources), and two synchronization queues
(succeeding resources). Note that the structure given in Fig. 2 can only be a deterministic
F/J network as all queues and servers, which are not forks, have a single outgoing edge.

4.2 Discovering a Scheduled Queueing Network

Our approach to assess the conformance between the schedule of a service process and
its actual executions is based on the discovery of a deterministic F/J network from a
schedule (see Definition 1). To this end, we first extract the structure of the queueing
network and then annotate its servers with dynamics models.

Discovery of the network structure is straight-forward: The timestamps of the sched-
ule tasks in TP induce a partial order ≺P , which gives raise to a dependency graph
between activities and, thus, resource nodes. The structure of the F/J network is then
derived by inserting the required forks and joins, at resource nodes with more than
one predecessor or successor, respectively. Further, resource queues are inserted for all
incoming edges of resource nodes, which are no forks or joins. Finally, synchronization
queues are added for all incoming edges of joins.

To extract the dynamics models, for each resource node s ∈ SR, we shall assume
that the number of resources as function of time, Ks(t), can easily be extracted from
the schedule log (see also [9] for a respective method). To extract the arrivals (A),
service times (B), and service policy (P) from a schedule of tasks TP with schema
σP = {ξp, πp, τp, ρp, δp}, partially ordered by ≺P , we proceed as follows.
Arrival Times. For each of the most upstream resource nodes s ∈ SR, arrival times

A(s, TP , σP ,≺P ) = {τp(t) | t ∈ TP ∧ ρp(t) = s ∧ ∀ t′ ∈ TP : ξp(t) = ξp(t
′)⇒ t′ 6≺P t},

(1)
are defined by the first event in the schedule for the planned process execution for
each customer. Arrivals into downstream resource nodes are assumed to correspond to
end-of-processing times of previous nodes.
Service Times. For a resource node s ∈ SR, services times

B(s, TP , σP ,≺P ) = {δp(t) | t ∈ TP ∧ ρp(t) = s}, (2)

are defined by the planned duration of the respective activity.
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Service Policy. A service policy is a, potentially time-dependent, function that selects a
task to be served from a set of waiting tasks. A typical schedule assumes that tasks are
served according to an earliest-due-date (EDD) policy with the additional constraint that
tasks arriving ahead of their due time do not get served. Formally, given a set of waiting
tasks, {t1, . . . , tn} at time t, the EDD policy is given by:

P ({t1, . . . , tn}, t) = argmint′∈{t1,...,tn},τp(t′)<t{τp(t
′)}. (3)

5 Validating Schedule-Driven Networks with Logs

A F/J network discovered from a schedule enables operational analysis of the planned
process behavior under the assumption that there are no deviations from the plan. In
most cases, however, such deviations are likely to be observed, which calls for validation
of the schedule-driven model. In the presence of a log of recorded process executions,
such validation can be achieved by conformance checking.

Below, we first review dimensions of validity for operational models, i.e., behavioral,
operational, and conceptual validity (Section 5.1). Given the rich body of literature on
methods to ensure behavioral validity, we focus on the other dimensions and present a
methodology to ensure operational validity (Section 5.2) and conceptual validity (Sec-
tion 5.3). For both dimensions, we also instantiate the methodology and outline methods
to validate specific model aspects, i.e., processing delays and service policies. Finally,
we elaborate on the link between conceptual and operational validity (Section 5.4).

5.1 Dimensions of Validity

Validity relates to behavioral, operational, and conceptual model aspects [10].
Behavioral Validity. Given a process model, its behavioral relevance with respect to the
real process is of crucial importance. Four complementary notions of behavioral validity
are given in the literature, namely fitness, simplicity, precision and generalization [11].
Various techniques to assess behavioral validity have been proposed, among some
trace replay [12], also known as trace-based simulation [7], trace alignment [13], the
comparison of behavioral relations [14], and the injection of negative events [15].

