
Contents lists available at ScienceDirect
Information Systems

Information Systems 62 (2016) 185–206
http://d
0306-43

n Corr
E-m

matthia
lirony@
avim@ie
sarah_k
craig_bu
journal homepage: www.elsevier.com/locate/infosys
Conformance checking and performance improvement
in scheduled processes: A queueing-network perspective

Arik Senderovich a,n, Matthias Weidlich b,n, Liron Yedidsion a, Avigdor Gal a,
Avishai Mandelbaum a, Sarah Kadish c, Craig A. Bunnell c

a Technion - Israel Institute of Technology, Haifa, Israel
b Humboldt-Universität zu Berlin, Berlin, Germany
c Dana-Farber Cancer Institute, Boston, MA, United States
a r t i c l e i n f o

Available online 28 January 2016

Keywords:
Scheduled processes
Conformance checking
Process improvement
Queueing networks
Process mining
Scheduling
Statistical inference
x.doi.org/10.1016/j.is.2016.01.002
79/& 2016 Elsevier Ltd. All rights reserved.

esponding authors.
ail addresses: sariks@tx.technion.ac.il (A. Sen
s.weidlich@hu-berlin.de (M. Weidlich),
ie.technion.ac.il (L. Yedidsion), avigal@ie.tech
.technion.ac.il (A. Mandelbaum),
adish@dfci.harvard.edu (S. Kadish),
nnell@dfci.harvard.edu (C.A. Bunnell).
a b s t r a c t

Service processes, for example in transportation, telecommunications or the health sector,
are the backbone of today's economies. Conceptual models of service processes enable
operational analysis that supports, e.g., resource provisioning or delay prediction. In the
presence of event logs containing recorded traces of process execution, such operational
models can be mined automatically.

In this work, we target the analysis of resource-driven, scheduled processes based on
event logs. We focus on processes for which there exists a pre-defined assignment of
activity instances to resources that execute activities. Specifically, we approach the
questions of conformance checking (how to assess the conformance of the schedule and the
actual process execution) and performance improvement (how to improve the operational
process performance). The first question is addressed based on a queueing network for
both the schedule and the actual process execution. Based on these models, we detect
operational deviations and then apply statistical inference and similarity measures to
validate the scheduling assumptions, thereby identifying root-causes for these deviations.
These results are the starting point for our technique to improve the operational perfor-
mance. It suggests adaptations of the scheduling policy of the service process to decrease
the tardiness (non-punctuality) and lower the flow time. We demonstrate the value of our
approach based on a real-world dataset comprising clinical pathways of an outpatient
clinic that have been recorded by a real-time location system (RTLS). Our results indicate
that the presented technique enables localization of operational bottlenecks along with
their root-causes, while our improvement technique yields a decrease in median tardiness
and flow time by more than 20%.

& 2016 Elsevier Ltd. All rights reserved.
derovich),

nion.ac.il (A. Gal),
1. Introduction

Service systems play a central role in today's econo-
mies, e.g., in transportation, finance, and the health sector.
Service provisioning is often realized by a service process
[1,2]. It can be broadly captured by a set of activities that
are executed by a service provider and designated to both
attain a set of organizational goals and add value to
customers.

www.sciencedirect.com/science/journal/03064379
www.elsevier.com/locate/infosys
http://dx.doi.org/10.1016/j.is.2016.01.002
http://dx.doi.org/10.1016/j.is.2016.01.002
http://dx.doi.org/10.1016/j.is.2016.01.002
http://crossmark.crossref.org/dialog/?doi=10.1016/j.is.2016.01.002&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.is.2016.01.002&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.is.2016.01.002&domain=pdf
mailto:sariks@tx.technion.ac.il
mailto:matthias.weidlich@hu-berlin.de
mailto:lirony@ie.technion.ac.il
mailto:avigal@ie.technion.ac.il
mailto:avim@ie.technion.ac.il
mailto:sarah_kadish@dfci.harvard.edu
mailto:craig_bunnell@dfci.harvard.edu
http://dx.doi.org/10.1016/j.is.2016.01.002

Conformance Checking Performance Improvement

Schedule

Hypotheses
Testing /

Similarity
Assessment

Diagnostics

Event Log

Discovery
of Queueing

Networks

Scheduling
Policy

Adaptation

Fig. 1. An outline of our approach.

1 http://www.dana-farber.org/.

A. Senderovich et al. / Information Systems 62 (2016) 185–206186
Independently of the domain, service processes can be
classified by the amount of interactions between service
providers and customers and the level of demand pre-
dictability and capacity flexibility. A service can be multi-
stage, involving a series of interactions of a customer with
a provider, or specific resources at a provider's end. Fur-
ther, a process can be scheduled, meaning that the number
of customers to arrive is known in advance, up to last
moment cancelations and no-shows. Then, customers fol-
low a schedule, which is a pre-defined series of activity
instances, each having assigned a planned starting time for
its execution, a duration, and the involved resource.

Multi-stage scheduled processes are encountered, for
instance, in outpatient clinics, where various types of
treatments are provided as a service to patients [3]. Here, a
schedule determines when a patient undergoes a specific
examination or treatment. Another example of multi-stage
scheduled processes is public transportation, where sche-
dules determine which vehicle serves a certain route at a
specific time [4].

In this work, we focus on operational analysis for multi-
stage scheduled service processes. Specifically, we aim at
answering the following two key questions: how to assess
the conformance of a pre-defined schedule of a service pro-
cess to its actual execution? and how to improve operational
performance of the scheduled process?

To address the first question, we present a method that
is grounded in a queueing network for both the schedule
and the actual process execution and applies statistical
inference (hypotheses testing) and similarity assessment
to validate the scheduling assumptions of the process. As
outlined in Fig. 1, the conformance checking step yields
diagnostics on operational deviations between the sche-
dule and the execution of the process. The identified
deviations then guide the efforts to improve the opera-
tional performance of a process. In particular, we target
improvements in terms of decreased tardiness (lateness
with respect to due dates) and lower flow time by adapt-
ing the scheduling policy.

We base our technique on a generalization of a specific
type of queueing networks. This choice is motivated by the
need to capture two aspects of service processes in parti-
cular. First, the key actors of service processes namely
customers and service providers (or resources), and their
complex interaction in terms of customer–resource
matching policies (e.g. First-Come First-Served, Most-
Idling Resource-First) [5] need to be specified. Second, a
network model is required to define the dependencies of
different stages of the service process, including parallel
processing of activities [6]. Against this background, we
rely on Fork/Join networks [7], which serve as the founda-
tion for conformance checking and enable performance
analysis of parallel queueing systems [8].

Our contributions can be summarized as follows:

(1) We present a method to assess the conformance of a
schedule and the actual process execution based on
queueing networks. By means of statistical inference
and similarity assessment, we identify operational
deviations along with their root-causes in terms of
violated assumptions underlying the scheduling
mechanism.

(2) We present a process improvement technique that
relies on the identified root-causes to adapt the
scheduling policy of the service process to decrease
the tardiness and lower the flow time.

This paper is an extended and revised version of our
earlier work that focused on conformance checking in
scheduled processes [9]. In this work, we improve, extend
and formalize the earlier proposed model validation tech-
nique. Furthermore, we complement the conformance
checking approach with a process improvement
technique.

We demonstrate the value of the proposed approach by
a two-step evaluation. First, we apply the conformance
checking techniques to RTLS-based data from a real-world
use-case of a large outpatient oncology clinic namely the
Dana-Farber Cancer Institute.1 Our experiments demon-
strate the usefulness of the extended validation method
for detection of operational deviations and identifying root
causes for them. As a second evaluation step, we present
simulation-based experiments that evaluate the proposed
process improvement technique and show that tardiness
and flow time can be reduced by more than 20% using the
adapted scheduling policy.

The remainder of the paper is structured as follows. The
next section presents a detailed use-case of a process in an
outpatient clinic to motivate our approach. The models for
the service process data, specifically, the schedule and the
event log, are presented in Section 3. Fork/Join networks

http://www.dana-farber.org/

Fig. 2. Patient flow in Dana-Farber Cancer Institute.

