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Multi-Skill Call-Centers

Main Operational Issues (Given a Forecast of Workload):

• Design - Long Term

• Staffing - Short Term

• Routing - Real time

Very Complex: Hence treated hierarchically and unilaterally.

2



Design “Building-Blocks”

Literature on I, V and ∧-designs:

• I-design: Halfin & Whitt (’81), Garnett, M. & Reiman (’02), Borst,

M. & Reiman (’03).

• V-design: Schaack & Larson (‘86), Brandt & Brandt (’99), Koole

& Bhulai (’02), Gans & Zhou (’02), Armony & Maglaras (’03),

Atar, M. & Reiman (’02), Harrison & Zeevi (’03), Yahalom & M.

(’03), Gurvich (’03).

• ∧-design: Rykov (’01), Luh & Viniotis (’01), de Véricourt & Zhou

(’03), Armony & M. (’03).
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QED M/M/N in Steady State

Theorem (Halfin-Whitt, 1981):

Consider a sequence of M/M/N models, N = 1,2,3, ...

Then the following 3 points of view are equivalent:

• Customer: limN→∞ PN{Wait > 0} = α, 0 < α < 1;

• Server: limN→∞
√

N (1− ρN) = β, 0 < β < ∞;

• Manager: N ≈ R + β
√

R , R = λ/µ large.

Here α =
[
1 + βΦ(β)

φ(β)

]−1
, where Φ(·)/φ(·) is the standard normal

distribution / density.

Extremes:

Everyone waits: α = 1 ⇔ β ≤ 0 Efficiency-driven

No one waits: α = 0 ⇔ β = ∞ Quality-driven
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Dimensioning M/M/N:
√· Safety-Staffing

Borst, M. & Reiman (’02)

Quality D (t) delay cost (t = delay time).

Efficiency C (N) staffing cost (N = # agents)

Optimization: N∗ that minimizes total costs

• C >> D : Efficiency-driven N ≈ R + γ

• C << D : Quality-driven N ≈ R + δR

• C ≈ D : QED N ≈ R + β
√

R

Satisfization: N∗ that minimizes staffing costs s.t. delay constraints.

Here: N∗ that is minimal s.t. P(Wait > 0) ≤ α.

• α ≈ 1 : Efficiency-driven N ≈ R + γ

• α ≈ 0 : Quality-driven N ≈ R + δR

• 0 < α < 1 : QED N ≈ R + β
√

R

Framework: Asymptotic theory of M/M/N, N ↑ ∞.
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The V -Design 

             

    N 

   º    º   º 

̄
1 

̄
2 

̄
J 

• J customer classes: arrivals Poisson(λj).

• N iid servers: service durations Exp(µ).

• Waiting costs C1 > C2 > . . .

Optimal Control : minimize waiting costs “
∑J

j=1 CjWj(·)”

Preemptive (Coupling): non-idling with static priorities 1 > 2 > . . .

Non-preemptive (Yahalom 2003 - Blackwell optimality):

• Static priorities 1 > 2 > . . . with thresholds S1 > S2 > . . .

i.e. a class-j customer served if it is of the present highest-

priority and the number of idle servers is Sj or more.

• Performance analysis in steady-state (Schaack & Larson 1986).
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Optimal Control: QED Solution
Atar, M., Reiman (‘02, ‘03); Gurvich (‘03)

Assume N = R + β
√

R (R =
∑

j λj/µ)

and lim infN→∞
λJ∑
j λj

= ε > 0 (non-negligible)

Then asymptotically optimal non-preemptive control is

• non-idling, and

• static priority 1 > 2 > . . . > J

Proof: Suffices asymptotic equivalence

of Preemptive and Non-Preemptive.

Starting point: For any non-idling strategy, the total work

in system (
∑

j Wj)(·) is that of an M/M/N , with param-

eters λ =
∑

j λj, µ, N .
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Asymptotic Equivalence

• Total work in system
d≡ M/M/N , if non-idling

• Under static priority (preemptive or non-preemptive),

the lowest priority customers (Class J) ”enjoy” QED

service. More precisely,

WN
J

d
= Θ(

1√
N

)

• Under static priority (preemptive or non-preemptive),

the high priority customers (classes 1, . . . , J−1) en-

joy Q-driven service (light traffic). More precisely,

WN
j |WN

j > 0
d
= Θ(

1

N
) , j = 1, . . . J − 1.

