Data-Based Processing Networks or Inference, Design & Control of Service Systems

Avi Mandelbaum

IE&M **SEE Laboratory**

Technion, Haifa, Israel

http://ie.technion.ac.il/serveng

DSC/e Launch Symposium, December 2013

► Lecture will be downloadable from my Technion website

1

Research Goals

- Reality: Service (Processing) Networks e.g. Hospitals, Call Centers, Websites, ...
- ► Models = ServNets

 Simple models at the service of complex realities:

 Q-Nets, Sim-Nets; F-Nets, D-Nets, ...

Research Goals

- Reality: Service (Processing) Networks e.g. Hospitals, Call Centers, Websites, ...
- ► Models = ServNets

 Simple models at the service of complex realities:

 Q-Nets, Sim-Nets; F-Nets, D-Nets, ...
- ► Research: Data-based creation, analysis and validation

Research Goals

- Reality: Service (Processing) Networks e.g. Hospitals, Call Centers, Websites, ...
- ► Models = ServNets

 Simple models at the service of complex realities:

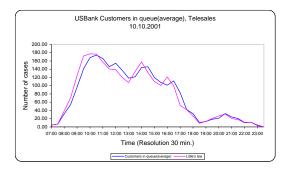
 Q-Nets, Sim-Nets; F-Nets, D-Nets, ...
- Research: Data-based creation, analysis and validation
- ► Goals: (Reproducible) research & teaching (that impact practice)
- ⇒ Data & analysis of ServNets: accessible, useful
- ⇒ Creation & Validation of ServNets: Automatic, online (Starting w/ A. Gal, A. Senderovic, M. Weidlich)

- Research in OR/QS/IE + Technologies, at Technion / SEELab:
 - Need Process Mining to overcome "curse of simplicity": "my models too simple to be credible"
 - Validate my "simple" models against complex PM "realities"
 - Enrich them when desired (research) or needed (practice)
 - Create a Science for SEELab technologies/heuristics
- Research in Process Mining + Technologies, at TU/e / DSC/e

- Research in OR/QS/IE + Technologies, at Technion / SEELab:
 - Need Process Mining to overcome "curse of simplicity": "my models too simple to be credible"
 - Validate my "simple" models against complex PM "realities"
 - Enrich them when desired (research) or needed (practice)
 - Create a Science for SEELab technologies/heuristics
- Research in Process Mining + Technologies, at TU/e / DSC/e
 - (Humbly submit that) OR/QS can help overcome "curse of dimensionality", through analysis of simple (parsimonious) yet valuable models

- Research in OR/QS/IE + Technologies, at Technion / SEELab:
 - Need Process Mining to overcome "curse of simplicity": "my models too simple to be credible"
 - Validate my "simple" models against complex PM "realities"
 - Enrich them when desired (research) or needed (practice)
 - Create a Science for SEELab technologies/heuristics
- Research in Process Mining + Technologies, at TU/e / DSC/e
 - (Humbly submit that) OR/QS can help overcome "curse of dimensionality", through analysis of simple (parsimonious) yet valuable models
- Data & Data-Based Models = natural Meeting Ground, e.g.
 - PM: Create SimNet, QNet, FNet, DNet from hospital data
 - OR: Compare FNet against QNet Accuracy
 - OR: Refine FNet with DNet improve accuracy

- Research in OR/QS/IE + Technologies, at Technion / SEELab:
 - Need Process Mining to overcome "curse of simplicity": "my models too simple to be credible"
 - Validate my "simple" models against complex PM "realities"
 - Enrich them when desired (research) or needed (practice)
 - Create a Science for SEELab technologies/heuristics
- Research in Process Mining + Technologies, at TU/e / DSC/e
 - (Humbly submit that) OR/QS can help overcome "curse of dimensionality", through analysis of simple (parsimonious) yet valuable models
- ▶ Data & Data-Based Models = natural Meeting Ground, e.g.
 - PM: Create SimNet, QNet, FNet, DNet from hospital data
 - OR: Compare FNet against QNet Accuracy
 - OR: Refine FNet with DNet improve accuracy
 - ► OR+PM: Validate FNet+DNet against SimNet ≈ Reality Value Note: No need for QNets

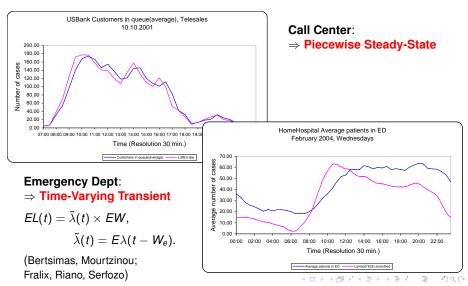

Contents

2 simple models

- Emergency Department: Time-Varying
 - Mass Casualty Event: QNet and FNet (2 hours) performance
 - Normal: QNet, DNet and SimNet (over 1 day) staffing
- Call Center: Stationary
 - Q-Net and D-Net (piecewise stationary) congestion laws
- Empirical adventures at the Technion IE&M SEELab:Mining operational building blocks of ServNets
 - Primitives
 - Structure
 - Protocols

Little's Law $L = \lambda \times W$, in a Time-Varying Environment

Time-Gap: # in System lags behind Little / 30 min



Call Center:

⇒ Piecewise Steady-State

Little's Law $L = \lambda \times W$, in a Time-Varying Environment

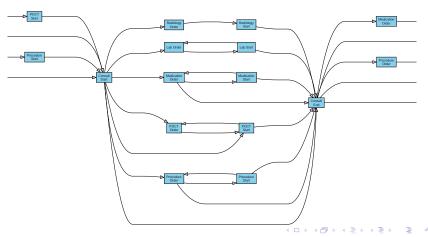
Time-Gap: # in System lags behind Little / 30 min

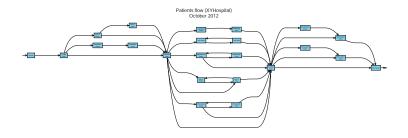
ER / ED Environment: Service Network

Acute (Internal, Trauma)

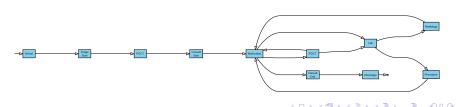
Walking

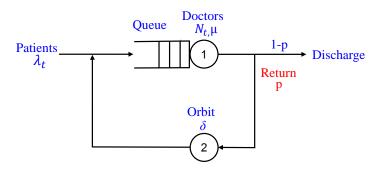
Multi-Trauma


ED-Environment in Israel

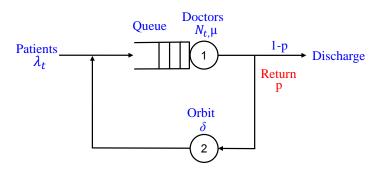

Simple Models at the Service of Complex Realities: FNets

- 1. ED in Normal days (Time-Varying Periodic): Personnel Staffing (offline)
- 2. ED in Mass Casualty Event (Transient): Forecasting, Staffing (online)


