

QED Control and Staffing: The Cases of a Single Customer Class or a Single Server Type

with

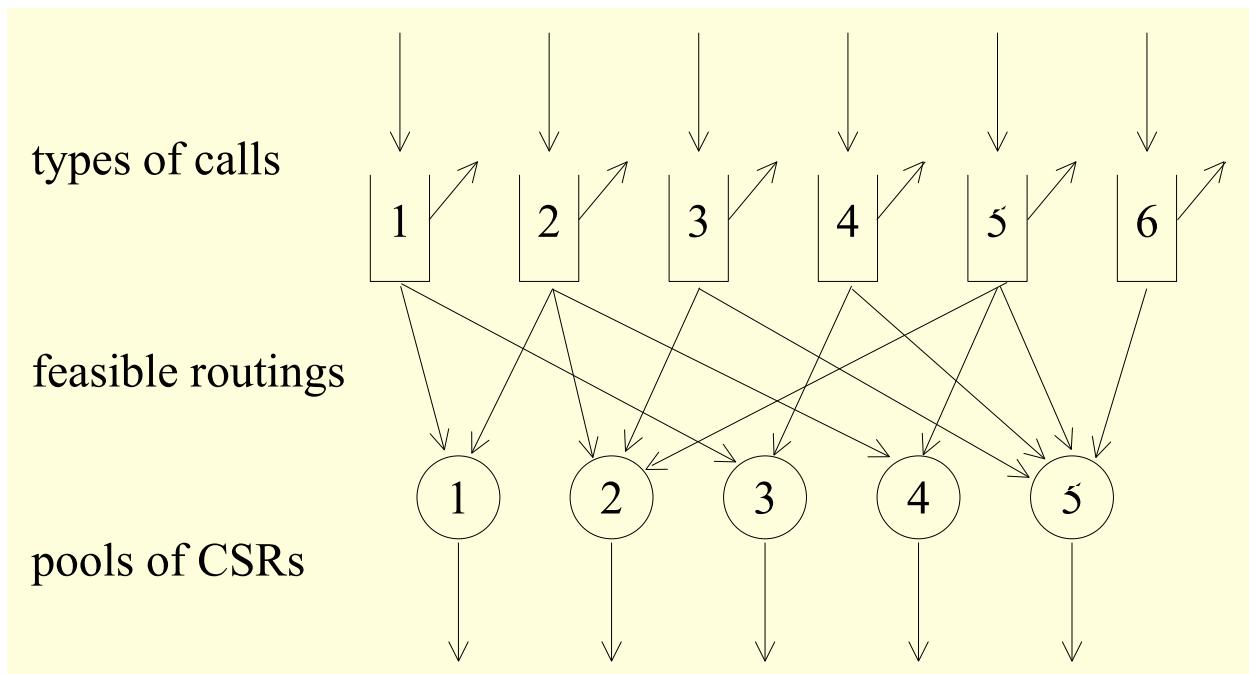
Mor Armony

Rami Atar

Itay Gurvich

Marty Reiman

Multi-Skill Call-Centers

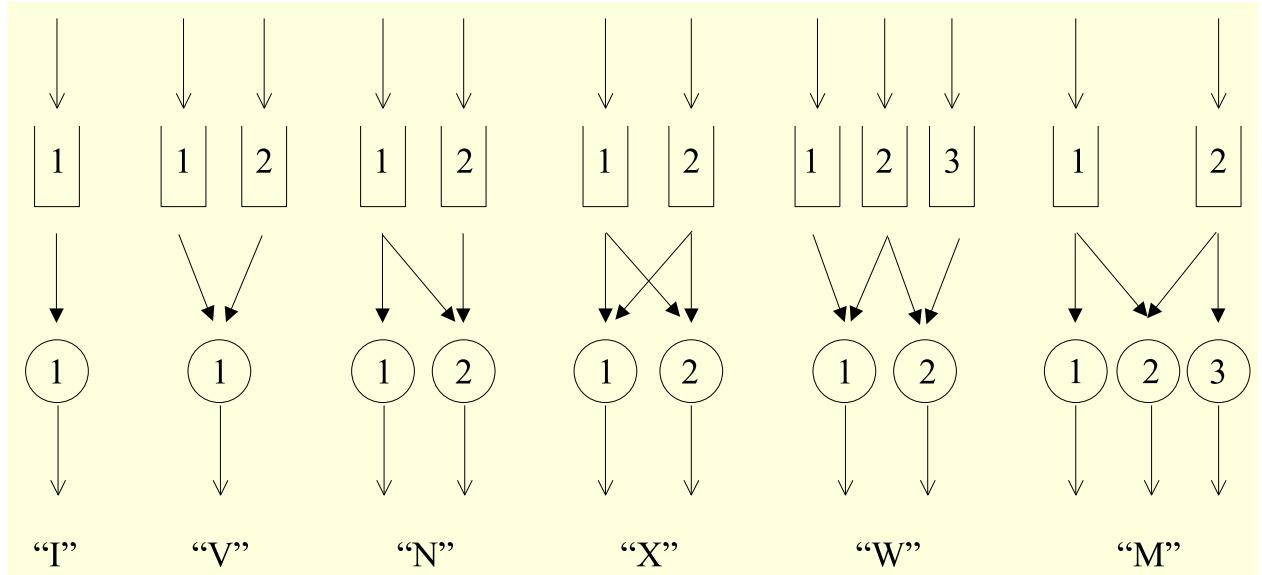


Main Operational Issues (Given a Forecast of Workload):