A. Senderovich et al. / Information Systems 62 (2016) 185–206 187
and their discovery from data are discussed in Section 4,
before we turn to the method to assess conformance in
Section 5. Section 6 introduces an approach for improving
the operational performance of a service process, which is
guided by the diagnostics obtained by conformance
checking. An empirical evaluation of our approach, based
on real-life data logs and trace-based simulation is given in
Section 7. Section 8 discusses related work, followed by
concluding remarks (Section 9).
2. A service process in an outpatient clinic

We illustrate the challenges that arise from operational
analysis of multi-stage scheduled service processes
through a process in the Dana-Farber Cancer Institute
(DFCI), a large outpatient cancer center in the US. In this
hospital, approximately 900 patients per day are served by
300 health care providers, e.g. physicians, nurse practi-
tioners, and registered nurses, supported by approximately
70 administrative staff. The hospital is equipped with a
Real-Time Location System (RTLS). We use the movements
of patients, personnel, and equipment recorded by this
system to evaluate our approach.

We focus on the service process for a particular class of
patients, the on-treatment patients (OTP). This process
applies to 35% of the patients, yet it generates a large
fraction of the workload due to the long processing times.
Hence, operational analysis to balance quality-of-service
and efficiency is particularly important for this process.
Fig. 2a depicts the control-flow perspective of the process
as a BPMN diagram: arriving patients may directly receive
examination by a physician, or shall undergo a che-
motherapy infusion. For these patients, a blood draw is the
initial appointment. Then, they either move to the infusion
stage directly, or first see a provider for examination.
Infusions may be canceled, after examination or after
measuring infusion vital signs.

For a specific scheduled part of the aforementioned
chemotherapy infusion process, Fig. 2b illustrates a
queueing network that captures the resource perspective
of the process. This model is a Fork/Join network, dis-
cussed in more detail in Section 3. It represents the asso-
ciated resources: clinical assistants, a pharmacy, and
infusion nurses, as well as dependencies between them
that follow from the patient flow. Patients first fork and
enter two resource queues in parallel: one is the queue
where they actually sit and wait for a clinical assistant to
take their vital signs; the other queue is virtual, where
they wait for their chemotherapeutic drugs to be prepared
by the central hospital pharmacy. The process can only
continue once both of these parallel activities are com-
pleted, which explains the existence of a synchronization
queue in front of the join of the flows. After the join,
patients are enqueued to wait for a nurse and chair to
receive infusion.

The provisioning of infusions (as well as other proce-
dures) in DFCI is scheduled. Specifically, each patient has a
schedule that assigns a planned start time, duration and
resource type to the respective activity instance, also
referred to as a task. In the presence of a recorded event
log, one may consider two centric types of performance-
related questions. The first question is about conformance
of the schedule and process execution, i.e., does the

A. Senderovich et al. / Information Systems 62 (2016) 185–206188
planned execution of the process corresponds to the
recorded reality. This question has vast implications on
operational considerations. Specifically, staffing of service
providers, and information released to patients and phy-
sicians are governed by the schedule. Therefore, it is
important that the schedule functions as an appropriate
proxy to the real process. A second question inquires as to
how to improve the operational process performance
based on the insights obtained from an analysis of the
event log. Motivated by the DFCI use-case, our work pro-
vides a novel approach to analyze these two questions.
3. Schedules and event logs of service processes

In this work, we provide a multi-level analysis
approach that exploits two types of input data, namely a
schedule and an event log of recorded tasks, i.e., actual
executions of activities. Below, we first introduce a run-
ning example that is based on the DFCI use-case, to give
some intuition for our definitions. Then, we formalize the
models of a schedule and an event log.

3.1. Running example

Consider two patients that are scheduled to visit the
Dana-Farber Cancer Institute, and receive chemother-
apeutic treatment. The first patient, id number 111, is
scheduled to go through a blood draw procedure, a phy-
sician's examination, and a chemotherapy infusion. The
second patient, id number 222, is planned to perform only
a blood draw and a chemotherapy infusion, and does not
require an examination prior to the infusion.

In reality, patient 111 went through vital signs activity,
prior to receiving infusion. Vital signs is not a scheduled
activity, i.e., there is no task that would include a pre-
defined start time, resource type, or planned duration.
Also, the preparation of a chemotherapeutic drug is per-
formed in the DFCI pharmacy during the visit. This stage is
also unscheduled. However, since the infusion itself is
scheduled, these two activities (vitals and drug produc-
tion) must end prior to the scheduled execution of the
infusion. The second patient went through the blood draw
stage and had the infusion canceled, due to inadequate
blood results.

The full detail of the example is captured in the two
data logs, the schedule and the event log presented in
Tables 1 and 2.

3.2. Schedule

A schedule (e.g. Table 1) represents the plan of a multi-
staged service process for individual customers, which is
composed of partially ordered tasks. We define a task to be
a relation between case identifiers, activities, and resour-
ces at a given time for a certain duration. In our running
example, customer with a case identifier 111 is to perform
an infusion procedure with an infusion nurse, which is
scheduled to 10:30, and is planned to last 180 min. We
denote the universe of tasks by T (including the empty task
ϵ), and the set of resource types, or roles (e.g. infusion
nurse) by R. We assume that activities (from universe of
activities A) can be performed by a single resource type at
a time (no shared resources). However, activities can be
performed by several resource types (blood draw can be
performed by nurse or a phlebotomist), and resource types
can perform several activities.

Definition 1 (Schedule). A schedule is a set of planned
tasks, TPDT , having a schema (set of functions)
σP ¼ fξp; αp; ρp; τp; δpg, where

� ξp: T-Ξ assigns a case identifier to a task.
� αp: T-A assigns an activity to a task.
� ρp: T-R assigns a resource type to a task.
� τp: T-Nþ assigns a timestamp representing the earliest

start time to a task (e.g. in UNIX time).
� δp: T-DDNþ assigns a duration to a task (e.g. pre-

defined set of times in minute units).

The timestamp (τp) and duration (δp) assignments induce a
partial order of tasks, denoted by !PDTP � TP .

3.3. Event log

An event log (e.g. Table 2) contains the data recorded
during the execution of the service process, e.g., by a Real-
Time Location System (RTLS) as in our use-case scenario
(Section 2). Tasks in the log relate to a customer, a
resource, an activity, and timestamps of execution, thereby
representing a unique instantiation of an activity executed
by a resource for a customer at a certain time.

Definition 2 (Event log). A log is a set of executed tasks,
TADT , having a schema σA ¼ fξa; αa; ρa; τstart ; τendg, where

� ξa: T-Ξ assigns a case identifier to a task.
� αa: T-A assigns an executed activity to a task.
� ρa: T-R assigns a resource type that executed the task.
� τa: T-Nþ assigns a timestamp representing the

observed start time to a task.
� δa: T-Nþ assigns the actual duration to a task (e.g. in

minutes).

The timestamps and durations assigned by τa; δa induce a
partial order of executed tasks, denoted by !ADTA � TA.

There are differences between planned and actual
schema functions. For example, for patient number 111,
vital signs and chemotherapy preparation activities do not
appear in the schedule, yet occur in reality. Also, we allow
for scheduled activities to be canceled for some of the
process instances. However, we assume that the recorded
event log has the following property.

Property 1 (Resource inclusion). Let Rp be the image of ρp,
and Ra be the image of ρa. Then, RpDRaDR.

This property ensures that resource types appearing in
the schedule also appear (at least once) in the event log.
The other direction does not necessarily hold, as
unscheduled activities can be performed by resource types
that do not appear in the schedule.

Table 1
Example from schedule of Dana-Farber Cancer Institute.

Case id Activity Resource type Start time Duration
(min)

111 Blood draw Phlebotomist 7:30:00 15
111 Exam Physician 9:30:00 30
111 Chemo.

infusion
Inf. nurse 10:30:00 180

222 Blood draw Nurse 9:30:00 15
222 Chemo.

infusion
Inf. nurse 11:00:00 120

Table 2
Example from an event log of Dana-Farber Cancer Institute.

Case id Activity Resource type Start time Duration
(min)

111 Blood draw Phlebotomist 7:12:00 8
111 Exam Physician 9:30:00 42
111 Vitals C. Assistant 10:12:00 4
111 Chemo.

product.
Pharmacy 10:12:00 35

111 Chemo.
infusion

Inf. nurse 10:47:00 167

222 Blood draw Nurse 9:26:00 25

A. Senderovich et al. / Information Systems 62 (2016) 185–206 189
As a final comment, we assume the existence of an
injective function ν: TA-TP , that maps actual tasks to their
scheduled counterparts. The empty task ϵ is assumed to be
included in TP to allow for unplanned activities. That is, if
for some executed task, tATA, there exists a scheduled
task t0, then νðtÞ ¼ t0 holds. If the task t has not been
scheduled, then νðtÞ ¼ ϵ.
4. Fork/Join networks: definition and discovery

We base the conformance checking and performance
improvement in scheduled processes on a general family
of queueing networks, namely Fork/Join networks (F/J
networks). F/J networks, in contrast to ordinary queueing
networks, capture both resource delays (due to a lack of
available resources to execute a certain activity) and syn-
chronization delays (due to concurrent activities that have
not finished execution). In addition, F/J networks naturally
support service policies that govern how resources are
assigned to instances of a service process (e.g., First-Come
First-Served). In contrast, behavioral formalisms such as
Petri-nets require extensions that hinder their analysis to
express such policies [10]. Finally, there is a rich body of
techniques for F/J networks that approximate optimal
service policies and analyze time behavior of service pro-
cesses [8,11].