Emergency Department in XYHospital, October 2012


Recurrent Service Process in the ED

Capture Recurrent nature of service process: Multiple doctor visits



The Basic Service-Network Model: Erlang-R

w/ G. Yom-Tov

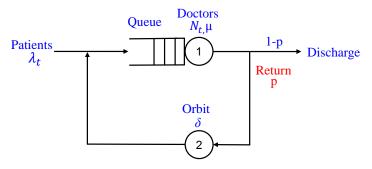
The Basic Service-Network Model: Erlang-R

w/ G. Yom-Tov

2-station "Jackson" Network = $(M/M/S, M/M/\infty)$:

- ▶ λ_t Time-Varying Arrival rate
- ► N_t Number of Servers (Physicians, or Nurses)
- ▶ μ **Service** rate ($E[Service] = \frac{1}{\mu}$)
- p Return (ReEntrant) fraction
- ▶ δ **Orbit-to-Queue** rate ($E[Delay]_{19} = \frac{1}{\delta}$)

RFID-Based Data in Mass Casualty Event (Drill)

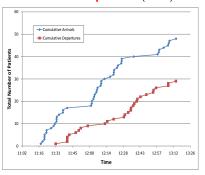

Chemical MCE, Rambam Hospital (May 2010, 11:00-13:00)

Fluid Model:

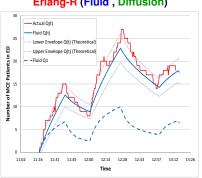
- ▶ Predictable Variability ⇒ Time-Varying
- ► Stochastic Individualism averaged-out ⇒ Deterministic

Fluid Model ↔ (Time-Varying) Erlang-R System

Functional Strong Law of Large Numbers, for a 2-station QNet. BUT


FNet = ODE: derived directly (no QNet), spreadsheet "solution"

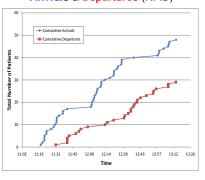
$$egin{aligned} rac{d}{dt}q_t^1 &= \lambda_t - \mu \cdot \left(q_t^1 \wedge N_t
ight) + \delta \cdot q_t^2 \ rac{d}{dt}q_t^2 &= p \cdot \mu \cdot \left(q_t^1 \wedge N_t
ight) - \delta \cdot q_t^2 \end{aligned}$$


Erlang-R Value: FNet vs. Data

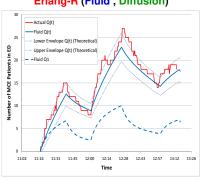
Chemical MCE Drill (Israel, May 2010, 11:00-13:00)

Arrivals & Departures (RFID)

Erlang-R (Fluid, Diffusion)



Recurrent/Repeated services in Chemical MCE: injection every 15/30/60 min


Erlang-R Value: FNet vs. Data

Chemical MCE Drill (Israel, May 2010, 11:00-13:00)

Arrivals & Departures (RFID)

Erlang-R (Fluid, Diffusion)

- Recurrent/Repeated services in Chemical MCE: injection every 15/30/60 min
- Fluid = ODE
- Diffusion (confidence band), via F. Central Limit Theorem: Usefully narrow

A Data-Based Framework, or "Erlang-R in the ED"

System = e.g. Emergency Department

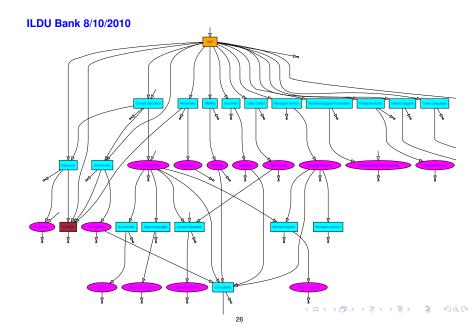
- ➤ **QNet** = Erlang-R (time-varying 2-station Jackson; w/ Yom-Tov)
- ► FNets = 2-dim dynamical system (Massey & Whitt)
- ▶ DNets = 2-dim Markovian Service Net (w/ Massey and Reiman)
- SimNet = Customized ED-Simulator (Marmor & Sinreich)

A Data-Based Framework, or "Erlang-R in the ED"

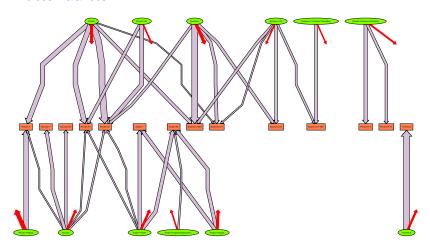
System = e.g. Emergency Department

- ➤ **QNet** = Erlang-R (time-varying 2-station Jackson; w/ Yom-Tov)
- ► FNets = 2-dim dynamical system (Massey & Whitt)
- ▶ **DNets** = 2-dim Markovian Service Net (w/ Massey and Reiman)
- SimNet = Customized ED-Simulator (Marmor & Sinreich)

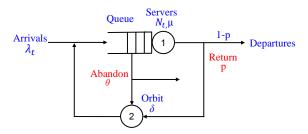
Framework: Mining (all) ServNets from Data


- MCE ED: FNet ⇒ Census, DNet = Confidence band Performance Analysis, Prediction
 Validated against Data
- Normal ED: FNet ⇒ Physician offered-load ⇒ √-Staffing Staffing to stabilize operational performance Validated against SimNet

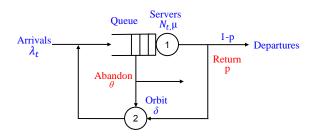
Call-Center Environment: Service Network



Customer Flow in Call Centers


Impatient Customers - Isolate or Aggregate

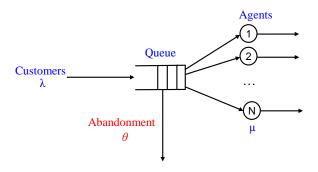
ILTelecom 9/3/2008


Model Selection: As Simple as Possible but Not Simpler

Service with Retrials and Abandonment; w/ Massey, Reiman, Stolyar

Model Selection: As Simple as Possible but Not Simpler

Service with Retrials and Abandonment; w/ Massey, Reiman, Stolyar



- Call centers: Visit durations naturally measured in minutes
 - Arrival rates are "constant" during visit
 - Returns occur hours after visit
- ⇒ "Select" Base Model (of 1/2 hour):

Stationary, Abandonment

A Basic Staffing Model: Erlang-A

w/ O. Garnett

"Birth & Death" Queue = M/M/N + M (Palm 1940's):

- μ **Service** rate (Exponential; $E[S] = \frac{1}{\mu}$)
- ▶ θ Patience rate (Exponential, $E[Patience] = \frac{1}{\theta}$)
- ► *N* Number of **Servers** (Agents).

Experience:

- Arrival process **not pure Poisson** (time-varying, σ^2 too large)
- Service times not Exponential (typically close to LogNormal)
- Patience times not Exponential (behavior-dependent).