Deterministic F/J networks are equivalent to decision-free Petri-Nets [16]. Therefore,
the aforementioned techniques to assess behavioral validity can directly be lifted to the
resource perspective of a process that is given as a deterministic F/J network.
Operational Validity. Operational validity concerns model performance measures and
the accuracy of conclusions drawn from it. Operational models and recorded executions
of a process may be consistent in terms of ordering, i.e., the model is behaviorally valid.
However, the same model may show low operational validity and be inaccurate in the
operational sense. An example would be too coarse-grained abstractions, e.g., a schedule
consisting of a single activity per customer and logs that record only the execution of this
activity. The discovered model, while behaviorally valid, may be useless for operational
analysis. Specifically, execution times for the single activity that would result from the
model may not match their corresponding times from the log, because of their large
variability that stems from the aggregation of customers that are served differently.
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Conceptual Validity. Conceptual validity is defined as the checking of the assumptions
and theories that underlie a model [10]. For the context of F/J networks, conceptual
validity relates to its structure and the dynamics models of server nodes. Operational
models are typically built with assumptions related to the distribution of execution times,
customer arrival rates, and routing probabilities. Moreover, some operational models
rely on approximations and therefore, should be tested for their applicability against data.
To determine conceptual validity, various techniques can be used, for example, statistical
tests can be applied to verify model assumptions and quantify the deviation between
assumed values (e.g., first-moments) and actual measurements (data) [10].

5.2 Operational Validity: Detecting and Quantifying Performance Deviations

Methodology for Operational Validity. To assess operational validity of a model,
model-based performance measures are compared to their counterparts in the recorded
log data. The specific measures to consider may vary among scenarios. However, the
comparison between the model and the recorded data typically exploits a discrepancy
metric between the two, based on a specific performance measure (or output).

Formally, let D : O ×O → X be the deviation between an output of a model and
the corresponding actual measurements (or the output of another model), where O is
the output domain (e.g., processing delays) and X is the domain of the measure for
deviation (e.g. the distance between processing delays is also a delay).

Once the performance measures and distance function are set, one can apply a replay
technique, see [12], to collect sample values of D for every planned task t ∈ TP that
also exists in the log, i.e., t ∈ TA. The replay will result in sample of the deviations
between two outputs, {D(t) | t ∈ (TP ∩ TA)}. This sample can, in turn, be analyzed
via statistical techniques for measuring goodness-of-fit between two models.

Validation of Processing Delays. We now turn to an instantiation of the methodology
to assess operational validity for a specific model aspect. We take up the aforementioned
case of Dana-Farber, where quality improvement teams focus on delays of individual
patients per activity with respect to the maximum between the scheduled time and the
time of arrival at the respective resource. To investigate this aspect, a distribution is
constructed from the individual delays. Then, the difference between the measure from
the log and its equivalent from the deterministic F/J network is quantified.

Using a continuous time model, the specific deviation function for processing delays
is defined as DD : R × R → R. For convenience, we assume TA ⊆ TP , i.e., no
unplanned tasks arrived to the system. While this assumption is not necessary for the
demonstrated approach, it simplifies the definitions in the remainder.

Delays in processing may be caused by resource capacity (customers wait in a
resource queue) or synchronization (customers wait in a synchronization queue). Hence,
for a task t ∈ TA, there is a resource delay ŴR(t) and a synchronization delay ŴS(t),
and the total delay is their sum, Ŵ (t) = ŴR(t) + ŴS(t). The resource delay is the
difference between the current time and the maximum between synchronization time
between previous tasks and the scheduled time for the task. The synchronization delay is
the difference of the earliest and latest entry in one of the synchronization queues:
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ŴR(t) = τstart(t)−max

(
τp(t), max

t′∈πp(t)
{τend(t′)}

)
, (4)

ŴS(t) = min
t′∈πp(t)

{τend(t′)} − max
t′∈πp(t)

{τend(t′)}. (5)

From the schedule, for resource s ∈ SR, we extract the planned delay W (t, s) as
the timestamp difference between the task and its direct successors. Then, we define
DD(t) = D(Ŵ (t),W (t)) as one of the well-established metrics for deviations between
two outputs, e.g. the squared deviation. This way, deviations in processing delays between
the schedule and the observed process execution are detected and quantified.