- **Design** - Long Term
- **Staffing** - Short Term
- **Routing** - Real time

Very Complex: Hence treated hierarchically and unilaterally.

Design “Building-Blocks”



Literature on I , V and \wedge -designs:

- **I-design:** Halfin & Whitt ('81), Garnett, M. & Reiman ('02), Borst, M. & Reiman ('03).
- **V-design:** Schaack & Larson ('86), Brandt & Brandt ('99), Koole & Bhulai ('02), Gans & Zhou ('02), Armony & Maglaras ('03), Atar, M. & Reiman ('02), Harrison & Zeevi ('03), Yahalom & M. ('03), Gurvich ('03).
- **\wedge -design:** Rykov ('01), Luh & Viniotis ('01), de Véricourt & Zhou ('03), Armony & M. ('03).

QED M/M/N in Steady State

Theorem (Halfin-Whitt, 1981):

Consider a sequence of $M/M/N$ models, $N = 1, 2, 3, \dots$

Then the following **3 points of view** are equivalent:

- **Customer:** $\lim_{N \rightarrow \infty} P_N\{Wait > 0\} = \alpha, \quad 0 < \alpha < 1;$
- **Server:** $\lim_{N \rightarrow \infty} \sqrt{N} (1 - \rho_N) = \beta, \quad 0 < \beta < \infty;$
- **Manager:** $N \approx R + \beta\sqrt{R}, \quad R = \lambda/\mu \text{ large.}$

Here $\alpha = \left[1 + \frac{\beta\Phi(\beta)}{\phi(\beta)}\right]^{-1}$, where $\Phi(\cdot)/\phi(\cdot)$ is the standard normal distribution / density.

Extremes:

Everyone waits: $\alpha = 1 \Leftrightarrow \beta \leq 0$ **Efficiency-driven**

No one waits: $\alpha = 0 \Leftrightarrow \beta = \infty$ **Quality-driven**

Dimensioning M/M/N: ✓ Safety-Staffing

Borst, M. & Reiman ('02)

Quality $D(t)$ delay cost ($t = \text{delay time}$).

Efficiency $C(N)$ staffing cost ($N = \# \text{ agents}$)

Optimization: N^* that minimizes total costs

- $C \gg D$: Efficiency-driven $N \approx R + \gamma$
- $C \ll D$: Quality-driven $N \approx R + \delta R$
- $C \approx D$: QED $N \approx R + \beta\sqrt{R}$

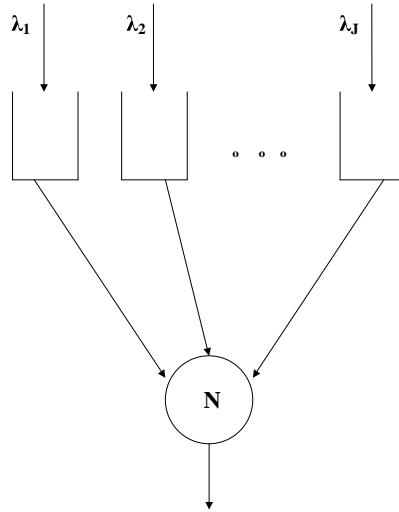
Satisfization: N^* that minimizes staffing costs s.t. delay constraints.

Here: N^* that is minimal s.t. $P(\text{Wait} > 0) \leq \alpha$.

- $\alpha \approx 1$: Efficiency-driven $N \approx R + \gamma$
- $\alpha \approx 0$: Quality-driven $N \approx R + \delta R$
- $0 < \alpha < 1$: QED $N \approx R + \beta\sqrt{R}$

Framework: Asymptotic theory of $M/M/N$, $N \uparrow \infty$.

The V -Design



- J customer classes: arrivals Poisson(λ_j).
- N iid servers: service durations $\text{Exp}(\mu)$.
- Waiting costs $C_1 > C_2 > \dots$

Optimal Control: minimize waiting costs “ $\sum_{j=1}^J C_j W_j(\cdot)$ ”

Preemptive (Coupling): non-idling with static priorities $1 > 2 > \dots$

Non-preemptive (Yahalom 2003 - Blackwell optimality):

- **Static priorities** $1 > 2 > \dots$ **with thresholds** $S_1 > S_2 > \dots$
i.e. a class- j customer served if it is of the present highest-priority and the number of idle servers is S_j or more.
- Performance analysis in steady-state (Schaack & Larson 1986).