Experience:

- Arrival process **not pure Poisson** (time-varying, σ^2 too large)
- Service times not Exponential (typically close to LogNormal)
- Patience times not Exponential (behavior-dependent).
- Building Blocks need not be independent (eg. long wait associated with long service; w/ M. Reich & Y. Ritov)
- Customers and Servers not homogeneous (classes, skills):
 w/ R. Atar, G. Shaikhet; R. Atar, I. Gurvich, ...
- Customers return for service (after busy, abandonment; dependently:
 P. Khudiakov, R. Ghebali, M. Gorfine, P. Feigin)
- ..., and more.

Experience:

- Arrival process **not pure Poisson** (time-varying, σ^2 too large)
- Service times not Exponential (typically close to LogNormal)
- Patience times not Exponential (behavior-dependent).
- Building Blocks need not be independent (eg. long wait associated with long service; w/ M. Reich & Y. Ritov)
- Customers and Servers not homogeneous (classes, skills):
 w/ R. Atar, G. Shaikhet; R. Atar, I. Gurvich, ...
- Customers return for service (after busy, abandonment; dependently:
 P. Khudiakov, R. Ghebali, M. Gorfine, P. Feigin)
- ▶ ..., and more.

Question: Is Erlang-A Relevant?

Experience:

- Arrival process **not pure Poisson** (time-varying, σ^2 too large)
- Service times not Exponential (typically close to LogNormal)
- ▶ Patience times **not Exponential** (behavior-dependent).
- Building Blocks need not be independent (eg. long wait associated with long service; w/ M. Reich & Y. Ritov)
- Customers and Servers not homogeneous (classes, skills):
 w/ R. Atar, G. Shaikhet; R. Atar, I. Gurvich, ...
- Customers return for service (after busy, abandonment; dependently:
 P. Khudiakov, R. Ghebali, M. Gorfine, P. Feigin)
- ▶ ..., and more.

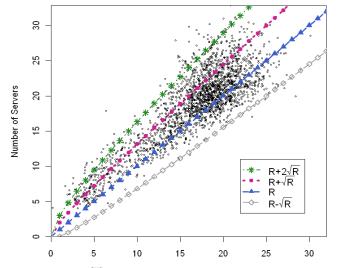
Question: Is Erlang-A Relevant? Robust enough? YES!

- ▶ **Practice**: Staffing engine of Work-Force Management software
- ► Theory: Theoretical engine of Operational Regimes

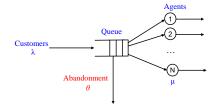
 QD, ED, QED

Asymptotic Erlang-X (Markovian Q's)

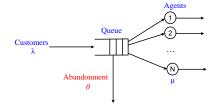
- ► Pre-History, 1914: Erlang (Erlang-B = M/M/n/n, Erlang-C = M/M/n)
- Pre-History, 1974: Jagerman (Erlang-B)
- ► History Milestone, 1981: Halfin-Whitt (Erlang-C, Gl/M/n)
- ► Erlang-A (M/M/N+M), 2002: w/ Garnett & Reiman
- ► Erlang-A with General (Im)Patience (M/M/N+G), 2005: w/ Zeltyn
- Frlang-C (ED+QED), 2009: w/ Zeltyn
- Erlang-B with Retrial, 2010(3): Avram, Janssen, van Leeuwaarden
- ▶ Refined Asymptotics (Erlang A/B/C, ...), 2008-2013: Janssen, van Leeuwaarden, Zhang, Zwart
- Production Q's, 2011: Reed & Zhang
- Universal Erlang-A, ongoing: w/ Gurvich & Huang
- Queueing Networks:
 - (Semi-)Closed: Nurse Staffing (Jennings & de Vericourt), CCs with IVR (w/ Khudiakov), Erlang-R (w/ Yom-Tov)
 - CCs with Abandonment and Retrials: w. Massey, Reiman, Rider, Stolyar
 - Markovian Service Networks: w/ Massey & Reiman
- Leaving out:
 - Non-Exponential Service Times: M/D/n (Erlang-D), G/Ph/n, · · · , G/GI/n+GI, Measure-Valued Diffusions
 - ▶ **Dimensioning** (Staffing): M/M/n, · · · , time-varying Q's, V- and Reversed-V, · · ·
 - ▶ Control: V-network, Reversed-V, · · · , SBRNets


Asymptotic Landscape: 9 Operational Regimes, and then some Erlang-A, w/ I. Gurvich & J. Huang

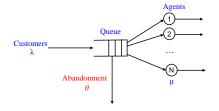
Erlang-A	Conventional scaling			Many-Server scaling			NDS scaling		
$\mu \& \theta$ fixed	Sub	Critical	Over	QD	QED	ED	Sub	Critical	Over
Offered load	$\frac{1}{1+\delta}$	$1 - \frac{\beta}{\sqrt{n}}$	_1_	$\frac{1}{1+\delta}$	$1 - \frac{\beta}{\sqrt{n}}$	$\frac{1}{1-\gamma}$	$\frac{1}{1+\delta}$	$1-\frac{\beta}{2}$	1_
per server	$1+\delta$		$1-\gamma$	$1+\delta$	\sqrt{n}			1 n	$1-\gamma$
Arrival rate λ	$\frac{\mu}{1+\delta}$	$\mu - \frac{\beta}{\sqrt{n}}\mu$	$\frac{\mu}{1-\gamma}$	$\frac{n\mu}{1+\delta}$	$n\mu - \beta\mu\sqrt{n}$	$\frac{n\mu}{1-\gamma}$	$\frac{n\mu}{1+\delta}$	$n\mu - \beta\mu$	$\frac{n\mu}{1-\gamma}$
# servers	1			n			n		
Time-scale	n			1			n		
Impatience rate	θ/n			θ			θ/n		
Staffing level	$\frac{\lambda}{\mu}(1+\delta)$	$\frac{\lambda}{\mu}(1 + \frac{\beta}{\sqrt{n}})$	$\frac{\lambda}{\mu}(1-\gamma)$	$\frac{\lambda}{\mu}(1+\delta)$	$\frac{\lambda}{\mu} + \beta \sqrt{\frac{\lambda}{\mu}}$	$\frac{\lambda}{\mu}(1-\gamma)$	$\frac{\lambda}{\mu}(1+\delta)$	$\frac{\lambda}{\mu} + \beta$	$\frac{\lambda}{\mu}(1-\gamma)$
Utilization	$\frac{1}{1+\delta}$	$1 - \sqrt{\frac{\theta}{\mu}} \frac{h(\hat{\beta})}{\sqrt{n}}$	1	$\frac{1}{1+\delta}$	$1 - \sqrt{\frac{\theta}{\mu}} \frac{\hat{h}(\hat{\beta})}{\sqrt{n}}$	1	$\frac{1}{1+\delta}$	$1 - \sqrt{\frac{\theta}{\mu}} \frac{h(\hat{\beta})}{n}$	1
$\mathbb{E}(Q)$	$\frac{1}{\delta(1+\delta)}$	$\sqrt{n}g(\hat{\beta})$	$\frac{n\mu\gamma}{\theta(1-\gamma)}$	$\frac{1}{\delta} \varrho_n$	$\sqrt{n}g(\hat{\beta})\alpha$	$\frac{n\mu\gamma}{\theta(1-\gamma)}$	o(1)	$ng(\hat{\beta})$	$\frac{n^2 \mu \gamma}{\theta(1-\gamma)}$
$\mathbb{P}(Ab)$	$\frac{1}{n} \frac{1}{\delta} \frac{\theta}{\mu}$	$\frac{\theta}{\sqrt{n}\mu}g(\hat{\beta})$	γ	$\frac{1}{n} \frac{(1+\delta)}{\delta} \frac{\theta}{\mu} \varrho_n$	$\frac{\theta}{\sqrt{n}\mu}g(\hat{\beta})\alpha$	γ	$o(\frac{1}{n^2})$	$\frac{\theta}{n\mu}g(\hat{\beta})$	γ
$\mathbb{P}(W_q > 0)$	$\frac{1}{1+\delta}$	≈1		ϱ_n	$\alpha \in (0,1)$	≈ 1	≈ 0	≈ 1	
$\mathbb{P}(W_q > T)$	$\frac{1}{1+\delta}e^{-\frac{\delta}{1+\delta}\mu T}$	$1 + O(\frac{1}{\sqrt{n}}) \left 1 + O(\frac{1}{n}) \right $		≈ 0		f(T)	≈ 0	$\frac{\bar{\Phi}(\hat{\beta}+\sqrt{\theta\mu}T)}{\bar{\Phi}(\hat{\beta})}$	$1 + O(\tfrac{1}{n})$
Congestion $\frac{\mathbb{E}W_q}{\mathbb{E}S}$	$\frac{1}{\delta}$	$\sqrt{n}g(\hat{\beta})$	$n\mu\gamma/\theta$	$\frac{1}{n} \frac{(1+\delta)}{\delta} \varrho_n$	$\frac{\alpha}{\sqrt{n}}g(\hat{\beta})$	$\frac{\mu\gamma}{\theta}$	$o(\frac{1}{n})$	$g(\hat{eta})$	$n\mu\gamma/\theta$