We start with a formal definition of F/J networks that
will serve us in the current work (Section 4.1). Then, in
Section 4.2 we elaborate on the discovery of F/J networks
from event logs. Although a full-fledged automatic dis-
covery of Fork/Join networks from data is beyond the
scope of this paper, we outline how existing ideas from
process mining are combined with basic statistics to
obtain an initial F/J network, which is then completed
manually.

4.1. Fork/Join networks: definition

Formally, queueing networks are directed graphs, with
vertices corresponding to server nodes (or service provi-
ders). Instances of a service process (customers hereinafter)
traverse through services that are performed by servers,
according to probabilistic routing [12].

Fork/Join (F/J) networks supports splitting and joining
of customers, which makes them particularly suitable to
model concurrent processing [11]. F/J networks support
two types of queues: resource queues are formed due to
limited resource capacity, and synchronization queues
result from simultaneous processing by several resources.
Servers can thus be of three types, namely (1) regular
(resources with finite or infinite capacity), (2) fork, and
(3) join.

In this work, we consider open F/J networks (customers
arrive from outside the system and depart eventually) that
exhibit multi-class services (servers execute several activ-
ities), and probabilistic choices. This formalism is inspired
by the conceptual framework of processing networks
[13,14], and generalizes both multi-class networks [12]
and Fork/Join networks [11].

In multi-class queueing networks, customers that
arrive to a server may encounter different types of pro-
cessing. Examples for such types of processing include not
only the execution of different activities, but also different
ways of executing an activity. For instance, in scheduled
processes, activities may be planned with different dura-
tions, so that each combination of an activity and its
planned duration is treated differently in the scheduling of
resources.

Formally, this aspect is captured by a set of customer
classes, which we denote by CDNþ . The relation between
tasks and customer classes is established by a function
ψ : T-C. Taking up the running example, a physician may
perform two activities, examination and consultation.
However, examinations can be planned for 15 min or
30 min and, depending on the duration, the scheduling is
implemented differently. As such, in this example, there
are three customer classes (consultation, examination in
15 min, examination in 30 min).

To define F/J networks, we need to specify server
dynamics for each of the servers in the net. To this end, we
adopt a version of Kendall's notation [15], so that every
server is characterized by five building blocks,
At=Bc=Rt=Z=P where At represents the (time-varying)
external arrival process that are class independent; Bc

corresponds to (stationary) processing time distribution for
customer class cAC (time-independence is typically
assumed for service processes, see [16]); and Rt stands for
time-changing resource capacity, i.e., the number of
resources working in the server node at time t. The class
assignment function, Z, assigns a class to an arriving cus-
tomer with probability Z(c), where

P
cACZðcÞ ¼ 1.

Component P is the stationary service policy that sets
both the order of entry-to-service, among the enqueued
customers, and selects the resource, among available ones,

A. Senderovich et al. / Information Systems 62 (2016) 185–206190
to serve a customer. For example, the most well-known
service policy for queues is the First-Come First-Served
(FCFS) policy. Resources related to server nodes are work-
conserving (immediately engaging in service when avail-
able) and statistically identical with respect to the dis-
tribution of their processing times. All five building blocks
are assumed to be independent of one another.

With K being the universe of possible dynamics models
for a server, we define F/J network as a probabilistic net-
work of three different types of server nodes, each server
being assigned a dynamics model.

Definition 3 (Fork/Join network). A Fork/Join network F is
a triple 〈S;W ; b〉, where

� S¼ SR [SF [SJ is a set of servers, with SR being a set of
resource types and SF ; SJ being sets of forks and joins,
respectively such that SR \ SF \ SJ ¼∅;

� W : ðS� SÞ-½0;1� is a routing matrix (or the weighted
flow) between servers;

� b: S-K assigns a dynamics model to servers.

We consider forks and joins to be zero-delay and zero-
capacity resource nodes. The weights of arcs coming out
(in) of a fork sf (a join sj) are assumed binary, that is, a
customer always routes to (from) a downstream
(upstream) server, s0, and thus Wðsf ; s0Þ ¼ 1 (Wðs0; sjÞ ¼ 1).

The weights of the routing between servers correspond
to probabilities. Therefore, 0rWðs; s0Þr1; 8s; s0AS andP

s0 ASWðs; s0Þ ¼ 1.
As an example, consider the F/J network in Fig. 2b. This

visualization contains, in addition to server nodes and
routing, three resource queues (preceding resources) and
two synchronization queues (succeeding resources). It is
worth noting that an F/J network is fully characterized by
servers, routing, and server dynamics. Queues are defined
implicitly before and after their respective servers. The
example in Fig. 2b contains three resource types, a fork,
and a join. For each resource type, there is a single cus-
tomer class for the activity performed by the resources of
the respective type.

4.2. Discovery of Fork/Join networks

Discovery of a F/J network from data, either a schedule
or an event log, involves the identification of the network
structure (S), an estimation of the routing (W), and a
characterization of server dynamics (b). Below, we outline
how existing process mining techniques can be used in our
setting to create an initial F/J network as the basis for
manual refinement.

Discovery of structure and estimation of routing: To dis-
cover the general structure of a network, a large variety of
existing process mining techniques can be used (see [17,
Chapter 5] and the references within). In particular, given
that the schedule and the event log both contain resource
types and start times of tasks as well as their durations, we
follow an approach that resembles the time-interval-based
process discovery proposed by Burattin [18]. Specifically,
we employ interval algebra [19] and assume that resources
of different types that perform tasks concurrently at least
once are indeed concurrent in the network. Subsequently,
the required forks and joins are inserted, prior to resource
nodes with more than one predecessor or successor,
respectively. This yields a 100% fitting model, in the sense
that all resource types and possible routing paths are
represented.

For practical reasons, we also add input and output
resource nodes with empty dynamics: an input node
siASR, to which all customers arrive (externally), and
which is connected to all servers with external arrivals; an
output node soASR that is connected to all server nodes in
which the process terminates according to the data.

To estimate the flow matrix W, we start by assuming
that all edges between the nodes are deterministic, and all
weights are equal to 1. For edges that leave a fork or
connect to a join, this weight remains unchanged. For all
other edges between servers s and s0 (s0 can be a fork), the
weights are set to Markovian probabilities using an esti-
mator that is calculated as the number of occurrences of
the transition from s to s0 in the data divided by the
number of occurrences of s.

Lastly, weights for the input and output resource nodes
are set as follows. The weight for a transition from si to s is
set to the proportion of customers that arrive at node s out
of all exogenous arrivals. Similarly, the weight for a tran-
sition from s to so is set to the proportion of services that
terminated in s.

Characterizing server dynamics: For most of the com-
ponents of server dynamics, mining techniques have been
presented in the literature. An exception is the derivation
of the customer classes C, needed to extract the distribu-
tion of processing times per class. The customer classes are
server-dependent, yet may be defined based on various
properties of tasks. In most cases, taking the activities
executed by resources of a particular type is a reasonable
initial definition of the customer classes. However, manual
refinement may be needed to extract, for instance, com-
bination of activities and durations that define a class.
Given a particular notion of classes, the probabilities Z(c)
are estimated per server sASR by the number of customers
falling into class c, out of all visits in s, as recorded in
the data.

Once Z(c) are estimated, the remaining components of
server dynamics are derived using existing techniques. The
number of resources as a function of time, Rt , is extracted
from data using statistical methods as reported in [20]. The
distribution of inter-arrival times At and processing times
per class Bc can be fitted with the techniques presented in
[16,21]. Service policies, P, can be discovered using the
policy-mining techniques presented in [22], or assumed to
be given, as in the case of discovering a F/J network from a
schedule.
5. Conformance checking in scheduled processes

This section introduces an approach to assess the con-
formance of a pre-defined schedule of a service process to
its actual execution. Following the existing theory for
validating (simulation-based) operational models against
execution data [23], we decompose the conformance

Fig. 3. Scheduled and actual F/J network structures.

A. Senderovich et al. / Information Systems 62 (2016) 185–206 191
checking problem along two dimensions, namely con-
ceptual and operational.