Optimal Control: QED Solution

Atar, M., Reiman ('02, '03); Gurvich ('03)

Assume $N = R + \beta\sqrt{R}$ $(R = \sum_j \lambda_j/\mu)$

and $\liminf_{N \rightarrow \infty} \frac{\lambda_J}{\sum_j \lambda_j} = \epsilon > 0$ (non-negligible)

Then **asymptotically optimal non-preemptive** control is

- non-idling, and
- static priority $1 > 2 > \dots > J$

Proof: Suffices asymptotic equivalence
of Preemptive and Non-Preemptive.

Starting point: For any **non-idling** strategy, the **total work**
in system $(\sum_j W_j)(\cdot)$ is that of an **$M/M/N$** , with param-
eters $\lambda = \sum_j \lambda_j$, μ , N .

Asymptotic Equivalence

- Total work in system $\stackrel{d}{=} M/M/N$, if non-idling
- Under static priority (preemptive **or** non-preemptive), the **lowest** priority customers (Class J) "enjoy" QED service. More precisely,

$$W_J^N \stackrel{d}{=} \Theta\left(\frac{1}{\sqrt{N}}\right)$$

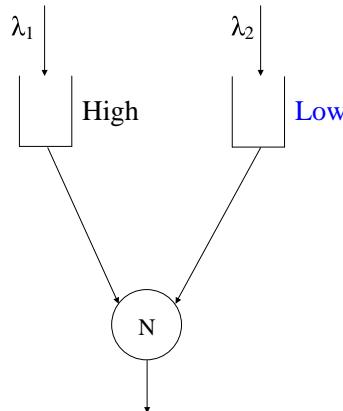
- Under static priority (preemptive **or** non-preemptive), the **high** priority customers (classes 1, ..., $J-1$) enjoy Q -driven service (light traffic). More precisely,

$$W_j^N | W_j^N > 0 \stackrel{d}{=} \Theta\left(\frac{1}{N}\right) \quad , \quad j = 1, \dots, J-1.$$

- Multiplying total work by \sqrt{N} (preemptive **or** non-preemptive) yields asymptotic equivalence, $N \uparrow \infty$.

Asymptotic Equivalence: What's Going On?

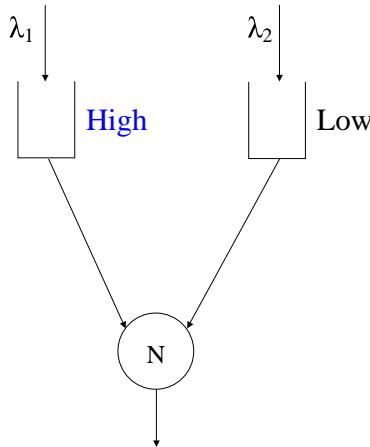
Low Priority View



1. While **waiting**, **Low Priority** customers “see” an **M/G/1** queue: $W_2|W_2 > 0 \stackrel{d}{=} W_{M/G/1}|W > 0$.
2. When some servers are **idle** - same Birth & Death process for Preemptive and Non-Preemptive.
3. Rigorously: Paste excursions (as in Whitt 2003), to show $Q_1 + Q_2 \stackrel{d}{\approx} Q_2$ (queue-length)

Asymptotic Equivalence: What's Going On?

High Priority View



Preemptive: "See" $M(\lambda_1)/M(\mu)/N$ in light traffic.

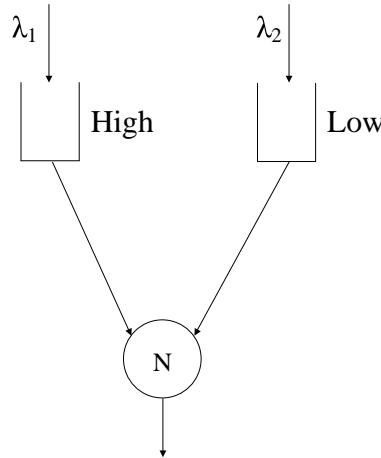
Non-Preemptive: Don't wait if less than N servers busy.

Given wait - "See" $M(\lambda_1)/M(N\mu)/1$ in light traffic.

Rigorously:

1. Prove convergence of $Q_1 + Q_2$ (QED M/M/N)
2. Prove convergence of High Priority queue Q_1 to zero:
Since both Non-Preemptive and Preemptive "see" a queue in light traffic
3. Conclude $Q_1 + Q_2 \stackrel{d}{\approx} Q_2$ (queue length)

Where are the Thresholds ?



Assume $N = R + \beta\sqrt{R}$ (*QED staffing*)

$$\rho_1 = \limsup_{N \rightarrow \infty} \frac{\lambda_1^N}{N\mu} < 1.$$

Apply a threshold S^N : Serve Low Priority (Class 2) if the number of idle servers is S^N or more.