- ► Conventional: Ward & Glynn (03, G/G/1 + G)
- Many-Server:
 - QED: Halfin-Whitt (81), w/ Garnett & Reiman (02)
 - ► ED: Whitt (04)
 - ► NDS: Atar (12)
- "Missing": ED+QED; Hazard-rate scaling (M/M/N+G); Time-Varying, Non-Parametric; Moderate- and Large-Deviation; Networks (multi-regimes)

Beyond Fluid: #Agents vs. Offered-Load ($N \approx R + \beta \sqrt{R}$)


IL Telecom; June-September, 2004 (2205 30min intervals, over 13 weeks, week-days)

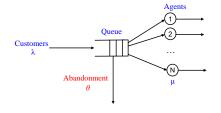
e.g. Offered-load $\mathbb{R} \stackrel{avg}{=} 5$ calls per min \times 3.2 min per call = 16 Erlangs


w/ I. Gurvich & J. Huang

w/ I. Gurvich & J. Huang

▶ QNet: Birth & Death Queue, with B - D rates

$$F(q) = \lambda - \mu \cdot (q \wedge n) - \theta \cdot (q - n)^+, \quad q = 0, 1, \dots$$


w/ I. Gurvich & J. Huang

QNet: Birth & Death Queue, with B - D rates

$$F(q) = \lambda - \mu \cdot (q \wedge n) - \theta \cdot (q - n)^+, \quad q = 0, 1, \dots$$

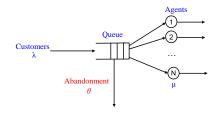
► FNet: Dynamical (Deterministic) System – ODE

$$dx_t = F(x_t)dt, \ t \ge 0$$

w/ I. Gurvich & J. Huang

QNet: Birth & Death Queue, with B - D rates

$$F(q) = \lambda - \mu \cdot (q \wedge n) - \theta \cdot (q - n)^+, \quad q = 0, 1, \dots$$


► FNet: Dynamical (Deterministic) System – ODE

$$dx_t = F(x_t)dt, \ t \geq 0$$

DNet: Universal (Stochastic) Approximation – SDE

$$dY_t = F(Y_t)dt + \sqrt{2\lambda} dB_t, t \ge 0$$

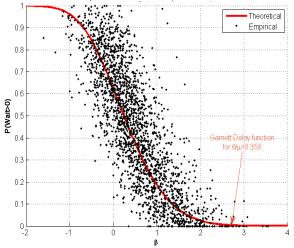
w/ I. Gurvich & J. Huang

QNet: Birth & Death Queue, with B - D rates

$$F(q) = \lambda - \mu \cdot (q \wedge n) - \theta \cdot (q - n)^+, \quad q = 0, 1, \dots$$

► FNet: Dynamical (Deterministic) System – ODE

$$dx_t = F(x_t)dt, t \ge 0$$


DNet: Universal (Stochastic) Approximation – SDE

$$dY_t = F(Y_t)dt + \sqrt{2\lambda} dB_t, \ t \ge 0$$

eg.
$$\mu = \theta$$
: $\dot{\mathbf{x}} = \lambda - \mu \cdot \mathbf{x}$, $\mathbf{Y} = \mathsf{OU}$ process

Erlang-A Value: DNet $P(W_q > 0)$ vs. Data

IL Telecom; June-September, 2004 (2205 30min intervals, weekdays)

▶ Approximations, w/ Patience $\approx 3 \times$ Service-Duration ($\mu/\theta \approx 3$)

Accuracy: DNet vs. QNet

lackbox Δ^{λ} is the "balancing" state, obtained by solving

$$\lambda = \mu(\mathbf{n} \wedge \Delta^{\lambda}) + \theta(\Delta^{\lambda} - \mathbf{n})^{+}.$$

Solution:
$$\Delta^{\lambda} = \frac{\lambda}{\mu} - \left(\frac{\lambda}{\mu} - n\right)^{+} \left(1 - \frac{\mu}{\theta}\right)$$
.
Specifically: $\mathbf{QD} = \frac{\lambda}{\mu}$; $\mathbf{ED} = n + \frac{1}{\theta}(\lambda - n\mu)$; $\mathbf{QED} = n + \mathcal{O}(\sqrt{\lambda})$)

Centered processes (excursions):

$$ilde{Q}^{\lambda}(\cdot) = Q(\cdot) - \Delta^{\lambda}, \quad ilde{Y}^{\lambda}(\cdot) = Y(\cdot) - \Delta^{\lambda}.$$

Theorem: For f bounded by an m-degree polynomial ($m \ge 0$):

$$\mathbb{E} f(\tilde{Q}^{\lambda}(\infty)) - \mathbb{E} f(\tilde{Y}^{\lambda}(\infty)) = \mathcal{O}(\sqrt{\lambda}^{m-1}).$$

Accurate: more than heavy-traffic limits

Simplicity: Why 2λ ?