Conceptual conformance checks the assumptions and
theories that underlie the schedule. That is, we compare
the schedule and the event log indirectly by means of F/J
networks that are discovered for both. These networks are
compared through the lenses of their corresponding
components: structure, routing, and server dynamics,
which enables general insights beyond the level of
instance-based conformance checking.

Operational conformance checks the ‘predictive power’
of a schedule with respect to various performance mea-
sures (e.g., delay predictions). To this end, based on the
schedule and the event log, we measure deviations
between the observed and the scheduled performance
indicators.

Conceptual and operational conformance are often
linked in the sense that issues in operational conformance
can be explained by a lack of conceptual conformance. For
instance, if operational conformance checking identifies
that queues are shorter or longer than planned, this may
indicate an overstaffed or an understaffed system,
respectively, which is a problem of conceptual
conformance.

This section first presents our methodology for con-
ceptual and operations conformance checking (Sections
5.1 and 5.2). We then tie the two conformance types and
elaborate on how to detect performance deviations from
the schedule and identify root-cause explanations of
deviations (Section 5.3).

5.1. Conceptual conformance to schedule

Given two F/J networks F P and FA that have been
discovered from a schedule (F P , for planned) and an event
log (FA, for actual), respectively, conceptual conformance
checking compares their components. Below, we first
present a methodology for this comparison, which is
followed by a discussion of the specific algorithms to
instantiate the methodology.

Comparing components of F/J networks: The components
of the log-based F/J network FA can be either stochastic or
deterministic. For example, processing times are often
assumed to be stochastic, while service policies and
resource capacities are typically assumed deterministically
pre-defined. The schedule-based network F P is entirely
deterministic. Therefore, we need to consider a compar-
ison framework that includes two types of comparisons,
namely stochastic to deterministic (S2D) and deterministic
to deterministic (D2D).

A natural framework for S2D comparison is statistical
hypothesis testing [24]. Here, the stochastic element is
summarized as a distribution, either parametric or non-
parametric, and its parameters (or quantiles for non-
parametric distributions) are compared to hypothetical
values that correspond to the schedule. For example, the
duration of an activity can be characterized by a non-
parametric distribution. Hypothesis testing then verifies
whether the median of the distribution is indeed equal to
the planned duration of this activity, thereby comparing
the scheduled and actual processing times.

The null hypothesis for S2D comparisons is that the
components of F P and FA are equal. To test the hypoth-
esis, a test statistic is constructed from the event log, such
that its distribution under the null hypothesis is known. It
is computed as a function of the measurements in the
event log (samples), and given these measurements one
can derive the probability under which the difference
between the actual and the scheduled is significant, thus
causing rejection of the null hypothesis.

Hypothesis testing is not suitable for D2D comparisons,
since any deviation between the realizations in the event
log and the scheduled counterpart will result in rejection
of the null hypothesis. Hence, we resort to measures of
similarity and/or dissimilarity that are specifically devel-
oped for the components of F/J networks.

A. Senderovich et al. / Information Systems 62 (2016) 185–206192
Structural conformance: Given the F/J networks
F P ¼ 〈SP ;WP ; bP〉, SP ¼ SRP [SFP [SJP , and FA ¼ 〈SA;WA; bA〉,
SA ¼ SRA [SFA [SJA , structural conformance (a D2D com-
parison) relates to the resource nodes SRP and SRA ,
respectively. Fork and join nodes (SFP , SJP , SFA , SJA) are not
considered as any difference related to concurrent execu-
tion of activities is part of the routing conformance, i.e., the
comparison of WP and WA.

The sets SRP and SRA are not necessarily equal, since
there can be unscheduled activities, performed by
resource types that are not acknowledged in the schedule.
We assess the difference of the sets of resource nodes by
means of the intersection set SI ¼ SRP \ SRA , which is
always equal to SRP due to Property 1, and the difference
set SD ¼ SRA⧹SRP . Then, a natural measure for the similarity
of SRP and SRA is defined as the number of resource nodes
in the schedule-based model in relation to all resource
nodes observed in the event log:

φ SRA ; SRP

� �¼ jSIj
jSRA j

: ð1Þ

This measure reaches its maximum of 1, whenever the sets
of resource nodes are equal. The minimum value of 0, in
turn, indicates that there are no planned activities
according to schedule. The related measure for dissim-
ilarity is

d SRA ; SRP

� �¼ jSDj
jSRA j

; ð2Þ

which is exactly 1�φðSRA ; SRP Þ, since SRA ¼ SD [SI .
While both measures play a minor role as a stand-alone

comparison between F/J networks, the underlying sets SI
and SD assume important roles for testing conformance of
the routing and the server dynamics of two networks.
Specifically, assumptions related to routing and server
dynamics are tested solely for the resource nodes in both
networks (SI). In addition, the dynamics of the resource
nodes in SD become relevant in the context of process
improvement (Section 6).

Taking up the running example, Fig. 3a and b presents
network structures including routing that are discovered
from a schedule and an event log, respectively. The inter-
secting resource nodes SI are Nurse, Physician and Infusion
Nurse, whereas Clinical Assistant (C.A.) and Pharmacy
belong to SD, and it holds that φ¼ 0:6.

Routing conformance: For routing conformance, we
compare the matrices WP and WA. This is an S2D com-
parison, with a stochastic WA and a deterministic WP. The
null hypothesis to test is whether WP corresponds to WA.
That is, for every resource node, we compare the actual
probability to leave it into the scheduled resource node.
We consider jSIj null hypotheses and alternate hypotheses,
defined for sASI as:

H0;s:WAðs; s0Þ ¼WPðs; s0Þ; 8s0ASI
H1;s:otherwise: ð3Þ
Since we are interested only in resource nodes the weights
WAðs; s0Þ are probabilities and the routing matrix WA cor-
responds to a Markov chain. Given a sample of WAðs; s0Þ
from the event log we can then perform a χ2 test for
Markov chains, to accept or reject H0;s for each sASI [25].
Resource nodes that ‘fail’ the test—the corresponding null
hypothesis will be rejected at a certain significance level—
are the root-cause for conceptual deviations in the routing.

Intuitively, we would like to use the tasks TA of the
event log as the sample of WA. However, it has to be
ensured that only tasks executed by resource nodes that
are part of the schedule are considered. Hence, solely the
tasks in TI ¼ ftATA∣ρaðtÞASIg are used as the sample to
construct WA.

Two resource nodes of special interest are si (input) and
so (output). Deviations related to si correspond to
unscheduled external arrivals, whereas deviations related
to s0 are exceptions in exiting the system.

Dynamics conformance: external arrivals: To assess
conformance of server dynamics, each of the building
blocks At=Bc=Rt=Z=P have to be checked. Starting with
the external arrivals, we assess the tardiness of arrivals, i.e.,
the deviation between planned arrival times and the
measured arrivals [26].

We divide the analysis of tardiness into three parts.
First, we propose a stationary (time-independent) S2D
comparison technique for external arrivals. Then, we
consider the case when tardiness is time-varying with
factors such as morning traffic affecting tardiness. Last, we
consider the phenomena of cases that are scheduled to
arrive, but do not show up.

Stationary analysis: For a stationary analysis, we collect
the set of measured (externally) arrived tasks from the set
of all tasks TA in the event log:

Ae ¼ ftATA∣8 t0ATA: ξaðtÞ ¼ ξaðt0Þ) t0⊀Atg: ð4Þ
Subsequently, we gather the set of sampled tardiness
values De. To this end, we consider cases, for which there is
a scheduled task for the observed actual task, by using
function ν (see Section 3.3):

De ¼ fτaðtÞ�τpðνðtÞÞ∣tAAe4νðtÞaϵg: ð5Þ
Based on the sampled tardiness values De, we realize an
S2D comparison and test whether the null hypothesis that
the median of the distribution of tardiness values is 0. This
test is done using non-parametric techniques [27], since, in
general, the distribution of tardiness values cannot be
assumed to have expected values. Instead of testing whe-
ther the schedule corresponds to the median of the dis-
tribution, however, one can take a less conservative
approach, and test a null hypothesis that the scheduled
value is between two quantiles (e.g., the 25th and
the 75th).

Time-varying analysis: In many processes, tardiness of
customers can be assumed to be time dependent, which is
not reflected in the stationary approach. Therefore, we
now present an approach to compare stochastic processes
(instead of a single random variable) to their scheduled
counterparts—an approach that is general enough to be
used also for assessing conformance of other time-varying
dynamics (e.g., resource capacities).

