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Multi-Skill Call-Centers

types of calls l l l l l l
CECOE

easible routings @ @L @ @ @
pools of CSRs l l l l l

Main Operational Issues (Given a Forecast of Workload):
e Design - Long Term
e Staffing - Short Term

e Routing - Real time

Very Complex: Hence treated hierarchically and unilaterally.



Design “Building-Blocks”

Literature on I, V and A-designs:

e |-design: Halfin & Whitt ('81), Garnett, M. & Reiman ('02), Borst,
M. & Reiman ('03).

e V-design: Schaack & Larson (‘86), Brandt & Brandt ('99), Koole
& Bhulai ('02), Gans & Zhou ('02), Armony & Maglaras ('03),
Atar, M. & Reiman ('02), Harrison & Zeevi ('03), Yahalom & M.

('03), Gurvich ('03).

e A-design: Rykov ('01), Luh & Viniotis ('01), de Véricourt & Zhou
('03), Armony & M. ('03).
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QED M/M/N in Steady State

Theorem (Halfin-Whitt, 1981):
Consider a sequence of M /M /N models, N = 1,2,3, ...

Then the following 3 points of view are equivalent:

e Customer: iMmMy_oo PN{Wait >0} =a, 0<a<]l;
e Server: iMyow VN (L—py) =05, 0<8< oc;
e Manager: N~ R+ VR, R = )/ large.

o(B)
distribution / density.

oig ]
Here o = [1 + 5 (/B)] , Where ®©(-)/¢(+) is the standard normal

Extremes:
Everyone waits: a=1<3<0 Efficiency-driven
No one waits: a=0& 0= Quality-driven



Dimensioning M/M/N: /- Safety-Staffing

Borst, M. & Reiman ('02)

Quality D (¢t) delay cost (t = delay time).
Efficiency C () staffing cost (N = # agents)

Optimization: N* that minimizes total costs

e C>>D: Efficiency-driven N~R-+7~v
o C<< D: Quality-driven N~R+4I0R
e CxD: QED N~ R+ (VR

Satisfization: N* that minimizes staffing costs s.t. delay constraints.

Here: IN*thatis minimal s.t. P(Wait > 0) < .

o ax1: Efficiency-driven N~R+4~
o a0~ 0: Quality-driven N~R+0J0R
e 0<a<l: QED N~ R+ 68VR

Framework:  Asymptotic theory of M /M /N, N T cc.



The V-Design

e J customer classes: arrivals Poisson();).
e N iid servers: service durations Exp(u).
e Waiting costs C1 > C> > ...

Optimal Control : minimize waiting costs “ijl C;W;(-)"
Preemptive (Coupling): non-idling with static priorities 1 > 2 > ...
Non-preemptive (Yahalom 2003 - Blackwell optimality):

e Static priorities 1 > 2 > ... with thresholds S; > Sy > ...

l.e. a class-j customer served if it is of the present highest-
priority and the number of idle servers is .S; or more.

e Performance analysis in steady-state (Schaack & Larson 1986).
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Optimal Control: QED Solution

Atar, M., Reiman (‘02, ‘03); Gurvich (‘03)

Assume N = R+ VR (R=3;);/1)
and liminfy_ o Z/\J/\' =€ > 0 (non-negligible)
5N

Then asymptotically optimal non-preemptive control is

e non-idling, and

e Staticpriority 1 >2 > ...>J

Proof: Suffices asymptotic equivalence

of Preemptive and Non-Preemptive.

Starting point: For any non-idling strategy, the total work
in system (3°; W;)(-) is that of an M /M /N, with param-
eters A = > _; Aj, p, N.



Asymptotic Equivalence
Total work in system il M /M/N, if non-idling

Under static priority (preemptive or non-preemptive),
the lowest priority customers (Class J) "enjoy” QE D

service. More precisely,

Under static priority (preemptive or non-preemptive),
the high priority customers (classes 1,...,J—1) en-

joy Q-driven service (light traffic). More precisely,

NN d 1 -

Multiplying total work by /N (preemptive or non-

preemptive) yields asymptotic equivalence, N T co.
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Asymptotic Equivalence: What's Going On?

Low Priority View

xll le
u High Low

1. While waiting , Low Priority customers “see” an

M/G/1 queue: Wr|Wo > 0 2 WM/G/1|W > 0.

Non-Preemptive: Guyp 4 M(A1)/M(Nwp)/1 busy pe-

riod. Thus, E(Gnp) = Nu(ll_pl), where p; = X‘,—L

Preemptive: Gp 4 Geometric number of busy periods

and Exp(Np), resulting in E(Gp) = -+ = Nu(ll_pl).

2. When some servers are idle - same Birth & Death

process for Preemptive and Non-Preemptive.

3. Rigorously: Paste excursions (as in Whitt 2003), to

show Q1 + Q- % (> (queue-length)



Asymptotic Equivalence: What's Going On?

High Priority View

ngh

Preemptive: "See” M (A\1)/M(n)/N in light traffic.

Non-Preemptive: Don’t walit if less than N servers busy.