• Multiplying total work by
√

N (preemptive or non-

preemptive) yields asymptotic equivalence, N ↑ ∞.
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Asymptotic Equivalence: What’s Going On?

Low Priority View 

             

  N 

1 2 

High Low 

1. While waiting , Low Priority customers “see” an

M/G/1 queue: W2|W2 > 0
d
= WM/G/1|W > 0.

Non-Preemptive: GNP
d
= M(λ1)/M(Nµ)/1 busy pe-

riod. Thus, E(GNP ) = 1
Nµ(1−ρ1)

, where ρ1 = λ1
Nµ.

Preemptive: GP
d
= Geometric number of busy periods

and Exp(Nµ), resulting in E(GP ) = · · · = 1
Nµ(1−ρ1)

.

2. When some servers are idle - same Birth & Death

process for Preemptive and Non-Preemptive.

3. Rigorously: Paste excursions (as in Whitt 2003), to

show Q1 + Q2
d≈ Q2 (queue-length)
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Asymptotic Equivalence: What’s Going On?

High Priority View 

             

  N 

1 2 

High Low 

Preemptive: ”See” M(λ1)/M(µ)/N in light traffic.

Non-Preemptive: Don’t wait if less than N servers busy.

Given wait - ”See” M(λ1)/M(Nµ)/1 in light traffic.

Rigorously:

1. Prove convergence of Q1 + Q2 (QED M/M/N)

2. Prove convergence of High Priority queue Q1 to zero:
Since both Non-Preemptive and Preemptive ”see” a
queue in light traffic

3. Conclude Q1 + Q2
d≈ Q2 (queue length)
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Where are the Thresholds ?
 

             

  N 

1 2 

High Low 

Assume N = R + β
√

R (QED staffing)

ρ1 = limsupN→∞
λN
1

Nµ < 1.

Apply a threshold SN : Serve Low Priority (Class 2) if

the number of idle servers is SN or more.

Stability requires lim supN→∞ SN/
√

N ≤ β. Then

E[WN
1 |WN

1 > 0] = θ(
1

N
) , E[WN

2 |WN
2 > 0] = θ(

1√
N

).

for all such thresholds. However ,
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Service-Level Differentiation

Threshold ∼ P{WN
1 > 0} ∼ P{WN

2 > 0}

a α(β) · ρa
1 α(β)

b lnN α(β) ·Nb ln ρ1 α(β)

c
√

N α(β − c) · ρc
√

N
1 α(β − c)

Without threshold (a = 0), both classes enjoy QED ser-

vice with the same delay probability.

As the threshold increases, differentiation of service level

increases as well, which is manifested through the delay

probabilities (but not through average delays).

Example: Logarithmic thresholds improve dramatically

the accessibility of high-priority and, at the same time, are

not hurting the low-priority (who are still QED-served).
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Dimensioning the V -Model 

             

    N 

   º    º   º 

̄
1 

̄
2 

̄
J 

• J customer classes: arrivals Poisson(λj).

• N iid servers: service durations Exp(µ).

The staffing problem:

Given 0 < α1 < α2 < . . . αJ < 1,

Min N

s.t. Pπ(Wj(∞) > 0) ≤ αj , j = 1, ..., J

for some scheduling policy π

(Could also minimize cN +
∑

j djλjEWj(∞))
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Dimensioning V : QED Solution
(Gurvich, 2003)

Asymptotically optimal (staffing + scheduling) as follows:

N∗ = R + P−1(αJ)
√

R

(determined by lowest priority J)

π∗: static priority 1 > 2 > . . . > J , with

thresholds S1 < S2 < . . . < SJ , given by

Sj = Sj−1 + ln
αj−1
αj

/ ln ρ+
j−1 , j = 2, . . . J ,

S1 = 1;

i.e. a class j customer served iff it is of the present high-

est priority and the number of idle agents is Sj or more.

(Here R =
∑

j λj/µ, ρ+
j =

∑j
k=1 λk/(µN∗))

Note: allowing αN
j ↓ 0 polynomially, or exponentially

requires SN
j ↑ ∞ as lnN , or

√
N
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The
∧

-Design (Armony & M., 2003)

λ

N NN 1 2 3 N K

µ 2 µ 3µ 1 Kµ

• Single customer class: arrivals Poisson(λ).

• K server pools: pool k has Nk iid servers;

service durations Exp with rates µ1 < µ2 < ... < µK (fastest).

The Focus: Staffing

• How many servers of each type are needed?