5.3 Conceptual Validity: Checking Model Assumptions

Methodology for Conceptual Validity. We approach the conceptual validity of a de-
terministic F/J network discovered from the schedule by means of enhancement and
comparison. That is, the deterministic F/J network is enhanced based on the log data,
which yields a stochastic F/J network. Conceptually, this step is similar to enhancement
operations known for process models that focus on the control-flow perspective, see [17].
As a by-product of applying the enhancement algorithm, however, our approach di-
rectly compares the two models, specifically, the server dynamics of the deterministic,
schedule-driven model to the dynamics of the stochastic, data-driven model.

An enhancement function creates a stochastic F/J network from a deterministic F/J
network and a log. In practice, enhancement boils down to fitting all model elements of
the stochastic F/J network with the log data, namely identifying the model structure and,
for every server, discovering its dynamics. Generally speaking, enhancement combines
several process mining and statistical techniques:

– To extract the model structure, process discovery algorithms that exploit direct
successorship of activities and detect concurrency can be used, e.g., the family of
α-algorithms [18, Ch. 5].

– The routing matrix can be inferred by its empirical equivalent, i.e. counts over sums
of historical transitions between nodes.

– Service policies for routing customers can be discovered using the policy-mining
techniques presented in [19].

– The distribution of inter-arrival and service times can be fitted via techniques that
were developed and applied in [20, 21].

Differences in the structure and server dynamics of the schedule-driven model and the
data-driven model are assessed by statistical comparison techniques, e.g., hypothesis
testing [22]. This allows for quantifying deviations and concluding on their significance.
Validation of Service Policies. Next, we instantiate the methodology and demonstrate a
statistical comparison method for service policies that determine the routing of customers
to resources. We focus on a single resource node s ∈ SR and assume that it has been
previously diagnosed (via the techniques to assess operational validity) to cause delays
downstream. Hence, we aim at comparing that server’s service policy and verify whether
the schedule-driven policy indeed holds.
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Formally, let P be the assumed policy that has to be checked against all historical
decisions on the next customer to enter service , which are represented in the log. Policy
P supposedly follows Equation 3, i.e., for a set of tasks {t1, . . . , tn} waiting in the
respective resource queue at time t, the task that has the earliest scheduled timestamp is
selected. To assess to which extent this policy holds true, we define a respective indicator
1P (i), which is equal to one if indeed the i-th past decision corresponds to Equation 3.
Then, we define a statistic that quantifies the level of compliance to policy P :

χP =
1

|n|

n∑
i=1

1P (i), (6)

This is an estimate of the probability that P holds, i.e., E[1P ] = P(P ) with P being the
compliance-to-policy-P event. We use this estimate to test several plausible policies,
e.g., First-Come First-Serve, and decide on the best-fitting policy.

5.4 Continuous Validity

We tighten the relations between conceptual and operational validity by adopting the
paradigm of continuous validity. This paradigm means that two models that are equivalent
in the conceptual domain, will also be equivalent in the operational domain. The notion
of conceptual equivalence between two models can be derived from model comparison
as described above, while operational equivalence can be defined with respect to our
measure for deviations, D (see Section 5.2). The result of continuous validation can
be interpreted in two ways. First, assuming that the schedule is the normative process,
one should fix the causes for deviation in process executions. Alternatively, if the actual
execution is the reference point, the schedule is to be repaired accordingly.

6 Evaluation

This section presents an empirical evaluation of our approach in the context of the Dana-
Farber Cancer Institute, see Section 2. Based on an appointment schedule, RTLS data,
and pharmacy data, we discover a schedule-based queueing network and demonstrate
the value of its validation against data. Below, Section 6.1 describes the datasets and
experimental setup. Section 6.2 discuss the obtained discovery and validation results.