Given wait - "See” M (A1)/M(Nw)/1 in light traffic.

Rigorously:
1. Prove convergence of Q1 + @2 (QED M/M/N)

2. Prove convergence of High Priority queue (4 to zero:
Since both Non-Preemptive and Preemptive "see” a
gueue in light traffic

3. Conclude Q1 + @» g @> (queue length)
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Where are the Thresholds ?

xl‘ xz‘
u High Low

Assume N = R+ BvVR (QED staffing)

)\N
= lim su <1
P1 PN—oo Nu .

Apply a threshold S*V: Serve Low Priority (Class 2) if

the number of idle servers is S or more.

Stability requires lim sup .o, S /v/N < 3. Then

B WYY > 0] = 0(3) . BIW' WY > 0 = 6(—).

for all such thresholds. However ,
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Service-Level Differentiation

Threshold | ~ P{W#¥ > 0} | ~ P{W3' > 0}

a a(B) - p¢ a(B)

bin N a(B) - NbInpr | ()

VN | aB-0)-pYN | a(B- o)

Without threshold (e = 0), both classes enjoy QED ser-

vice with the same delay probability.

As the threshold increases, differentiation of service level
increases as well, which is manifested through the delay

probabilities (but not through average delays).

Example: Logarithmic thresholds improve dramatically
the accessibility of high-priority and, at the same time, are

not hurting the low-priority (who are still QED-served).
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Dimensioning the V-Model

e J customer classes: arrivals Poisson(\;).

e NN iid servers: service durations Exp(u).

The staffing problem:
Gven0<ayj <ap<...aj<1,
Min N
st. Pr(Wj(oo) >0) <aj, j=1,..,J
for some scheduling policy =

(Could also minimize cN + 3>~ d;\; EW;(c0))
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Dimensioning V: QED Solution
(Gurvich, 2003)

Asymptotically optimal (staffing + scheduling) as follows:

N* = R+ P-L(a,))VE

(determined by lowest priority J)

" static priority 1 > 2 > ... > J, with
thresholds S1 < So < ... < Sy, given by
Sj=Sj_1+In"t/inply j=2...J,
S1=1;

l.e. a class j customer served iff it is of the present high-

est priority and the number of idle agents is S; or more.

(Here R =3, ;/p,  pf = Xh_q A/ (uN®))

Note: allowing aé-VlO polynomially, or exponentially

requires S}V T oo aslInN, or v/N
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The A-Design  (Armony & M., 2003)

e Single customer class: arrivals Poisson(\).

e K server pools: pool £ has N iid servers;
service durations Exp with rates 1 < po < ... < ug (fastest).

The Focus: Staffing

e How many servers of each type are needed?

Design Concerns

e What is the advantage (if any) of differentiated service rates?

e How much (de)centralization?
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Staffing the A-Model

M/M/N dimensioning requires modification:

e R is not well defined

e Routing is not specified

e Constraint satisfaction: feasible region is multi-dimensional

WLOG - Two server pools (K=2).

The Staffing Problem

Minimize Cl(Nl) -+ CQ(NQ)
Subject to Pr(wait > 0) < «, for some routing policy ;
N1, N> € Z_|_.
“Solution”: w1N1 + puoNo = M+ safety-staffing
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The Feasible Region

Problems:

e Must find optimal routing.
— Threshold type solutions: Rykov ('01),
Luh & Viniotis ('01) .

e Difficult to find exact feasible region.
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The Feasible Region: QED Asymptotics

Feasibility bound

Stability bound
MiNg + HoN,= A

18



QED Feasibility: Theory

Proposition (Asymptotic Feasibility):

Consider a sequence of systems indexed by A T oco. Assume the
number of slow servers is non-negligible: liminfy_. N1/N2 > O.
Then there exists a non-preemptive policy for which

limsup Py(wait >0) <a, O<ax<l

A— 00

if and only if

piN1 + paNa > A+ 6V +o(\/X), 0 <6< oo.

Here

o= |14 O/VEDSO/Vim )1 -
¢(8/\/11)
is the Halfin-Whitt function o(6//111 ).

Corollary (Differentiated Service): The / —design requires less ca-

pacity than the I— design with average service rate.

Proof: Recall 1 < po. Let p = 0p1 + (1 — 6) uo.
Then P(wait > 0) < « |ff

I-design: N > X+ B(a)/avVA + o/ A) ,
/\-design: piN1 + p2No > X + B(a)/IvV A + o/ A) .
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The AN—Model: Exact Optimal Routing
(Rykov 2001, Luh & Viniotis 2002)

Problem: Find a non-preemptive non-anticipative routing policy that
minimizes the average total number of customers in the system

(or the average sojourn time).

Solution: The optimal solution is of a threshold type.

Assign a customer to server type k if:
1. Itis the fastest idle server, and

2. the number of customers in queue is S; or more.

Note: S} may depend on the state of the other (slower) servers.
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The N—Model: QED Optimal Routing

Proposition ( Optimal Preemptive Routing): The preemptive rout-
ing policy, M¥, that always sends calls to the faster servers first is
optimal in steady-state: it stochastically minimizes the total number
of jobs in the system in steady-state.