- Semi-martingale representation of the B&D process:
 Fluid + Martingale
- Predictable quadratic variation:

$$\int_0^t [\lambda + \mu(Q_s \wedge n) + \theta(Q_s - n)^+] ds$$

In steady-state, arrival rate ≡ departure rate:

$$\lambda = \mathbb{E}[\mu(Q_s \wedge n) + \theta(Q_s - n)^+]$$

Expectation of the predictable quadratic variation:

$$\mathbb{E} \int_0^t [\lambda + \mu(Q_s \wedge n) + \theta(Q_s - n)^+] ds = 2\lambda t$$

► Simple \Rightarrow Tractable, Robust: dMartingale_t $\approx \sqrt{2\lambda}$ · dBrownian_t

Reconciling Time-Varying and Steady-State Models

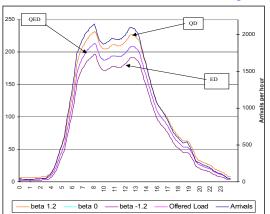
- Rigid (fixed) staffing level during a time-varying shift: Doomed to alternate between overloading and underloading
- ► Flexible staffing:
 Can design time-varying staffing that achieves, at all times,
 Steady-State performance
 via Square-Root Staffing (Modified Offered-Load)

Reconciling Time-Varying and Steady-State Models

- Rigid (fixed) staffing level during a time-varying shift: Doomed to alternate between overloading and underloading
- Flexible staffing:
 Can design time-varying staffing that achieves, at all times,
 Steady-State performance
 via Square-Root Staffing (Modified Offered-Load)

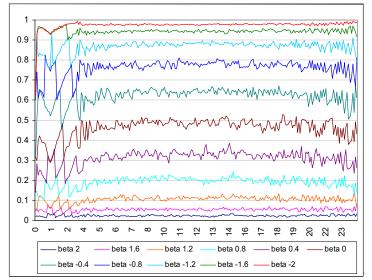
History:

- Jennings, M., Reiman, Whitt (1996): Emergence of the phenomenon, with infinite-server heuristics
- Feldman, M., Massey, Whitt (2008): Stabilize delay probability with QED staffing, with little theory
- Liu and Whitt (2012): Stabilize abandonment probability, with ED theory
- w/ Huang, Gurvich (ongoing): QED theory

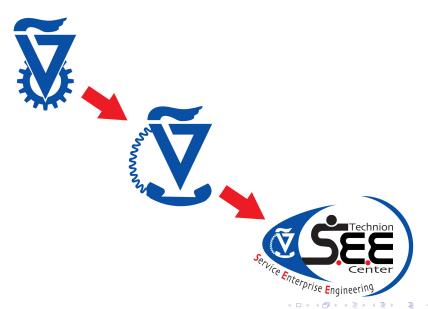

Time-Varying Arrival Rates

Square-Root Staffing:

$$N(t) = R(t) + \beta \sqrt{R(t)}, -\infty < \beta < \infty.$$


R(t) is the **Offered-Load** at time $t - (R(t) \neq \lambda(t) \times E[S])$

Arrivals, Offered-Load and Staffing


Time-Stable Performance of Time-Varying Systems

Delay Probability = as in the **Stationary Erlang-A** / **R**

Pause for a Commercial:

Pause for a Commercial: The Technion **SEELab**

Technion SEE = Service Enterprise Engineering

SEELab: Data-repositories for research and teaching

- Detailed operational histories (customers, servers), e.g.
 - 1. * Bank Anonymous: 1 year, 350K calls by 15 agents in 2000, which paved the way to:
 - 2. *U.S. Bank : 2.5 years, 220M calls, 40M by 1000 agents
 - 3. Israeli Cellular: 2.5 years, 110M calls, 25M calls by 750 agents
 - 4. Israeli Bank: from January 2010, daily-deposit at a SEESafe
 - 5. *Home (Rambam) Hospital: 4 years, 1000 beds, ward-level flow
 - 6. Emergency Department (ED) patient flow:
 - ▶ 5 EDs in Israel: 1-2 years, late David Sinreich, ED arrivals & LOS
 - ▶ ED in Seoul: 2 months, K. Song-Hee & W. Cha, pilot
 - ▶ ED in Singapore: 2 years, S. He & M. Sim, pilot
 - 7. Service Engineering **internet site**: click-stream data (2 years)

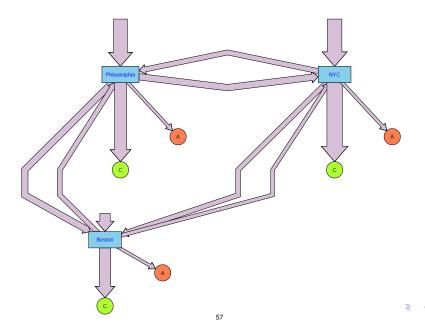
Technion SEE = Service Enterprise Engineering

SEELab: Data-repositories for research and teaching

- Detailed operational histories (customers, servers), e.g.
 - 1. * Bank Anonymous: 1 year, 350K calls by 15 agents in 2000, which paved the way to:
 - 2. *U.S. Bank : 2.5 years, 220M calls, 40M by 1000 agents
 - 3. Israeli Cellular: 2.5 years, 110M calls, 25M calls by 750 agents
 - 4. Israeli Bank: from January 2010, daily-deposit at a SEESafe
 - 5. *Home (Rambam) Hospital: 4 years, 1000 beds, ward-level flow
 - 6. Emergency Department (ED) patient flow:
 - ▶ 5 EDs in Israel: 1-2 years, late David Sinreich, ED arrivals & LOS
 - ► ED in Seoul: 2 months, K. Song-Hee & W. Cha, pilot
 - ► ED in Singapore: 2 years, S. He & M. Sim, pilot
 - 7. Service Engineering internet site: click-stream data (2 years)

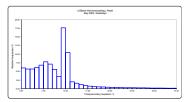
Environment for graphical EDA in real-time:

- *SEEStat : primitives (arrivals, services, patience)
- **SEEGraph**: structure, animation (protocols ⇒ simulation)
- * Open & Free for academic use


Empirical Adventures at the SEELab

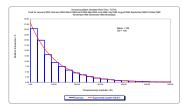
SEELab History suggests possible guidelines for ServNet Mining:

- 1. **Primitives**: arrivals, services, (im)patience
- 2. Structure: static process-maps
- 3. Protocols: Load Balancing, Dynamic Priority, Information

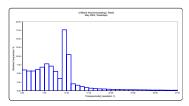

EDA ⇒ open questions, new directions, uncharted territories

Protocol Mining: Snapshots of Connectivity

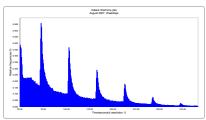
Protocols: Waiting Time in a Call Center


Routing via Thresholds (sec.) Large U.S. Bank

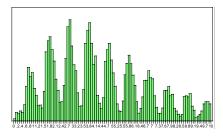
Protocols: Waiting Time in a Call Center


Exponential in Heavy-Traffic (min.)