Stability requires $\limsup_{N \rightarrow \infty} S^N / \sqrt{N} \leq \beta$. Then

$$E[W_1^N | W_1^N > 0] = \theta\left(\frac{1}{N}\right), \quad E[W_2^N | W_2^N > 0] = \theta\left(\frac{1}{\sqrt{N}}\right).$$

for all such thresholds. However,

Service-Level Differentiation

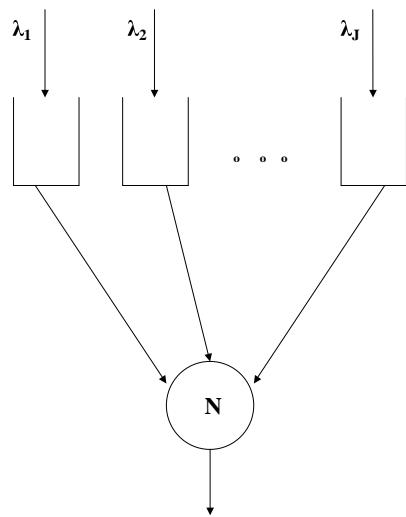
Threshold	$\sim P\{W_1^N > 0\}$	$\sim P\{W_2^N > 0\}$
a	$\alpha(\beta) \cdot \rho_1^a$	$\alpha(\beta)$
b $\ln N$	$\alpha(\beta) \cdot N^{b \ln \rho_1}$	$\alpha(\beta)$
c \sqrt{N}	$\alpha(\beta - c) \cdot \rho_1^{c\sqrt{N}}$	$\alpha(\beta - c)$

Without threshold ($a = 0$), both classes enjoy **QED service** with the same delay probability.

As the threshold increases, **differentiation** of service level increases as well, which is manifested through the **delay probabilities** (but **not** through average delays).

Example: **Logarithmic** thresholds improve dramatically the accessibility of high-priority and, at the same time, are not hurting the low-priority (who are still QED-served).

Dimensioning the V -Model



- J customer classes: arrivals $\text{Poisson}(\lambda_j)$.
- N iid servers: service durations $\text{Exp}(\mu)$.

The staffing problem:

Given $0 < \alpha_1 < \alpha_2 < \dots < \alpha_J < 1$,

Min N

s.t. $P_\pi(W_j(\infty) > 0) \leq \alpha_j, \quad j = 1, \dots, J$
for some scheduling policy π

(Could also minimize $cN + \sum_j d_j \lambda_j E W_j(\infty)$)

Dimensioning V : QED Solution

(Gurvich, 2003)

Asymptotically optimal (staffing + scheduling) as follows:

$$N^* = R + P^{-1}(\alpha_J) \sqrt{R}$$

(determined by lowest priority J)

π^* : static priority $1 > 2 > \dots > J$, with
thresholds $S_1 < S_2 < \dots < S_J$, given by

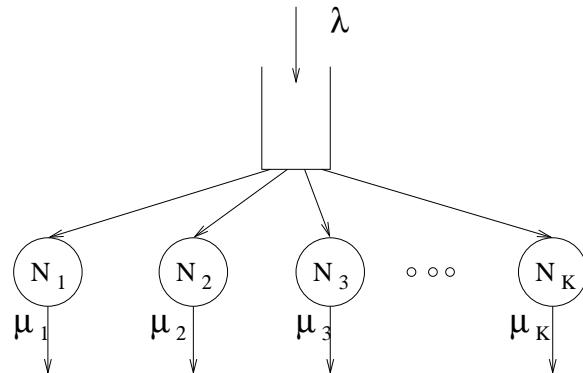
$$S_j = S_{j-1} + \ln \frac{\alpha_{j-1}}{\alpha_j} / \ln \rho_{j-1}^+, \quad j = 2, \dots, J,$$
$$S_1 = 1;$$

i.e. a class j customer served *iff* it is of the present highest priority and the number of idle agents is S_j or more.

(Here $R = \sum_j \lambda_j / \mu$, $\rho_j^+ = \sum_{k=1}^j \lambda_k / (\mu N^*)$)

Note: allowing $\alpha_j^N \downarrow 0$ polynomially, or exponentially
requires $S_j^N \uparrow \infty$ as $\ln N$, or \sqrt{N}

The \wedge -Design (Armony & M., 2003)



- Single customer class: arrivals Poisson(λ).
- K server pools: pool k has N_k **iid** servers; service durations Exp with rates $\mu_1 < \mu_2 < \dots < \mu_K$ (fastest).