Let AðkÞ; kZ0, denote the stochastic process that cor-
responds to the number of external arrivals at time k in the
F/J network constructed from the event log ðFAÞ. Com-
paring it to the planned arrivals (as defined by F P)
imposes two challenges. First, the sample size for such a

A. Senderovich et al. / Information Systems 62 (2016) 185–206 193
comparison will typically be small since each of the two
processes is observed only once for a particular time point
k. Second, we need to know the distribution of A(k) under
the null hypothesis, for every k. For the special case of A(k)
being a nonhomogeneous Poisson process, this distribu-
tion is known, and a test statistic can be constructed [28].
However, when aiming at analysis of general arrival pro-
cesses, large sample sizes are required.

We overcome the two challenges by working under the
assumption that any timestamp k, recorded in the sche-
dule or event log, can be mapped to a finite set of times,
kAH ¼ fk1;…; kmg, which corresponds to all possible arri-
val times according to schedule. For instance, H can cor-
respond to times of day, which have scheduled start times,
e.g., k1¼7:00, k2¼7:15, etc. Further, we assume that the
differences between scheduled and observed arrivals at ki,
AðkiÞ�APðkiÞ, have a non-parametric, case independent
distribution Gki . This implies that customers scheduled to
arrive at 9:00 have the same tardiness distribution,
regardless of their individual constraints. Under this
assumption, the problem of sample-sizes is less critical
since a large number of customers may be scheduled to
arrive at a particular point in time ki. In addition, the
analysis can be traced back to the comparison of dis-
tributions of point values.

We denote the median of Gki by Mki
d . Then, for each

possible arrival time ki, we test m hypotheses (similar to
the stationary case):

H0;ki :M
ki
d ¼ 0

H1;ki :otherwise: ð6Þ

The extraction of information in the event log needed for
testing the above hypotheses is based on a function
π:Nþ-H that maps positive integer-valued timestamps
(e.g., UNIX timestamps) into H (e.g., time-of-day corre-
sponding to appointment times). Then, we define the
scheduled arrivals at time ki as

AeðkiÞ ¼ ftATP ∣πðτpðtÞÞ ¼ ki4 8 t0ATP : ξpðtÞ ¼ ξpðt0Þ
) t0⊀Ptg: ð7Þ

The sampled tardiness values at time ki, in turn, are
defined as

DeðkiÞ ¼ fτpðνðtÞÞ�τaðtÞ∣πðτpðνðtÞÞÞ ¼ ki4 tAAeðkiÞ4νðtÞaϵg:
ð8Þ

Based on DeðkiÞ the hypothesis testing technique intro-
duced in the stationary case is applied.

No-shows: The analysis thus far has been concerned
with tardiness of customers that were scheduled to arrive,
and actually arrived. However, a common phenomenon in
scheduled process is termed no-shows, customers that are
scheduled to arrive, but do not show up.

We analyze no-shows scheduled for a server sASI by
means of their time-independent proportion ηs

n
. It can be

estimated by the number of no-shows Ns to server s,
divided by the size of externally arrived tasks Ae. The
former is obtained as follows:

Ns ¼ jftAAe∣8t0ATA: ξpðtÞaξaðt0Þ3(t0ATA: ξpðtÞ ¼ ξpðt0Þ
� �

) ρpðtÞaρaðt0Þ
� �gj:

ð9Þ

Similarly, no-shows can be explored in time-dependent
scenarios, in which there is a time-dependent proportion
of no-shows, ηns ðkiÞ for time point ki. Then, the definition
of ηns ðkiÞ is based on time-dependent arrivals AeðkiÞ, instead
of Ae.

Dynamics conformance: customer classes: Processing
times are specific for customer classes, so that the con-
formance of these classes along with their assignment
probabilities is a prerequisite for assessing conformance of
processing times. Conformance analysis related to custo-
mer classes is based on all resource types RIDR, for which
the server nodes are in SI, i.e., that are shared by the model
constructed based on the event log and the one derived
from the schedule. As a consequence, there is a common
set C of customer classes constructed for both F/J
networks.

To assess the conformance of the assignment prob-
abilities, we first derive the probabilities of the schedule-
based model, Zp(c), for some cAC, as follows. Let CSDC be
the subset of classes that actually appears in the schedule.
For these classes, we assume that Zp(c) is the proportion of
scheduled activities that corresponds to class cACS.

The probability Zp(c) for some class cAC is then com-
pared to the (stochastic) probability of the model con-
structed from the event log. For each customer class cAC,
we test the null hypothesis, H0;c: ZaðcÞ ¼ ZpðcÞ. The proce-
dure to test the hypothesis is similar to testing routing
conformance and a χ2 test is used.

Dynamics conformance: processing times: Processing
times of server nodes of the F/J networks are assumed
stationary (time-independent), and class-dependent. To
assess conformance of processing times, we rely on an S2D
comparison that is based on a random variable Pc for the
processing time of class cAC. The variable is assumed to
come from a general (non-parametric) distribution Gc. Let
Md

c
be the median of Gc. Further, let Pc

p
be the planned

duration for serving customers of class c (a duration of
zero time units is assumed in case a task is unplanned).

Then, we test jCj null hypotheses to check whether the
distribution of the random duration for the tasks of class c
is ‘centered’ around the planned duration, H0;c:M

c
d ¼ Pp

c .
The relevant statistic for hypothesis testing on non-

parametric distribution's quantiles can be found in [27].
The sample of processing times per class, which is used to
calculate the test statistic per class is given by:

Pa
c ¼ fδaðtÞ∣tATA4νðtÞ ¼ t04ψðt0Þ ¼ cg: ð10Þ

Dynamics conformance: resource capacity: Resource
capacity of a server node is the number of resources that
provide service at time k and is defined by a deterministic
process. To assess the conformance of resource capacities,
we employ a D2D comparison of the scheduled and the
actual number of resources. The number of scheduled
resources for server node srASRP of resource type rAR at

A. Senderovich et al. / Information Systems 62 (2016) 185–206194
time k is defined as follows:

Rsr ;pðkÞ ¼ jftATP ∣τpðtÞþδpðtÞZkZτpðtÞ4ρpðtÞ ¼ rgj: ð11Þ

The number of servers for the same resource type r
observed in the event log at time k is defined as:

Rsr ;aðkÞ ¼ jftATA∣τpðtÞþδpðtÞZkZτpðtÞ4ρaðtÞ ¼ rgj: ð12Þ

Conformance of resource capacities is then assessed as the
difference between the two measures, Rsr ;pðkÞ�Rr;aðkÞ.

Dynamics conformance: service policies: To assess con-
formance of service policies, we compare the schedule
under the assumption of an Earliest-Due-Date (EDD) pol-
icy with the actual routing observed in the F/J network
constructed from the event log. The EDD policy assumed
for the schedule-based F/J network, denoted by Ps, selects
the task with the earliest scheduled timestamp from a set
of tasks ft1;…; tng waiting in the respective resource queue
at time k:

Psðft1;…; tng; kÞ ¼ arg min
t0 A ft1 ;…;tng;τpðt0 Þok

t0: ð13Þ

In the F/J network constructed from the event log, in turn,
we observe a deterministic policy, denoted by Pa, that
models past decisions. Therefore, we rely on a D2D com-
parison. We define an indicator 1PðiÞ, which is equal to one
if indeed the i-th past decision in Pa corresponds to Eq.
(13). Then, we define a similarity measure that quantifies
the level of compliance to policy Ps:

χP ¼
1
jnj

Xn
i ¼ 1

1PðiÞ: ð14Þ

5.2. Operational conformance to schedule

For the two F/J networks F P (planned) and FA (actual),
operational conformance assesses the ‘predictive power’ of
the schedule, i.e., it measures how well the schedule pre-
dicts the actual execution of the process in terms of per-
formance measures. Formally, let πtðAÞ be a (possibly time-
varying and stochastic) performance measure constructed
from the event log, and πtðPÞ be a deterministic realization
of the same performance measure derived from the
schedule. By DðπtðAÞ; πtðPÞÞ, we denote the function that
measures performance-related deviations between the
event log and the schedule.

In the remainder, we consider three categories of per-
formance measures: (1) capacity-related measures (e.g.,
resource queues), (2) synchronization delays, and (3)
schedule-related measures (e.g., internal tardiness). For
each category, a plethora of measures may be used, so that
we limit the discussion to a single representative measures
per category.