Design Concerns

• What is the advantage (if any) of differentiated service rates?

• How much (de)centralization?
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Staffing the
∧

-Model

λ

N NN 1 2 3 N K

µ 2 µ 3µ 1 Kµ

M/M/N dimensioning requires modification:

• R is not well defined

• Routing is not specified

• Constraint satisfaction: feasible region is multi-dimensional

WLOG - Two server pools (K=2).

The Staffing Problem

Minimize C1(N1) + C2(N2)

Subject to Pπ(wait > 0) ≤ α, for some routing policy π;

N1, N2 ∈ Z+.

“Solution”: µ1N1 + µ2N2 = λ+ safety-staffing
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The Feasible Region

N

N

1

2

Problems:

• Must find optimal routing.

– Threshold type solutions: Rykov (’01),

Luh & Viniotis (’01) .

• Difficult to find exact feasible region.
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The Feasible Region: QED Asymptotics

N

N

1

2

Stability bound

Feasibility bound

+ δ+ µ2 N 2 λ= µ N λ1 1

+ µ2 N 2 λ= µ N 11
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QED Feasibility: Theory

Proposition (Asymptotic Feasibility):

Consider a sequence of systems indexed by λ ↑ ∞. Assume the

number of slow servers is non-negligible: lim infλ→∞N1/N2 > 0.

Then there exists a non-preemptive policy for which

lim sup
λ→∞

Pλ(wait > 0) ≤ α, 0 < α < 1

if and only if

µ1N1 + µ2N2 ≥ λ + δ
√

λ + o
(√

λ
)

, 0 < δ < ∞.

Here

α =

[
1 +

(δ/
√

µ1 )Φ(δ/
√

µ1 )

φ(δ/
√

µ1 )

]−1

is the Halfin-Whitt function α(δ/
√

µ1 ).

Corollary (Differentiated Service): The
∧−design requires less ca-

pacity than the I− design with average service rate.

Proof: Recall µ1 < µ2. Let µ = θµ1 + (1− θ)µ2.

Then P (wait > 0) ≤ α iff

I-design: µN ≥ λ + β(α)
√

µ
√

λ + o(
√

λ) ,

∧
-design: µ1N1 + µ2N2 ≥ λ + β(α)

√
µ1

√
λ + o(

√
λ) .
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The ∧−Model: Exact Optimal Routing
(Rykov 2001, Luh & Viniotis 2002)

λ

N NN 1 2 3 N K

µ 2 µ 3µ 1 Kµ

Problem: Find a non-preemptive non-anticipative routing policy that

minimizes the average total number of customers in the system

(or the average sojourn time).

Solution: The optimal solution is of a threshold type.

Assign a customer to server type k if:

1. It is the fastest idle server, and

2. the number of customers in queue is Sk or more.

Note: Sk may depend on the state of the other (slower) servers.
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The ∧−Model: QED Optimal Routing

Proposition ( Optimal Preemptive Routing): The preemptive rout-

ing policy, ΠP , that always sends calls to the faster servers first is

optimal in steady-state: it stochastically minimizes the total number

of jobs in the system in steady-state.

Proof: Sample path coupling.

Note: Under ΠP , the total number of customers in the system de-

termines how many servers of each type are working - thus, it is a

one-dimensional Birth & Death process.

Corollary: ΠP stochastically minimizes the steady-state queue length

and waiting time (since non-idling).

Proposition (Asymptotically Optimal Routing): The non-preemptive

routing policy, ΠNP , that always sends incoming or waiting calls

to the faster servers first is asymptotically optimal, with respect to

queue length and waiting time in steady-state.

Proof: State-space collapse - in the limit, the fast servers are always busy.

⇒ The preemptive and non-preemptive policies are asymptotically

equivalent.

Note: Thresholds are not needed above.
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Asymptotic Feasibility

Proposition (Limiting Waiting Probability):

For both ΠP and ΠNP :

lim
λ→∞

P (wait > 0) = α, 0 ≤ α ≤ 1,

if and only if

µ1N1 + µ2N2 = λ + δ
√

λ + o(
√

λ ), 0 ≤ δ ≤ ∞,

where

α =

[
1 +

(δ/
√

µ1 )Φ(δ/
√

µ1 )

φ(δ/
√

µ1 )

]−1

,

provided that lim infλ→∞N1/N2 > 0.

Note: Choice of δ depends on α only through µ1 - the service rate

of the slowest servers.