Small Israeli Bank


Routing via Thresholds (sec.)

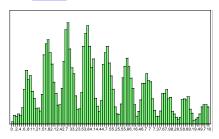
Large U.S. Bank

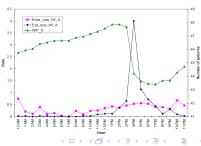

Scheduling Priorities (sec.) [compare Hospital LOS (hours)]

Medium Israeli Bank

Protocols: LOS in Hospitals

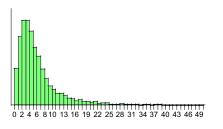
In Hours: 2 Time Scales, Mixture

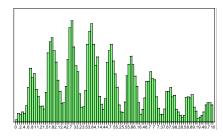

Protocols: LOS in Hospitals


Explanation: Patients released around **3pm** (2-3 in Singapore, 2-4 in UNC Hospital)

Why Bother?

- ► Hourly Scale: Staffing,...
- ▶ Daily: Flow / Bed Control,...

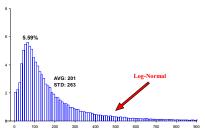

In Hours: 2 Time Scales, Mixture



Protocols: LOS in Hospitals

Israeli Hospital, in Days: LN

In Hours: 2 Time Scales, Mixture

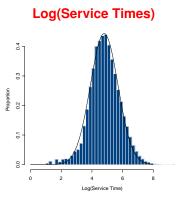


Primitives: Services (Durations)

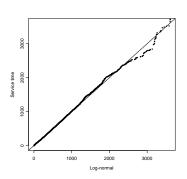
Histogram of Service-Duration in an Israeli Call Center, 1999

Why LogNormal?

November-December



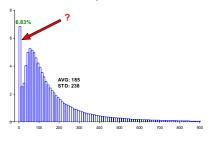
▶ November-December: LogNormal durations (common) ?



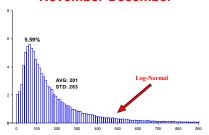
Durations: Phone Calls

Israeli Call Center, Nov-Dec, 1999

LogNormal QQPlot


- Practically Important: (mean, std)(log) characterization
- ► Theoretically Intriguing: Why LogNormal ? Naturally multiplicative but, in fact, also Infinitely-Divisible (Generalized Gamma-Convolutions)

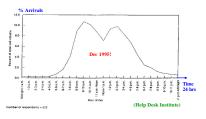
Primitives: Services (Durations)


Histogram of Service-Duration in an Israeli Call Center, 1999

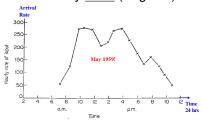
Why short services? Why LogNormal?

January-October

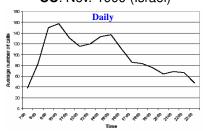
November-December



- ▶ January-October: 6.8% Short-Services (≤ 10 seconds) ?
- November-December: LogNormal durations (common) ?

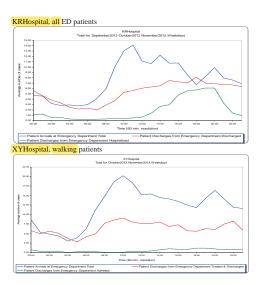

Primitives: Arrival (Rates) to Service

Why 2 Daily Peaks?

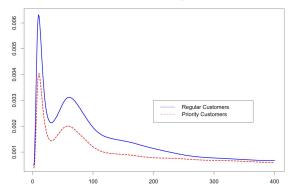

CC: Dec. **1995**, (USA, 700 Helpdesks)

CC: May <u>1959</u> (England)

CC: Nov. 1999 (Israel)

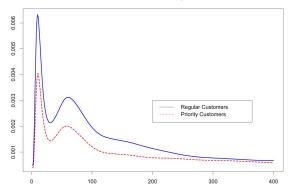


ED: Jan.-July 2007 (Israel)


Arrival (Discharge) Rates in Korea and Singapore

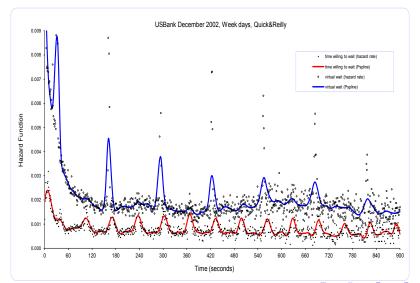
Protocols: (Im)Patience while Waiting (Psychology)

Palm: (1943–53): Irritation \propto Hazard Rate

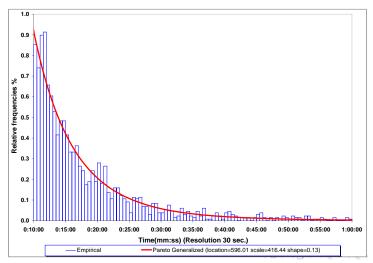

Regular over VIP Customers: VIP more patient here (Israeli Bank)

Protocols: (Im)Patience while Waiting (Psychology)

Palm: (1943–53): Irritation \propto Hazard Rate


Regular over VIP Customers: VIP more patient here (Israeli Bank)

- Why Peaks of abandonment? Announcement epochs
 - Control abandonment w/ info: encourage, discourage
 - ► Technical Challenges, w/ J. Huang, J. Zhang, H. Zhang
- Statistical challenges: Un-Censoring, Smoothing


Protocols + Psychology Patient Customers, Announcements, Priority Upgrades

Primitives: (Im)Patience

Israeli Bank: Uncensored 13,000 Customers, 24/11/2008

Patience ≥ 10*min*: Why Pareto Tail?

On Data-Based Research

w/ V. Trofimov, E. Nadjharov, I. Gavako = Technion SEELab

- ▶ ServNets = P, C,...; Q, Sim, F, D
- ➤ **SimNets** of Service Systems = **Virtual Realities**, where "complex" models meet "simple" models, towards enhancement and credibility

On Data-Based Research

w/ V. Trofimov, E. Nadjharov, I. Gavako = Technion SEELab

- ▶ ServNets = P, C,...; Q, Sim, F, D
- ➤ SimNets of Service Systems = Virtual Realities, where "complex" models meet "simple" models, towards enhancement and credibility
- Beyond the prevalent: "single researcher (with a PhD student) obtaining small data for a single research project": unprofessional, no learning across generations, no sharing among researchers, irreproducible research
- Data-based Research: Tradition in Physics, Chemistry, Biology;
 Psychology (now also in Transportation (Science) and (Behavioral) Economics)
- Why not in Service/Queueing Science / Engineering / Management ?