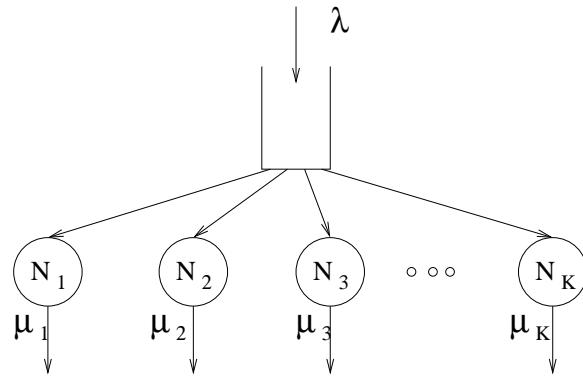
The Focus: Staffing

- How many servers of each type are needed?

Design Concerns

- What is the advantage (if any) of differentiated service rates?
- How much (de)centralization?

Staffing the \wedge -Model



M/M/N dimensioning requires modification:

- R is not well defined
- Routing is not specified
- Constraint satisfaction: feasible region is multi-dimensional

WLOG - Two server pools ($K=2$).

The **Staffing Problem**

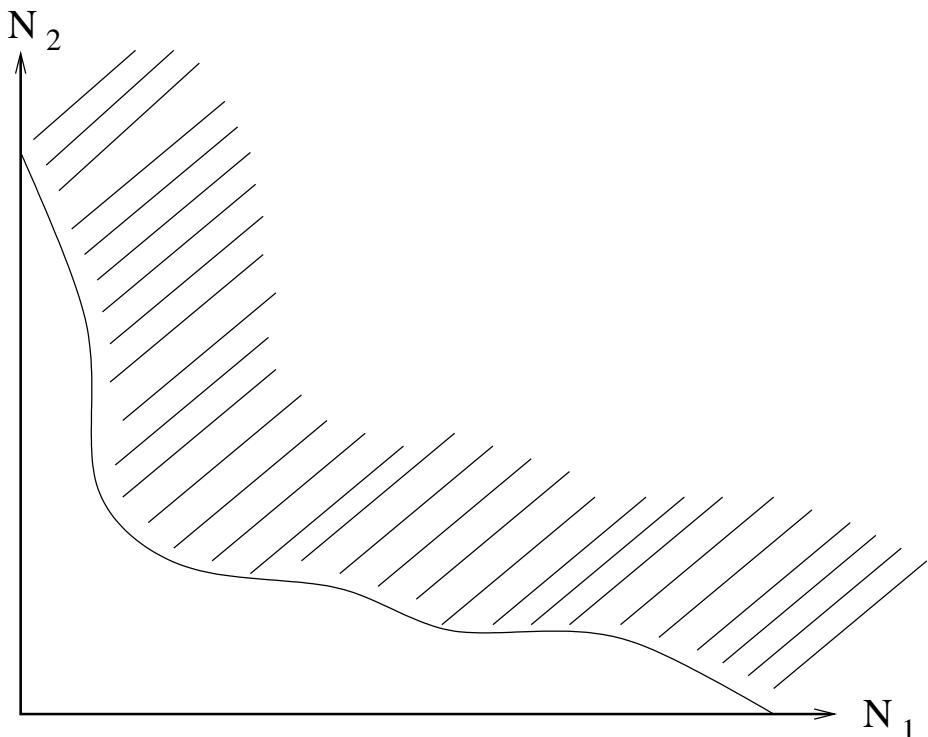
$$\text{Minimize} \quad C_1(N_1) + C_2(N_2)$$

$$\text{Subject to} \quad P_\pi(\text{wait} > 0) \leq \alpha, \text{ for some routing policy } \pi;$$