Conclusion: The linear asymptotic feasible region.
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QED Staffing: Optimality

Problem:

P(λ, α) = Minimize C1N
p
1 + C2N

p
2, p > 1

Subject to P (wait > 0) ≤ α, for some routing policy

N1, N2 ∈ Z+

Solution: Let ~N(λ, α) be the optimal solution the auxiliary problem:

AP(λ, α) = Minimize C1N
p
1 + C2N

p
2, p > 1

Subject to µ1N1 + µ2N2 ≥ λ + δ(α)
√

λ

N1, N2 ≥ 0

Claim: d ~N(λ, α)e is an asymptotically optimal staffing sequence

among all asymptotically feasible staffing sequences, as λ→∞.

Question: How to compare the costs of two staffing sequences? If

~N = ~N(λ) = λ + o(λ) and ~M = ~M(λ) = λ + o(λ),

then
C1N

p
1 + C2N

p
2

C1M
p
1 + C2M

p
2

→ 1, as λ→∞.

⇒ a finer comparison criterion is needed.
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QED Optimal Staffing

Comparing Asymptotic Costs:

Let C(λ) be the optimal cost associated with the Stability Problem:

C(λ) = Minimize C1N
p
1 + C2N

p
2, p > 1

Subject to µ1N1 + µ2N2 ≥ λ

N1, N2 ≥ 0

Definition - Asymptotic Optimal Staffing: A sequence of staffing

vectors ~N = ~N(λ;α) is said to be asymptotically optimal if:

1. It is asymptotically feasible, and

2. for every sequence ~M = ~M(λ, α) of staffing vectors which is

also asymptotically feasible

lim sup
λ→∞

C1N
p
1 + C2N

p
2 − C(λ)

C1M
p
1 + C2M

p
2 − C(λ)

≤ 1.

Proposition (Asymptotically Optimal Staffing): Let ~N(λ;α) be

the optimal solution of the auxiliary problem AP (λ, α). Then d ~N(λ;α)e

is an asymptotically optimal staffing, as λ→∞.
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QED Optimal Staffing - Example

Consider the case p = 2, and the staffing problem:

P(λ, α) = Minimize C1N2
1 + C2N2

2 ,

Subject to P (wait > 0) ≤ α, for some routing policy

N1, N2 ∈ Z+

Solution: Total Capacity (for feasibility) -

µ1N1 + µ2N2 = λ + δ
√

λ, δ = δ(α, µ1).

Number of Servers in Each Pool (for optimality) -

N1

N2
=

C2/µ2

C1/µ1
.

N

N

1

2
Feasibility bound

+ δ+ µ2 N 2 λ= µ N λ1 1

C(N ,N )=constant1 2
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Transient Analysis

Goals:

• Prove equivalence between ΠP and ΠNP (state-space collapse).

• Characterize transient behavior of the multiple server type sys-

tem in the QED regime, and compare to the M/M/N system

(Halfin & Whitt).

Y (t) = the total number of jobs in the system,

N = N1 + N2 the total number of servers, Xλ(t) = Y (t)−N√
N

.

Proposition: Suppose that

1. lim
λ→∞

µiNi

λ
= ai, i = 1,2, a1 > 0, a2 ≥ 0, a1 + a2 = 1, and

2. lim
λ→∞

∑2
i=1 µiNi − λ√

λ
= δ, δ > 0.

If Xλ(0)
d→ X(0) then, under both ΠP and ΠNP , Xλ d→ X, where

X is a diffusion process with infinitesimal drift and variance:

m(x) =

{ −δ
√

µ x ≥ 0,

−δ
√

µ − µ1x x < 0,

and

σ2(x) = 2µ, µ =

(
a1

µ1
+

a2

µ2

)−1

.
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Conclusions and Further Research

Conclusions:

1. Square-root safety staffing is asymptotically optimal for both V -

and ∧-designs.

2. V -Model: Serving VIP customers first is asymptotically optimal

(no thresholds needed for minimizing average waits, but they

do arise with refined performance measures).

3. ∧-Model: Routing to fast servers first is asymptotically optimal

(no thresholds needed altogether, but could arise with server-

related measures).

4. Asymptotic QED equivalence of non-preemptive and preemp-

tive is fundamental (recent work by R. Atar).

Future Research:

1. Add features: Abandonment, Retrials (CRM);

Customer-driven services: µj ’s.

2. Where are the thresholds?

3. Combine V-designs and ∧-designs to study N-designs.
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