On Data-Based Research

w/ V. Trofimov, E. Nadjharov, I. Gavako = Technion SEELab

- ▶ ServNets = P, C,...; Q, Sim, F, D
- ➤ SimNets of Service Systems = Virtual Realities, where "complex" models meet "simple" models, towards enhancement and credibility
- Beyond the prevalent: "single researcher (with a PhD student) obtaining small data for a single research project": unprofessional, no learning across generations, no sharing among researchers, irreproducible research
- Data-based Research: Tradition in Physics, Chemistry, Biology;
 Psychology (now also in Transportation (Science) and (Behavioral) Economics)
- Why not in Service/Queueing Science / Engineering / Management ?
- Glad to see this happening in DSC/e

Data-Based Creation of ServNets: some Technicalities

- ServNets = QNets, SimNets, FNets, DNets
- ▶ **Graph Layout**: Adapted from but significantly extends Graphviz (AT&T, 90's); eg. *edge-width*, which must be restricted to *poly-lines*, since there are "no parallel Bezier (Cubic) curves $(B_n(p) = E_p F[B(n, p)], 0 \le p \le 1)$
- Algorithm: Dot Layout (but with cycles), based on Sugiyama, Tagawa, Toda ('81): "Visual Understanding of Hierarchical System Structures"

Data-Based Creation of ServNets: some Technicalities

- ServNets = QNets, SimNets, FNets, DNets
- ▶ **Graph Layout**: Adapted from but significantly extends Graphviz (AT&T, 90's); eg. *edge-width*, which must be restricted to *poly-lines*, since there are "no parallel Bezier (Cubic) curves $(B_n(p) = E_p F[B(n, p)], 0 \le p \le 1)$
- Algorithm: Dot Layout (but with cycles), based on Sugiyama, Tagawa, Toda ('81): "Visual Understanding of Hierarchical System Structures"
- Draws data directly from SEELab data-bases:
 - Relational DBs (Large! eg. USBank Full Binary = 37GB, Summary Tables = 7GB)
 - Structure: Sequence of events/states, which (due to size) partitioned (yet integrated) into days (eg. call centers) or months (eg. hospitals)
 - Differs from industry DBs (in call centers, hospitals, websites)

Applying (Queueing) Asymptotics

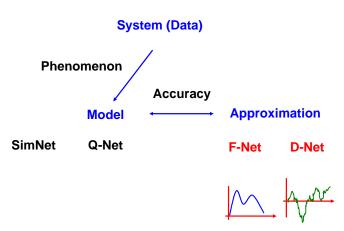
There are by now numerous insightful asymptotic queueing models at our disposal, and many arise from, and create, deep beautiful theory:

Has it helped one approximate or simulate a service system more efficiently, estimate its parameter more accurately, teach it to our students more effectively, perhaps even manage the system better?

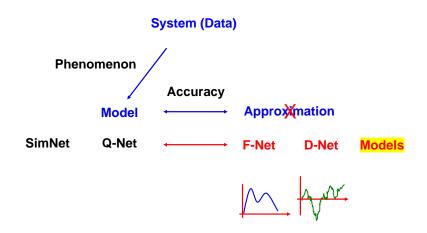
I am of the opinion that the answers to such questions have been too often negative, and that positive answers must have theory and applications nurture each other, which is good.

How to make this good happen? My approach has been to marry theory with data, which has been supported by (what I only recently came to realize is) process (Q-Net) mining: building-blocks, structure, protocols; laws of "nature".

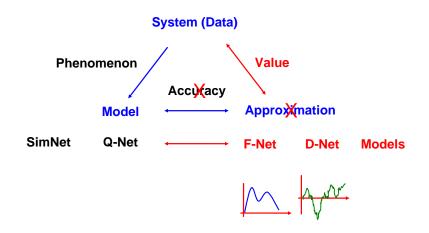
Prevalent (Asymptotic) Approximations

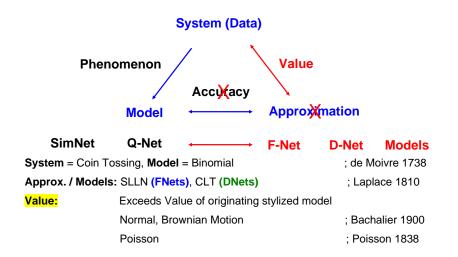

System (Data)

Phenomenon

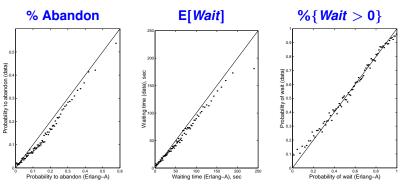

Model

SimNet Q-Net


Prevalent (Asymptotic) Approximations

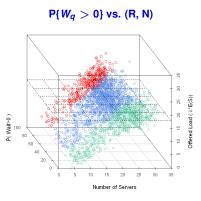

Data-Based Prevalent (Asymptotic) Approximations Models

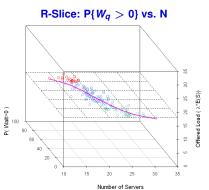
Data-Based Prevalent (Asymptotic) Approximations Models



Data-Based Prevalent (Asymptotic) Approximations Models

Erlang-A: Fitting a Simple Model to a Complex Reality


Hourly Performance vs. Erlang-A Predictions (1 year)



- ▶ Empirically-Based & Theoretically-Supported Estimation of (Im)Patience: $\hat{\theta} = P\{Ab\}/E[W_q]$)
- Small Israeli Bank (more examples in progress)
- Hourly performance vs. Erlang-A predictions, 1 year: aggregated groups of 40 similar hours

Operational Regimes: Q(uality) vs. E(fficiency)

IL Telecom; June-September, 2004

3 Operational Regimes:

- **P QD**: ≤ 25%
- ► QED: 25% 75%
- **► ED**: ≥ 75%

Calculating the Offered-Load R(t), Theoretically

- ▶ Offered-Load Process: $L(\cdot)$ = Least number of servers that guarantees no delay.
- ▶ Offered-Load Function $R(t) = E[L(t)], t \ge 0.$ Think $M_t/G/N_t^2 + G$ vs. $M_t/G/\infty$: Ample-Servers.

Four (all useful) representations, capturing "workload before t":

$$R(t) = E[L(t)] = \int_{-\infty}^{t} \lambda(u) \cdot P(S > t - u) du = E\left[A(t) - A(t - S)\right] =$$

$$= E\left[\int_{t-S}^{t} \lambda(u) du\right] = E[\lambda(t - S_e)] \cdot E[S] \approx \dots.$$

- $\{A(t), t \ge 0\}$ Arrival-Process, rate $\lambda(\cdot)$;
- ▶ **S** (**S**_e) generic Service-Time (Residual Service-Time).
- ▶ Relating L, λ, S ("W"): Time-Varying Little's Formula. Stationary models: $\lambda(t) \equiv \lambda$ then $R(t) \equiv \lambda \times E[S]$.

QED-c: $N_t = R_t + \beta R_t^c$, $1/2 \le c < 1$; (c = 1 separate analysis).