$$N_1, N_2 \in \mathbb{Z}_+.$$

“Solution”: $\mu_1 N_1 + \mu_2 N_2 = \lambda + \text{safety-staffing}$

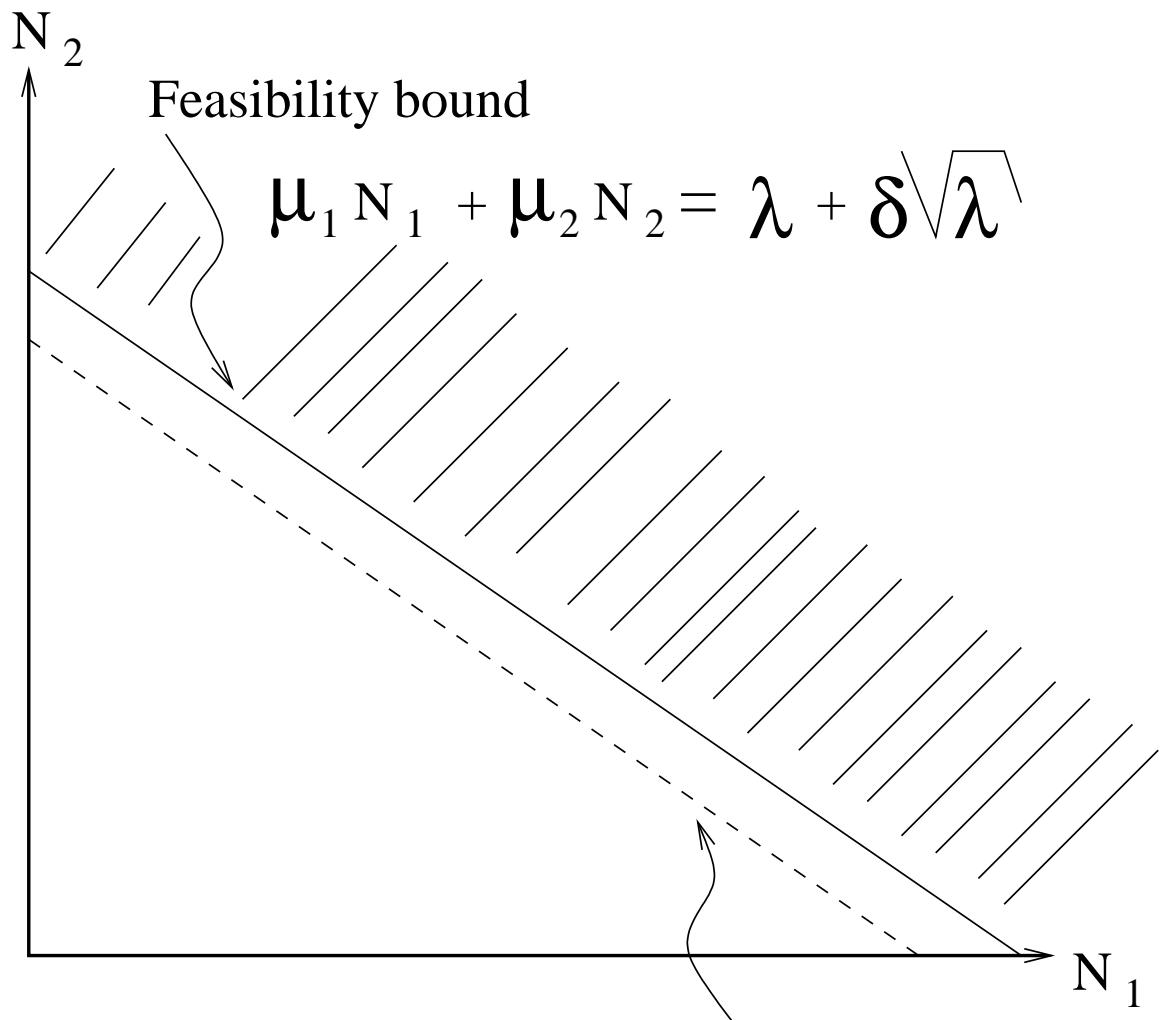
The Feasible Region



Problems:

- Must find optimal routing.
 - Threshold type solutions: Rykov ('01), Luh & Viniotis ('01) .
- Difficult to find **exact** feasible region.

The Feasible Region: QED Asymptotics



$$\mu_1 N_1 + \mu_2 N_2 = \lambda$$

QED Feasibility: Theory

Proposition (Asymptotic Feasibility):

Consider a sequence of systems indexed by $\lambda \uparrow \infty$. Assume the number of slow servers is non-negligible: $\liminf_{\lambda \rightarrow \infty} N_1/N_2 > 0$. Then **there exists** a non-preemptive policy for which

$$\limsup_{\lambda \rightarrow \infty} P_\lambda(\text{wait} > 0) \leq \alpha, \quad 0 < \alpha < 1$$

if and only if

$$\mu_1 N_1 + \mu_2 N_2 \geq \lambda + \delta \sqrt{\lambda} + o(\sqrt{\lambda}), \quad 0 < \delta < \infty.$$

Here

$$\alpha = \left[1 + \frac{(\delta/\sqrt{\mu_1}) \Phi(\delta/\sqrt{\mu_1})}{\phi(\delta/\sqrt{\mu_1})} \right]^{-1}$$

is the Halfin-Whitt function $\alpha(\delta/\sqrt{\mu_1})$.

Corollary (Differentiated Service): The \wedge –design requires less capacity than the I – design with average service rate.

Proof: Recall $\mu_1 < \mu_2$. Let $\mu = \theta\mu_1 + (1 - \theta)\mu_2$.

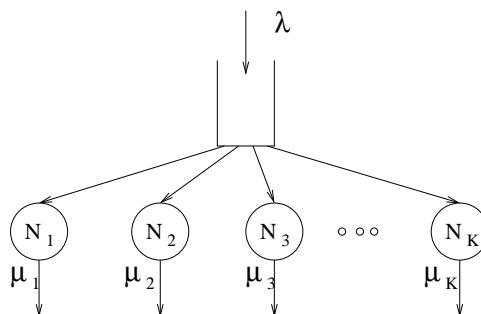
Then $P(\text{wait} > 0) \leq \alpha$ iff

$$\text{I-design:} \quad \mu N \geq \lambda + \beta(\alpha) \sqrt{\mu} \sqrt{\lambda} + o(\sqrt{\lambda}),$$

$$\wedge\text{-design:} \quad \mu_1 N_1 + \mu_2 N_2 \geq \lambda + \beta(\alpha) \sqrt{\mu_1} \sqrt{\lambda} + o(\sqrt{\lambda}).$$

The \wedge -Model: Exact Optimal Routing

(Rykov 2001, Luh & Viniotis 2002)



Problem: Find a **non-preemptive** non-anticipative routing policy that minimizes the average **total number of customers in the system** (or the average sojourn time).