6.1 Datasets and Experimental Setup

Our experiments combine three data sources from the Dana-Farber Cancer Institute: an
appointment schedule, an RTLS log recording movements of badges (patients and service
providers), and a pharmacy log that records checkpoints in the medication-production
process. The resolution of the RTLS can be as accurate as 3 seconds, depending on the
amount of movement of a badge. From the pharmacy log, we only extracted the start
and end events for the production process, since we consider the pharmacy as a separate
server. The experiments involve three weekdays, April 14-16, 2014, which are days of
‘regular’ operation (approximately 600 OTP patients) as was verified with local contacts.
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Our experiments involved the following steps. First, we discovered a deterministic
F/J network from the schedule. Second, we performed an operational validation of
the model against log data, with a focus on deviations in processing delay. Third, we
assessed conceptual validity. We enhanced the model to obtain a stochastic, data-driven
F/J network and then focus on one of the server nodes, for which operational deviations
had been detected in the second step, and analyzed its dynamics.

We implemented our experiments in two software frameworks, SEEStat and SEE-
Graph. Both tools have been developed in the Service Enterprise Engineering lab,4 and
enable, respectively, statistical and graphical analysis of large operational datasets. In
particular, they enable the creation of new procedures for server dynamics (SEEStat),
and for the discovery of structure and routing in queueing networks (SEEGraph).

6.2 Results

Waiting 
Lab

Waiting 
Vitals

Infusion

Waiting 
Infusion

Planned
Delay

Lab

Planned
Delay

Vitals

Fig. 3. Schedule-driven process (appoint-
ments) extracted from the RTLS data

Model Discovery. As a first step, we dis-
covered a deterministic schedule-driven
F/J network. An excerpt of the result is
presented in Fig. 3. Note that the excerpt
shows only the activities that are con-
ducted by staff of the outpatient clinic,
i.e., the preparation of medications by the
pharmacy is not shown5. Note that the
SEEGraph notation for the queueing net-
work distinguishes two types of customer
delays, i.e., time spent before the scheduled time (Planned Delay) and the processing
delay after the time the customer was scheduled (Waiting Lab/Vitals/Infusion).
Operational Validity: Delay Deviations. Next, we enacted the operational validation
and tracked down deviating performance measures. Here, we provide the results for the
example that is outlined in Fig. 2: a patient that is scheduled to enter infusion waits
for two concurrent activities, namely pre-infusion vital signs (vitals) and medication
production. The scheduled time between the end of vitals and the beginning of infusion
is actually zero and most of the delay is planned for the beginning of vitals.

Figure 4 presents the actual distribution of time between vitals and the beginning of
infusion, based on the RTLS data. We observe that, indeed, a large portion of patients
go into infusion within a minute from vitals. However, the distribution presents a long
tail of patients, who wait for the next step (average delay of 25 minutes). For most
patients, this is due to synchronization delays since they wait for their medications. In
many occasions, one can observe in the RTLS data that patients wait, while infusion
nurses are available for service. This again points toward synchronization delays between
the vitals activity and the pharmacy. According to schedule, the central pharmacy is
planned to deliver the medication in synchronization with vitals (within 30 minutes).
The operational insight of long synchronization delays, however, hints at a conceptual
issue regarding the just-in-time arrival of the medication.

4 http://ie.technion.ac.il/labs/serveng/
5 An animation can be found at http://youtube.com/watch?v=ovXu3DB9RuQ
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Fig. 4. Waiting time for Infusion (after vitals); Sample size = 996, Mean = 25min, Stdev = 29min
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Fig. 5. Medication production time; Sample size = 7187, Mean = 30min, Stdev = 24min.

Conceptual Validity: Production Times and Policy. To check for a conceptual issue
related to the ‘Pharmacy’ resource, we investigated its dynamics. We assume that the
fork in Fig. 2 is zero-delay and that pharmacy is notified once the patient is ready for
infusion. Therefore, we assume that the arrival times do not deviate, and diagnose the two
remaining dynamics: production time and service policy. Figure 5 shows the distribution
of production times (for April 2014), and the fitted ‘Dagum’ distribution. Here, we
observe that the stochastic model shares a first moment with the planned duration: both
are 30 minutes on average. Therefore, in alignment to our continuous-validity paradigm,
the root-cause for operational deviations is not the length of drug production.