Capacity-related measures: A classical capacity-related
measure in service processes is the queue length, con-
sidered based on stationary and/or time-dependent
averages, medians, and quantiles. Queue lengths are
transformed into resource delays, e.g., via Little's result
and its extensions [29,30]. Queue lengths and delays are,
in turn, important indicators to Quality-of-Service for the
scheduled process [31].
Neither the schedule nor the event log directly record
resource queues and delays, but only the start times and
end times of tasks. However, this enables computation of
queue lengths as follows. Targeting the lengths of queues
with respect to resources (i.e., class independent queues),
the queue length at time k, per resource type rAR, the
schedule-based measure, Qr;pðkÞ, is estimated as:

Qr;pðkÞ ¼ tATP ∣ρpðtÞ ¼ r4 max
t0 AVðtÞ

τpðt0Þþδpðt0Þok4k4τpðtÞ
� �����

����;
ð15Þ

with VðtÞ ¼ ft0ATP ∣ξðt0Þ ¼ t4t0!Ptg being the set of tasks
that precede t and share the case identifier with t. That is,
customers that are in queue for resource r at time k are
those for which all previous tasks have ended, and the
scheduled start time of the next task (scheduled for r) has
already elapsed.

The estimate Qr;aðkÞ of the queue length of the model
constructed from the event log is defined analogously. It is
worth to note, though, that computation of Qr;aðkÞ will
take into consideration unscheduled server nodes.

For comparing the scheduled and actual queue lengths
as processes, we take a deterministic view, i.e., we assume
that there are no periodic effects. Then, a D2D comparison
procedure is applied and the squared difference of the two
measures, Qr;pðkÞ and Qr;aðkÞ, are summed up. This
approach is consistent with comparing two fluid models,
which are deterministic approximations of queueing sys-
tems [32].

Synchronization delays: If several tasks are to be com-
pleted synchronously, we may observe delays in their
synchronization. As an example, consider the fork–join
construct in Fig. 3b that synchronizes the vital signs per-
formed by the Clinical Assistant, and drug production
performed by the Pharmacy. A delay in the drug produc-
tion process can lead to overall delays for patients that are
scheduled for infusion.

To assess the conformance of these delays, we define
two concurrency relations JP (for the scheduled F/J net-
work), and JA (for the model constructed from the event
log), over TP and TA, respectively. A pair of tasks is in these
relations, ðt1; t2ÞA JX ;XAfA; Pg, if and only if t1; t2 overlap
in their duration. Based on these relations, we quantify the
deviation of synchronization delays for a task that has
been scheduled ðtATPÞ by DX(t):

DXðtÞ ¼max 0; max
t0 A ðTP⧹ftgÞ;t0 J X t

ðτXðt0ÞþδXðt0ÞÞ�ðτXðtÞþδXðtÞÞ
� �

:

ð16Þ
Note that any reduction in synchronization delays with
respect to schedule is considered to be positive. Hence, the
above measure considers only the deviations, where the
synchronization delay is longer than planned.

The aggregated deviation (again, a D2D comparison)
based on all tasks tATP is then obtained by summing up
the individual synchronization delays.

Schedule-related measures: Another type of deviation is
based on performance measures that are schedule-related.
One such measure is tardiness for tasks with respect to
internal arrival times, or due-dates. Deviations in terms of
internal arrival may not be captured by the aforementioned

A. Senderovich et al. / Information Systems 62 (2016) 185–206 195
capacity-related measures or synchronization delays since
they may stem from resources that are unscheduled.

In our running example (see Tables 1 and 2), the infu-
sion activity for patient 111 imposes a due-date for their
arrival to the infusion-nurse station (10:30). The actual
arrival for infusion for this patient occurred at 10:47. The
delay was caused by the Pharmacy, which is an unsched-
uled resource station.

The difference of scheduled and actual arrival times of
tasks provides a direct measure to assess the tardiness of
an individual task. Aggregating these differences for all
tasks is then used as the respective conformance measure.

5.3. The relation of conceptual and operational conformance

The continuous conformance assumption: Having dis-
cussed conformance on the conceptual and operational
level individually, we turn to the relation between the two
perspectives. In general, both perspectives can be inde-
pendent, i.e., even in the presence of a conceptual gap
between the models for a schedule and the actual process
execution, operational predications may be accurate.
Similarly, inaccurate predictions may be obtained even if
the two models do not differ in terms of their conceptual
assumptions.

In many cases, however, the perspectives are indeed
related and conceptual conformance can be seen as a
prerequisite for operational conformance. We refer to this
relation as the assumption of continuous conformance.

Applying the assumption of continuous conformance to
our setting, we establish a relation between the conceptual
gap ΔðFA;F PÞ between the F/J networks discovered from
the schedule or event log, respectively, and the difference
in operational conformance DðπtðAÞ; πtðPÞÞ. As illustrated in
Fig. 4, Δ measures the distance between the F/J networks,
D quantifies deviations between the performance mea-
sures, while the continuous conformance assumption
implies the following:

(1) If the schedule is a good conceptual representative of
the actual process execution, corresponding in its
assumptions as represented by the paradigm of F/J
networks, the schedule is also expected to be an
accurate predictor for the actual process execution.
This implication advocates scheduling according to
real-life assumptions.

(2) If there are deviations in performance measures (i.e.,
the schedule fails to predict correctly), one may diag-
nose root-causes for the deviations in inadequate
assumptions in schedule. This implication provides
us with a heuristic for root-case analysis in the case
of operational non-conformance.

An example for continuous conformance: As an example,
we assume that FA has been discovered from an event log
and turns out to be a special case of a F/J network, namely
a single-server queue. For this model, let A(k) be the
cumulative arrival process that counts the number of
external arrivals up to time t, and let S(k) be the number of
departures from service after t units of time. Then, under
some restrictions, there exists a well-known mapping
tying the processes A and S, i.e., the conceptual assump-
tions of the F/J network, to the queue length Q(k) at time t.
With 1Qðu40Þ as the indicator that the queue is not empty
at time u, this relation is known as:

Q ðkÞ ¼Q ð0ÞþAðkÞ�S
�Z t

0
1Q ðu40Þ du

�
: ð17Þ

The presence of the above mapping justifies the
assumption of continuous conformance when assessing
the conformance between the model FA and another F/J
network F P that has been discovered from a schedule for
the same process. That is, if the cumulative arrival process
AP(k) and departure process SP(k) defined by F P are close
to A(k) and S(k), respectively, we are guaranteed to predict
the queue lengths accurately.
6. Process improvement in Fork/Join networks

Conformance checking (Section 5) detects parts of the
process that fail to conform (conceptually or operationally)
to a given schedule. In this section, we focus on how to
handle lack of conformance by introducing a methodology
for process improvement, which combines data-driven
analysis via the Fork/Join model, and principles from
scheduling research [33].

Provided with the stochastic F/J network, FA, which
corresponds to the underlying process, we target local
improvement of service policy, whenever conformance is
lacking. We assume that splits and joins have a single layer
of resource nodes, a plausible assumption since multiple
stages can be aggregated into such a construct [34].

By default, scheduled processes often operate under
the Earliest-Due-Date (EDD) first service policy per node,
thus ‘optimizing’ schedule-related performance measures
(e.g., non-punctuality). Assuming that all cases are avail-
able at the beginning of the scheduling horizon, it is
indeed optimal to use the EDD policy (as shown in Section
6.3.1). However, when cases arrive into the system at dif-
ferent times (according to schedule), we show that the
EDD policy can be improved to achieve lower tardiness .
Moreover, we show that without losing punctuality, the
proposed algorithms also improve other performance
measures such as flow time. We achieve this by con-
sidering synchronization delays in concurrent processing,
and by partially re-ordering EDD-ordered cases in a First-
Come First-Served order.

As a motivating example we consider two unscheduled
resource nodes (clinical assistant and pharmacy, both
belong to SD) from the process depicted in Fig. 3b. These
unscheduled services cause deviations in punctuality of
arrivals to the infusion nurse. The pharmacy is assumed to
operate under some service policy (e.g. EDD, FCFS, random
order), and we aim at controlling the ordering of patients
with the clinical assistant.

In the remainder of the section, we present the opti-
mization setting (Section 6.1) and define the improvement
problem (Section 6.2). Then, we present in Section 6.3 two
algorithms, showing that they can improve over the EDD
policy.

Fig. 4. The assumption of continuous conformance.

A. Senderovich et al. / Information Systems 62 (2016) 185–206196
6.1. Optimization setting

For our concrete optimization task, we focus on a Fork/
Join (F/J) construct of Mþ1 parallel resource servers, with
M¼0 as a special case of a single station. We assume that
cases can typically traverse only through one of the split-
ting branches, while other branches are virtual repre-
sentatives of that case. In our hospital example, recall
Fig. 3b, where Clinical Assistant (C.A.) and Pharmacy are
performed in parallel. While the patient is physically pre-
sent in the C.A. station, the pharmacy processes the
patient's case without requiring a physical presence. We
focus on service policies of the physical branch, where
cases are present, and consider the other branches to be
uncontrollable (e.g., working according to an EDD policy).