Solution: The optimal solution is of a **threshold** type.
Assign a customer to server type k if:

1. It is the fastest idle server, and
2. the number of customers in queue is S_k or more.

Note: S_k may depend on the state of the other (slower) servers.

The \wedge -Model: QED Optimal Routing

Proposition (Optimal Preemptive Routing): The preemptive routing policy, Π^P , that always sends calls to the faster servers first is optimal in steady-state: it stochastically minimizes the total number of jobs in the system in steady-state.

Proof: Sample path coupling.

Note: Under Π^P , the total number of customers in the system determines how many servers of each type are working - thus, it is a one-dimensional Birth & Death process.

Corollary: Π^P stochastically minimizes the steady-state queue length and waiting time (since non-idling).

Proposition (Asymptotically Optimal Routing): The non-preemptive routing policy, Π^{NP} , that always sends incoming or waiting calls to the faster servers first is asymptotically optimal, with respect to queue length and waiting time in steady-state.

Proof: State-space collapse - in the limit, the fast servers are always busy.
⇒ The preemptive and non-preemptive policies are asymptotically equivalent.

Note: Thresholds are **not** needed above.

Asymptotic Feasibility

Proposition (Limiting Waiting Probability):

For both Π^P and Π^{NP} :

$$\lim_{\lambda \rightarrow \infty} P(\text{wait} > 0) = \alpha, \quad 0 \leq \alpha \leq 1,$$

if and only if

$$\mu_1 N_1 + \mu_2 N_2 = \lambda + \delta \sqrt{\lambda} + o(\sqrt{\lambda}), \quad 0 \leq \delta \leq \infty,$$

where

$$\alpha = \left[1 + \frac{(\delta/\sqrt{\mu_1}) \Phi(\delta/\sqrt{\mu_1})}{\phi(\delta/\sqrt{\mu_1})} \right]^{-1},$$

provided that $\liminf_{\lambda \rightarrow \infty} N_1/N_2 > 0$.

Note: Choice of δ depends on α only through μ_1 - the service rate of the slowest servers.

Conclusion: The [linear](#) asymptotic feasible region.

QED Staffing: Optimality

Problem:

$$\begin{aligned}
 \mathbf{P}(\lambda, \alpha) = & \text{ Minimize} & C_1 N_1^p + C_2 N_2^p, \quad p > 1 \\
 & \text{Subject to} & P(\text{wait} > 0) \leq \alpha, \text{ for some routing policy} \\
 & & N_1, N_2 \in \mathbb{Z}_+
 \end{aligned}$$

Solution: Let $\vec{N}(\lambda, \alpha)$ be the optimal solution to the [auxiliary problem](#):

$$\begin{aligned}
 \mathbf{AP}(\lambda, \alpha) = & \text{ Minimize} & C_1 N_1^p + C_2 N_2^p, \quad p > 1 \\
 & \text{Subject to} & \mu_1 N_1 + \mu_2 N_2 \geq \lambda + \delta(\alpha) \sqrt{\lambda} \\
 & & N_1, N_2 \geq 0
 \end{aligned}$$

Claim: $\lceil \vec{N}(\lambda, \alpha) \rceil$ is an asymptotically optimal staffing sequence among all asymptotically feasible staffing sequences, as $\lambda \rightarrow \infty$.

Question: How to compare the costs of two staffing sequences? If

$$\vec{N} = \vec{N}(\lambda) = \lambda + o(\lambda) \text{ and } \vec{M} = \vec{M}(\lambda) = \lambda + o(\lambda),$$

then

$$\frac{C_1 N_1^p + C_2 N_2^p}{C_1 M_1^p + C_2 M_2^p} \rightarrow 1, \text{ as } \lambda \rightarrow \infty.$$

\Rightarrow a [finer](#) comparison criterion is needed.