We now turn to the second dynamic component, the service policy for the drug
production. Here, we focus on the time until the first drug has been prepared. Although
patients often require more than one drug, the first medication is the one that is needed for
the process to flow. Using the method proposed in Section 5.3, we estimated the expected
indicators for three policies: (1) Earliest-Due-Date (EDD) First, which corresponds to
the plan, (2) First-Come First-Served (FCFS), which produces according to the order of
prescription arrivals and (3) Shortest Processing Time (SPT) first, which implies that
priority will be given to patients with shorter infusion durations.

Figure 6 presents the estimated proportion of compliance to policy, as a function
of the number of medication orders in queue. To see an effect of selection based on a
policy, the comparison starts with a queue of size two. We observe that as the queue
grows, the decision on the next task to enter service becomes more random. However,
for short queues, the selection policy tends towards FCFS, instead of EDD as assumed
in the schedule. The deviation between the two policies, planned and actual, can be seen
as a cause of the synchronization delays observed in Fig. 4.
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Fig. 6. Policy comparison for the pharmacy resource

7 Related Work

Recently, there has been an increased interest in scheduled service processes, espe-
cially in the health sector. Outpatient clinics that operate as a scheduled multi-stage
process, are of particular interest, due to their pervasiveness and growth over the past
years [3]. Performance questions for scheduled multi-stage processes relate to bottleneck
identification, dynamic resource allocation, and optimal control (decision making).

Traditionally, such performance analysis is based on techniques from Operations
Research disciplines, such as Scheduling [23] and Queueing Theory [24]. These methods
use hand-made (highly abstract) models of the reality, and apply the relevant (model-
specific) analysis. Validation of the results is typically performed by simulating the
‘reality’ (again a detailed hand-made model), and comparing the outputs of the modeled
reality and the simulated reality, neglecting the benefits of data-driven validation.

The rapidly evolving field of process mining, in turn, is driven by the available
data [18]. Models are discovered from and validated against event data that stems
from recorded process executions, see [25]. Mined models are used as the basis for
prediction [26, 27], simulation [17], and resource-behavior analysis [28, 29]. However,
much work in this field focuses on the control-flow perspective, i.e. the order of activities
and their corresponding resources, times and decisions [18, Ch. 8], so that the created
models cannot benefit from the analysis techniques developed in Operations Research.
In earlier work, therefore, we argued for an explicit representation of the queueing
perspective and demonstrated its value for several real-world processes [9, 19]. However,
the existing techniques all considered the simplistic setting of a single-station system,
whereas, this paper addressed the more complex scenario of service processes that are
scheduled and have a multi-stage structure that involves resource synchronization.

Our approach of discovering a model from a schedule is similar to the transformation
of schedules to Petri-Nets presented in [30]. However, our target formalism is Fork/Join
networks to leverage existing analysis techniques for queueing networks. Also, we
employ log data to answer structural and operational questions regarding the schedule.

One of the main questions in scheduled processes is that of conformance of the
actual process execution to the plan. Techniques for model validation in process mining
primarily focus on behavioral validity, see [12–15]. However, a few works also addressed
time and resource validity of discovered models [31, 32], where the replay method,
as in [33], is used to quantify deviations in performance measures. However, in these
approaches, conceptual validity (model assumptions) is confounded with operational



14

validity (resulting performance measures). This paper argues for a clear separation
between behavioral, operational and conceptual validity, and introduces a methodology
for assessing the operational and conceptual validity of Fork/Join networks.

8 Conclusion

In this work, we provided a framework for the operational analysis of scheduled multi-
stage service processes, as they are observed in such domains as healthcare and trans-
portation. To assess the conformance of the schedule of a process and its actual execution,
we presented an approach based on discovery and validation of queueing networks. First,
we showed how a deterministic Fork/Join network is discovered from a schedule. Second,
we presented a method that exploits log data to assess the operational and conceptual
validity of the discovered model. We evaluated the approach with real-world data from an
outpatient clinic and showed how our approach leads to the identification of operational
bottlenecks and supports the analysis of the root-causes of these bottlenecks.

In future work, we would like to test the value of the stochastic Fork/Join network in
the context of queue mining, e.g. for delay prediction in a network. Also, hope to extend
our validation techniques to incorporate features of stochastic analysis, when comparing
two models, e.g., by developing similarity measures for Fork/Join networks.
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