Formally, denote resource server S0 as controlled by the
scheduler and resource servers S1;…; SM controlled exo-
genously. We aim at improving performance measures,
such as tardiness, flow time, and completion time, for the
F/J construct in mind.

6.2. Improvement problem

We now present our optimization problem. We start by
presenting input measures (processing times, due dates,
release times), and output measures that represent per-
formance (tardiness, flow time), following Pinedo [33].

6.2.1. Input measures
We introduce three input measures. The first of which

is processing time ðps;cξ Þ, the time required by a case ξ of
class c using a single resource server s (which can be part
of a F/J construct). These times are easily obtained by using
the δ functions from the two logs.

Next, we separate the scheduled and actual arrival
times of a case ξ. The former is called due date (dsξ),
representing the point in time at which a case ξ is
scheduled to start with a resource server s (possibly a fork
station, for F/J constructs). While starting after the due
date is allowed, it usually entails a penalty. The latter is
called release date (ready time) ðrsξÞ, the time of an actual
arrival of a case ξ into service. rsξ is common for all resource
servers S0; S1;…; SMf g.
It is worth noting that this notation is easily extended
to include more than a single visit of a case with a resource
server. We refrain from doing it here for simplicity sake.
Also, whenever the analysis is performed for a single
resource server, we can refrain from mentioning s, and
stick with pcξ, dξ, and rξ.

6.2.2. Output measures
We define three performance measures, namely com-

pletion time, flow time, and tardiness, all functions of the
scheduling decisions.

Completion time (Cξ) of a case ξ is the time at which
processing is finished. Let Cs;c

ξ denote completion times by
each resource server, for sA S0; S1;…; SMf g. The completion
times of a case ξ of a resource server s are calculated by:

Cs;c
ðjÞ ¼max rsðjÞ;C

s;c
ðj�1Þ

	

þps;cðjÞ ð18Þ

where ðjÞ represents the j-th processed case and Cs;c
ð0Þ ¼

def 0.
Given a case ξ, the completion time of ξ a case at a given
resource server s for a service class c is given by:

Cξ ¼ max
iA f0;…;Mg

CSi
ξ

n o
: ð19Þ

It is worth noting that the sequence and processing
times on machines S1;…; SM are a priori unknown.

Given completion time, we define next two more
measures, using release time and due date, as follows. Flow
time ðFξÞ of case ξ is the amount of time ξ spent while
waiting and performing a task:

Fξ ¼ Cξ�rξ: ð20Þ
Finally, tardiness ðTξÞ of case ξ is the amount of time by

which the completion time of ξ exceeds its due date:

Tξ ¼maxð0;Cξ�dξÞ ð21Þ

6.2.3. Problem statement
Our goal is to minimize three scheduling criteria,

namely maximal tardiness: Tmax ¼maxξAΞ Tξ

� �
, maximal

flow time: Fmax ¼maxξAΞ Fξ
� �

, and the sum of completion
times:

P
ξAΞCξ. Note that minimizing the sum of com-

pletion times is equivalent to minimizing the sum of flow
times and sum of waiting times [33].

All three objectives are simple functions of Cξ. Since the
completion times and processing times of resource servers
S1;…; SM are a priori unknown, Eq. (19) could be rewritten
as follows:

Cξ ¼ max
iA f0;…;Mg

CSi
ξ

n o
¼max CS0

ξ ; max
iA f1;…;Mg

CSi
ξ

n o� �

¼max CS0
ξ ;CS0

ξ

n o
; ð22Þ

where S0 is an alternative single machine with
CS0

ξ ¼maxiA f1;…;Mg CSi
ξ

n o
. Thus, without loss of generality,

throughout the remainder of this section we refer to a F/J
construct with only two resource servers, S and S0, with S
controlled by the scheduler and S0 controlled exogenously.

As before, we distinguish between measures of differ-
ent resource servers by adding an upper index. Therefore,

Ts
max ¼max

ξAΞ
Ts
ξ

n o
¼max

ξAΞ
max Cs;c

ξ �dsξ;0
n on o

ð23Þ

A. Senderovich et al. / Information Systems 62 (2016) 185–206 197
Fsmax ¼max
ξAΞ

Fsξ
n o

¼max
ξAΞ

Cs;c
ξ �rcξ

n o
ð24Þ

6.3. Improvement algorithms

We are now ready to introduce some properties of EDD
service policy in scheduled F/J processes (Section 6.3.1)
that naturally lead to two improvement algorithms
(Sections 6.3.2 and 6.3.3).

6.3.1. EDD properties in scheduled F/J networks
We start with optimality of Tmax.

Theorem 1. Tmax is minimized by minimizing TS
max.

Proof. In an FJ network the maximal tardiness equals:

Tmax ¼max
ξAΞ

Tξ

� �¼max CS
ξ�dξ;C

S0

ξ �dξ;0
n o

¼max max CS
ξ�dξ;0

n o
;max CS0

ξ �dξ;0
n on o

¼max TS
max; T

S0

max

n o
:

TS0

max is a constant as we have no control over S0. Thus,
minimizing TS

max minimizes Tmax.□

Jackson [35] shows the following corollary:

Corollary 1. EDD minimizes Tmax if 8ξ: rξ ¼ 0.

This result points toward the rationale of serving cases
EDD, in scheduled processes. However, the following result
states that the optimal policy is difficult to obtain, when
tasks arrive over time, and are not readily available at the
beginning of the scheduling horizon.

Theorem 2. Minimizing Tmax if (ξAΞjrξa0 is NP-hard,
whether or not the schedule of S0 is known.

Proof. Lenstra et al. [36] showed that minimizes Tmax if
(ξAΞjrξa0 is NP-hard for a single resource server. If the
schedule on S0 is known, a simple reduction where
8ξ: ps;cξ ¼ 0 proves that the problem is NP-hard.
If the schedule of S0 is unknown, Theorem 1 proves that

in order to minimize Tmax the scheduler has to minimize
TS
max. According to [36], minimizing TS

max is NP-hard.□
Theorem 3. Sequencing the cases in ascending order of their
release times (FCFS order) minimizes Fmax.

Proof. Using the proof of Theorem 1 with rξ replacing dξ,
proves that Fmax is minimized by minimizing FSmax.
Sequencing the tasks in an FCFS order minimizes Fmax with
a single server (see [33]).□

Theorem 4. Minimizing
P

ξAΞCξ is NP-hard even if the
schedule of server S0 is known.

Proof. In a F/J network

Fξ ¼max CS
ξ ;C

S0

ξ

n o
¼max CS

ξ�CS0

ξ ;0
n o

þCS0

ξ

Thus,
X
ξAΞ

Fξ ¼
X
ξAΞ

max CS
ξ�CS0

ξ ;0
n o

þ
X
ξAΞ

CS0

ξ

P
ξAΞC

S0

ξ is a constant and minimizing
P
ξAΞ max CS

ξ�CS0

ξ ;0
n o

is equivalent to minimizingP
ξAΞTξ with a single server where 8ξAΞ:CS0

ξ ¼ dξ. Mini-
mizing

P
ξAΞTξ with a single server isNP-hard (see [37]).□

6.3.2. Combining EDD and FCFS
We next propose an algorithm that combines EDD and

FCFS policies to improve over plain EDD policy. To this end,
we define a framework for comparison of two sequences
with different measures. When a distinction between
measures of two competing algorithms is required we
denote the measure f produced by a certain algorithm X by
f Xð Þ (e.g., f may be maximal tardiness). We say that algo-
rithm X dominates algorithm Y with respect to measure f if
for any input f Xð Þr f Yð Þ. We say that X strongly dominates
algorithm Y with respect to measure f if in addition
f Xð Þo f Yð Þ for at least one instance.

The proposed scheduling algorithm strongly dominates
the EDD policy with respect to both Tmax and Fmax. The
algorithm, denoted A1, starts with and iteratively changes
an EDD-based sequence. We denote by A1

0
a temporary

sequence held by A1 during its run. A1
0
changes with the

advancement of the algorithm. Finally, A1 is used only
when referring to the final sequence of A1.

Algorithm 1. From EDD to EDDþFCFS (A1).