QED Optimal Staffing

Comparing Asymptotic Costs:

Let $\underline{C}(\lambda)$ be the optimal cost associated with the Stability Problem:

$$\begin{aligned}\underline{C}(\lambda) = & \text{ Minimize} & C_1 N_1^p + C_2 N_2^p, & p > 1 \\ & \text{Subject to} & \mu_1 N_1 + \mu_2 N_2 \geq \lambda \\ & & N_1, N_2 \geq 0\end{aligned}$$

Definition - Asymptotic Optimal Staffing: A sequence of staffing vectors $\vec{N} = \vec{N}(\lambda; \alpha)$ is said to be asymptotically optimal if:

1. It is asymptotically feasible, and
2. for every sequence $\vec{M} = \vec{M}(\lambda, \alpha)$ of staffing vectors which is also asymptotically feasible

$$\limsup_{\lambda \rightarrow \infty} \frac{C_1 N_1^p + C_2 N_2^p - \underline{C}(\lambda)}{C_1 M_1^p + C_2 M_2^p - \underline{C}(\lambda)} \leq 1.$$

Proposition (Asymptotically Optimal Staffing): Let $\vec{N}(\lambda; \alpha)$ be the optimal solution of the auxiliary problem $AP(\lambda, \alpha)$. Then $\lceil \vec{N}(\lambda; \alpha) \rceil$ is an asymptotically optimal staffing, as $\lambda \rightarrow \infty$.

QED Optimal Staffing - Example

Consider the case $p = 2$, and the staffing problem:

$$P(\lambda, \alpha) = \text{Minimize} \quad C_1 N_1^2 + C_2 N_2^2,$$

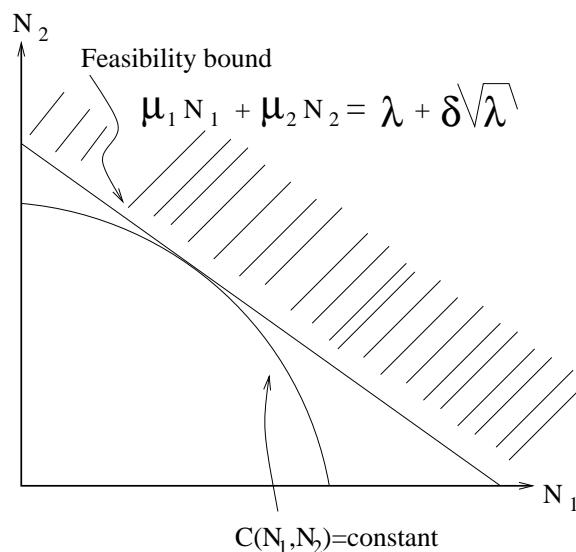
$$\text{Subject to} \quad P(\text{wait} > 0) \leq \alpha, \text{ for some routing policy} \\ N_1, N_2 \in \mathbb{Z}_+$$

Solution: **Total Capacity** (for feasibility) -

$$\mu_1 N_1 + \mu_2 N_2 = \lambda + \delta\sqrt{\lambda}, \quad \delta = \delta(\alpha, \mu_1).$$

Number of Servers in Each Pool (for optimality) -

$$\frac{N_1}{N_2} = \frac{C_2/\mu_2}{C_1/\mu_1}.$$



Transient Analysis

Goals:

- Prove equivalence between Π^P and Π^{NP} (state-space collapse).
- Characterize transient behavior of the multiple server type system in the QED regime, and compare to the $M/M/N$ system (Halfin & Whitt).

$Y(t)$ = the total number of jobs in the system,

$N = N_1 + N_2$ the total number of servers, $X^\lambda(t) = \frac{Y(t)-N}{\sqrt{N}}$.

Proposition: Suppose that

1. $\lim_{\lambda \rightarrow \infty} \frac{\mu_i N_i}{\lambda} = a_i, \quad i = 1, 2, \quad a_1 > 0, \quad a_2 \geq 0, \quad a_1 + a_2 = 1$, and
2. $\lim_{\lambda \rightarrow \infty} \frac{\sum_{i=1}^2 \mu_i N_i - \lambda}{\sqrt{\lambda}} = \delta, \quad \delta > 0$.

If $X^\lambda(0) \xrightarrow{d} X(0)$ then, under both Π^P and Π^{NP} , $X^\lambda \xrightarrow{d} X$, where X is a diffusion process with infinitesimal drift and variance:

$$m(x) = \begin{cases} -\delta\sqrt{\mu} & x \geq 0, \\ -\delta\sqrt{\mu} - \mu_1 x & x < 0, \end{cases}$$

and

$$\sigma^2(x) = 2\mu, \quad \mu = \left(\frac{a_1}{\mu_1} + \frac{a_2}{\mu_2} \right)^{-1}.$$

Conclusions and Further Research

Conclusions:

1. Square-root safety staffing is asymptotically optimal for both V - and \wedge -designs.
2. V -Model: Serving VIP customers first is asymptotically optimal (no thresholds needed for minimizing average waits, but they do arise with refined performance measures).
3. \wedge -Model: Routing to fast servers first is asymptotically optimal (no thresholds needed altogether, but could arise with server-related measures).
4. Asymptotic QED equivalence of non-preemptive and preemptive is fundamental (recent work by R. Atar).

Future Research:

1. Add features: Abandonment, Retrials (CRM); Customer-driven services: μ_j 's.
2. Where are the thresholds?
3. Combine V -designs and \wedge -designs to study N -designs.