Data Cleaning: MCE with RFID Support

		Data-base	Compan	comment		
Asset id	order	Entry date	Exit date	Entry date	Exit date	
4	1	1:14:07 PM		1:14:00 PM		
6	1	12:02:02 PM	12:33:10 PM	12:02:00 PM	12:33:00 PM	
8	1	11:37:15 AM	12:40:17 PM	11:37:00 AM		exit is missing
10	1	12:23:32 PM	12:38:23 PM	12:23:00 PM		
12	1	12:12:47 PM	12:35:33 PM		12:35:00 PM	entry is missing
15	1	1:07:15 PM		1:07:00 PM		
16	1	11:18:19 AM	11:31:04 AM	11:18:00 AM	11:31:00 AM	
17	1	1:03:31 PM		1:03:00 PM		
18	1	1:07:54 PM		1:07:00 PM		
19	1	12:01:58 PM		12:01:00 PM		
20	1	11:37:21 AM	12:57:02 PM	11:37:00 AM	12:57:00 PM	
21	1	12:01:16 PM	12:37:16 PM	12:01:00 PM		
22	1	12:04:31 PM	12:20:40 PM			first customer is missing
22	2	12:27:37 PM		12:27:00 PM		-
25	1	12:27:35 PM	1:07:28 PM	12:27:00 PM	1:07:00 PM	
27	1	12:06:53 PM		12:06:00 PM		
28	1	11:21:34 AM	11:41:06 AM	11:41:00 AM	11:53:00 AM	exit time instead of entry time
29	1	12:21:06 PM	12:54:29 PM	12:21:00 PM	12:54:00 PM	
31	1	11:40:54 AM	12:30:16 PM	11:40:00 AM	12:30:00 PM	
31	2	12:37:57 PM	12:54:51 PM	12:37:00 PM	12:54:00 PM	
32	1	11:27:11 AM	12:15:17 PM	11:27:00 AM	12:15:00 PM	
33	1	12:05:50 PM	12:13:12 PM	12:05:00 PM	12:15:00 PM	wrong exit time
35	1	11:31:48 AM	11:40:50 AM	11:31:00 AM	11:40:00 AM	
36	1	12:06:23 PM	12:29:30 PM	12:06:00 PM	12:29:00 PM	
37	1	11:31:50 AM	11:48:18 AM	11:31:00 AM	11:48:00 AM	
37	2	12:59:21 PM		12:59:00 PM		

- Imagine "Cleaning" 60,000+ customers per day (call centers)!
- "Psychology" of Data Trust and Transfer (e.g. 2 years till transfer)

Event-Logs in a Call Center (Bank Anonymous)

vru+line		ple (Exc		type	date	vru entry	vru exit	vru time	q_start	q_exit	q_time	outcome	ser start	ser exit	ser time	server
AA0101	44749	27644400	2	PS	990901	11:45:33	11:45:39	6	11:45:39	11:46:58	79	AGENT	11:46:57	11:51:00	243	DORIT
AA0101	44750	12887816	1	PS	990905	14:49:00	14:49:06	6	14:49:06	14:53:00	234	AGENT	14:52:59	14:54:29	90	ROTH
AA0101	44967	58660291	2	PS	990905	14:58:42	14:58:48	6	14:58:48	15:02:31	223	AGENT	15:02:31	15:04:10	99	ROTH
AA0101	44968	0	0	NW	990905	15:10:17	15:10:26	9	15:10:26	15:13:19	173	HANG	00:00:00	00:00:00	0	NO_SERVER
AA0101	44969	63193346	2	PS	990905	15:22:07	15:22:13	6	15:22:13	15:23:21	68	AGENT	15:23:20	15:25:25	125	STEREN
AA0101	44970	0	0	NW	990905	15:31:33	15:31:47	14	00:00:00	00:00:00	0	AGENT	15:31:45	15:34:16	151	STEREN
AA0101	44971	41630443	2	PS	990905	15:37:29	15:37:34	5	15:37:34	15:38:20	46	AGENT	15:38:18	15:40:56	158	TOVA
AA0101	44972	64185333	2	PS	990905	15:44:32	15:44:37	5	15:44:37	15:47:57	200	AGENT	15:47:56	15:49:02	66	TOVA
AA0101	44973	3.06E+08	1	PS	990905	15:53:05	15:53:11	6	15:53:11	15:56:39	208	AGENT	15:56:38	15:56:47	9	MORIAH
AA0101	44974	74780917	2	NE	990905	15:59:34	15:59:40	6	15:59:40	16:02:33	173	AGENT	16:02:33	16:26:04	1411	ELI
AA0101	44975	55920755	2	PS	990905	16:07:46	16:07:51	5	16:07:51	16:08:01	10	HANG	00:00:00	00:00:00	0	NO_SERVER
AA0101	44976	0	0	NW	990905	16:11:38	16:11:48	10	16:11:48	16:11:50	2	HANG	00:00:00	00:00:00	0	NO_SERVER
AA0101	44977	33689787	2	PS	990905	16:14:27	16:14:33	6	16:14:33	16:14:54	21	HANG	00:00:00	00:00:00	0	NO_SERVER
AA0101	44978	23817067	2	PS	990905	16:19:11	16:19:17	6	16:19:17	16:19:39	22	AGENT	16:19:38	16:21:57	139	TOVA
AA0101	44764	0	0	PS	990901	15:03:26	15:03:36	10	00:00:00	00:00:00	0	AGENT	15:03:35	15:06:36	181	ZOHARI
AA0101	44765	25219700	2	PS	990901	15:14:46	15:14:51	5	15:14:51	15:15:10	19	AGENT	15:15:09	15:17:00	111	SHARON
AA0101	44766	0	0	PS	990901	15:25:48	15:26:00	12	00:00:00	00:00:00	0	AGENT	15:25:59	15:28:15	136	ANAT
AA0101	44767	58859752	2	PS	990901	15:34:57	15:35:03	6	15:35:03	15:35:14	11	AGENT	15:35:13	15:35:15	2	MORIAH
AA0101	44768	0	0	PS	990901	15:46:30	15:46:39	9	00:00:00	00:00:00	0	AGENT	15:46:38	15:51:51	313	ANAT
AA0101	44769	78191137	2	PS	990901	15:56:03	15:56:09	6	15:56:09	15:56:28	19	AGENT	15:56:28	15:59:02	154	MORIAH
AA0101	44770	0	0	PS	990901	16:14:31	16:14:46	15	00:00:00	00:00:00	0	AGENT	16:14:44	16:16:02	78	BENSION
AA0101	44771	0	0	PS	990901	16:38:59	16:39:12	13	00:00:00	00:00:00	0	AGENT	16:39:11	16:43:35	264	VICKY
AA0101	44772	0	0	PS	990901	16:51:40	16:51:50	10	00:00:00	00:00:00	0	AGENT	16:51:49	16:53:52	123	ANAT
AA0101	44773	0	0	PS	990901	17:02:19	17:02:28	9	00:00:00	00:00:00	0	AGENT	17:02:28	17:07:42	314	VICKY
AA0101	44774	32387482	1	PS	990901	17:18:18	17:18:24	6	17:18:24	17:19:01	37	AGENT	17:19:00	17:19:35	35	VICKY
AA0101	44775	0	0	PS	990901	17:38:53	17:39:05	12	00:00:00	00:00:00	0	AGENT	17:39:04	17:40:43	99	TOVA

- Unsynchronized transition times, consistently