Proof: Sample path coupling.

Note: Under M¥, the total number of customers in the system de-
termines how many servers of each type are working - thus, it is a

one-dimensional Birth & Death process.

Corollary: M¥ stochastically minimizes the steady-state queue length
and waiting time (since non-idling).

Proposition (Asymptotically Optimal Routing): The non-preemptive
routing policy, MV, that always sends incoming or waiting calls
to the faster servers first is asymptotically optimal, with respect to

gueue length and waiting time in steady-state.

Proof. State-space collapse - in the limit, the fast servers are always busy.

= The preemptive and non-preemptive policies are asymptotically

equivalent.

Note: Thresholds are not needed above.
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Asymptotic Feasibility

Proposition (Limiting Waiting Probability):
For both M¥ and NV¥:
AIim P(wait>0) =a, 0<a<1,

if and only if

p1N1 + poNo = A+ 6VA +0o(VA), 0<6 < oo,

where

o= 14 O/VEDSE/ V)]
$(8//i1 )

)

provided that liminfy_,, N1/N> > 0.

Note: Choice of § depends on « only through w1 - the service rate

of the slowest servers.

Conclusion: The linear asymptotic feasible region.
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QED Staffing: Optimality

Problem:
P(\, o) = Minimize CiN{+ CoN5, p>1
Subject to P(wait > 0) < «, for some routing policy
N1, N> € Z4

Solution: Let N (), «) be the optimal solution the auxiliary problem:

AP()\, a) = Minimize CiN{+ CoN5, p>1
Subject to wiN1 4+ puoNo > X+ 5(0&)\/X
N17 N2 Z 0

Claim: (]\7()\,04)1 is an asymptotically optimal staffing sequence

among all asymptotically feasible staffing sequences, as A—oc.

Question: How to compare the costs of two staffing sequences? If
N=NQ\)=XA4+0o)\) and M = M) =X+ o(\),

then
Cle + 02N§
ClM{’ + CQMg

— 1, as A—oo.

= a finer comparison criterion is needed.
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QED Optimal Staffing

Comparing Asymptotic Costs:

Let C()\) be the optimal cost associated with the Stability Problem:
C()\) = Minimize CiN7 + CoNb, p>1

Subject to wiN1 4+ uo2No > A
N17N2 Z 0

Definition - Asymptotic Optimal Staffing: A sequence of staffing
vectors N = N()\; ) is said to be asymptotically optimal if:

1. Itis asymptotically feasible, and

2. for every sequence M = M(A, «) of staffing vectors which is
also asymptotically feasible

Np Np L
lim sup C1 })+CQ = c) <1.
A—00 OlMl + CQMQ — Q()‘)

Proposition (Asymptotically Optimal Staffing): Let N(\; ) be
the optimal solution of the auxiliary problem AP (), «). Then [N(X; )]

is an asymptotically optimal staffing, as A—oo.
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QED Optimal Staffing - Example

Consider the case p = 2, and the staffing problem:

P(\,a) = Minimize C1N? 4+ CoN3,
Subject to P(wait > 0) < «, for some routing policy
N1, N> € Z4

Solution: Total Capacity (for feasibility) -

1Nt 4+ poNo = X+ 6V, § = §(a, p1).

Number of Servers in Each Pool (for optimality) -

N1 Co/p2
No  Ci/m
N2
Feasibility bound

///?U/l}/ﬂuz = A+ 3
2

7
"

C(N;,N,)=constant
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Transient Analysis

Goals:
e Prove equivalence between M* and MV (state-space collapse).

e Characterize transient behavior of the multiple server type sys-
tem in the QED regime, and compare to the M /M /N system
(Halfin & Whitt).

Y (t) = the total number of jobs in the system,

N = Ni + N> the total number of servers, X*(¢) = Y“\/)N_N.

Proposition: Suppose that

1. |im 2o

A—00

=a;, 1=1,2, a1 >0, a2 >0, a1 +a>=1,and

2
2. lim 2ei=1H —5 6>0.
A—00 o\

If X*(0) % X (0) then, under both M and NP, x* % X, where
X is a diffusion process with infinitesimal drift and variance:

—0\/ 1t x > 0,
m(z) =
=0/ —pir = <O,
and

-1
o*(z) = 2u, u=(ﬂ+%) -
p1o g2
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Conclusions and Further Research

Conclusions:

1. Square-root safety staffing is asymptotically optimal for both V-
and A-designs.

2. V-Model: Serving VIP customers first is asymptotically optimal
(no thresholds needed for minimizing average waits, but they
do arise with refined performance measures).

3. A-Model: Routing to fast servers first is asymptotically optimal
(no thresholds needed altogether, but could arise with server-
related measures).

4. Asymptotic QED equivalence of non-preemptive and preemp-
tive is fundamental (recent work by R. Atar).

Future Research:

1. Add features: Abandonment, Retrials (CRM);
Customer-driven services: p;’s.

2. Where are the thresholds?

3. Combine V-designs and A-designs to study N-designs.
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