1:
 Order cases in an EDD order and calculate TS

max EDDð Þ

2:
 Order cases in an FCFS order

3:
 Calculate TS

ξ A10� �
for all casesn o
4:
 Γ ¼ ξ: TS
ξ½ � A1

0� �
4TS

max EDDð Þ� �

5:
 i¼minξAΓ j

6:
 while Γa∅ do� �

7:
 Ψ ¼ j: jo i; dðjÞZdðiÞ� �

8:
 k¼ arg maxjAΨ dðjÞ

9:
 Transfer case ðkÞ immediately following case (i)

10:
 Calculate TS

ξ A10� �
for all cases.n o
11:
 Γ ¼ ξ: TS
ξ½ � A1

0� �
4TS

max EDDð Þ� �

12:
 i¼minξAΓ j

13:
 end while
Line 1 sequences the cases in an EDD order of release
time and records TS

max EDDð Þ. Line 2 re-sequences tasks in
an FCFS order, which is the initial sequence denoted by A1

0
.

In lines 7–12, the algorithm transfers cases iteratively as
long as there are cases for which the following condition
holds:

TA
max A10� �

rTA
max EDDð Þ: ð25Þ

Γis the set of positions of all cases whose tardiness exceeds
TS
max EDDð Þ. Ψ is the set of positions of all cases that precede

and have a greater due date than the earliest case in Γ. In
each iteration of the algorithm we move the case with the
maximal due date within the set Ψ right after the first case
in Γ, reevaluating Γ after each transfer.

Example 1. Consider a simple set of five cases: a;b; c; d
and e. Table 3 records for each case, in an EDD order, its
processing time, release time, due date, completion time,
tardiness, and flow time. Table 4 presents the FCFS order in
a similar manner Γ now contains one case, a, which
exceeds TS

maxðEDDÞ. Both b and c precede a in the FCFS

Table 3
EDD order.

ξ a b c d e

pSξ 3 5 4 2 1

rξ 2 0 1 6 7
dξ 5 9 10 13 14

CS
ξ

5 10 14 16 17

TS
ξ

0 1 4 3 3

FSξ 3 10 13 10 10

Table 4
FCFS order.

ξ b c a d e

pSξ 5 4 3 2 1

rξ 0 1 2 6 7
dξ 9 10 5 13 14

CS
ξ

5 9 12 14 15

TS
ξ

0 0 7 1 1

FSξ 5 8 10 8 8

Table 5
A1 final sequence.

ξ b a c d e

pSξ 5 3 4 2 1

rξ 0 2 1 6 7
dξ 9 5 10 13 14

CS
ξ

5 8 12 14 15

TS
ξ

0 3 2 1 1

FSξ 5 6 11 8 8

A. Senderovich et al. / Information Systems 62 (2016) 185–206198
order with smaller due dates (and are therefore in Ψ) and
k¼2, the second case according to FCFS, which is case c.
Therefore, case c is sequenced immediately after case a, as
can be seen in Table 5. At this point, no further improve-
ment can be made, Γ is empty and the algorithm halts.
We can see that TA

max EDDð Þ ¼ 44TA
max A1ð Þ ¼ 3 and

FAmax EDDð Þ ¼ 134FAmax A1ð Þ ¼ 11.

The run-time complexity of the algorithm is given next.

Theorem 5. A1 runs in O n3
� �

.

Proof. Case ordering (lines 1 and 2) requires O n log nð Þ
time. In the worst case, each case may be transferred at
most Γj j ¼O nð Þ times. Hence the maximal number of
repetitions of this while loop is O n2

� �
. The recalculation of

TS
ξ A10� �

(line 10) and the reevaluation of Γ (line 11) require
O nð Þ. Hence the overall complexity is O n3

� �
.□

In terms of correctness, we first analyze the relationships
between the sets Γ and Ψ in Algorithm A1. We show that
Γa∅-Ψa∅, which means that as long as Γ is not empty,
the iteration in lines 6–11 can be performed. Lemma 1 below
uses the following notations. ΩðiÞ;ðjÞ Xð Þ denotes the set of cases
between the i-th and j-th cases in a given schedule X. bΩðiÞ;ðjÞ Xð Þ
is the start time of the first case in ΩðiÞ;ðjÞ Xð Þ.

Lemma 1. CS
ðjÞ A10� �

rCS
ðjÞ EDDð Þ for each case whose pre-

decessors all have smaller due dates.

Proof. We prove this lemma by contradiction. During the
proof we compare two sequences; however, we use the ð�Þ
operator to identify cases according to their position in A1

0
.

Assume that CS
ðjÞ A10� �

4CS
ðjÞ EDDð Þ for a certain case ðjÞ and

that all the predecessors of ðjÞ have due dates smaller than or
equal to its own. Hence, the set of cases preceding case ðjÞ is a
subset of the cases preceding it in the EDD order. Since
CS
ðjÞ A10� �

4CS
ðjÞ EDDð Þ there has to be idleness before case ðjÞ, as

the sum of processing times of the subset cannot exceed the
sum of processing times of the superset. Let us consider the
largest subset of consecutive case till case ðjÞ (inclusive)
with no idle time between them and denote it with ΩðiÞ;ðjÞ Xð Þ.
That is, ðiÞ is the immediate case after the latest idle time
that precedes case ðjÞ. The existence of idle time reflects
that case ðiÞ started exactly at rðiÞ, which means that it could
not have started earlier than it did in the EDD order, as rðiÞ
is a lower bound on case ðiÞ's starting time. Since
CS
ðjÞ A10� �

4CS
ðjÞ EDDð Þ and bΩðiÞ;ðjÞ A10� �¼ rðiÞrbΩðiÞ;ðjÞ EDDð Þ,

necessarily
P

ξAΩðiÞ;ðjÞ A10ð Þpξ4
P

ξAΩðiÞ;
ðjÞ EDDð Þpξ. Therefore,

ΩðiÞ;ðjÞ A10� �
include at least one case that is not in ΩðiÞ;ðjÞ EDDð Þ,

i.e., ΩðiÞ;ðjÞ A10� �
⧹ΩðiÞ;ðjÞ EDDð Þa∅. Therefore, there exists a case

ξ in ΩðiÞ;ðjÞ A10� �
, whose order is ioko j, such that dðkÞodðiÞ.

Let ξmin ¼ arg minξAΩðiÞ;ðjÞ A10ð Þ dξ
� �

be the case with the
minimal due date within subset ΩðiÞ;ðjÞ A10� �

. Thus, in the
EDD order case ξmin is scheduled before case ðiÞ, with a due
date smaller than dðiÞ. Let ðkÞ denote the position of case ξmin

according to A1
0
. This means that ΩðiÞ;ðjÞ A10� ��ΩðkÞ;ðjÞ EDDð Þ

andX
ξAΩðiÞ;ðjÞ A10ð Þ

pξo
X

ξAΩðkÞ;ðjÞ EDDð Þ

pξ ð26Þ

The fact that ξmin is scheduled later than ðiÞ in A1
0
while

dξmin odðiÞ implies that rξmin orðiÞ; as A1 starts with an FCFS
order and never transfers cases with higher due dates
ahead of cases with smaller due dates. This, coupled with
Eq. (26), leads to:

CS
ðjÞ EDDð ÞZrξmin þ

X
ξAΩðkÞ;ðjÞ EDDð Þ

pξ4rðiÞ þ
X

ξAΩðiÞ;ðjÞ A10ð Þ
pξ ¼ CS

ðjÞ A10� �

which contradicts the assumption that CA
j½ � A1

0� �
4CA

j½ � EDDð Þ.□
Example 1 nicely illustrates the property in Lemma 1.

CS
ξ A10� �

oCS
ξ EDDð Þ for all cases ξ but a, the only case whose

predecessors’ due dates are later than its own. This is true
not only for the final schedule, but also throughout the
algorithm execution. The completion times of the cases
that bypassed case c with respect to the EDD order were
decreased due to their being pushed ahead of c. The
completion times of the cases that are scheduled after c,
both in EDD and in A1

0
, were decreased due to the

reduction in idle times that usually comes as a property of
the FCFS initial order.

To complete our argument, recall that Γ consists of
any case ξ that satisfy TS

ξ A10� �
4TS

max EDDð Þ. Writing TA
ξ

explicitly, using Eq. (21), we get:

max CS
ξ A10� ��dξ;0

n o
4max CS

max EDDð Þ�dξ;0
n o

A. Senderovich et al. / Information Systems 62 (2016) 185–206 199
Since dξ is a constant, unaffected by the schedule, this is
possible only if CS

ξ A10� �
4CS

ξ EDDð Þ. Therefore, according to
Lemma 1, any case in Γ has at least one predecessor with a
higher due date than its own. Thus, we have
Γa∅-Ψa∅.

Theorem 6. A1 strongly dominates EDD with respect to both
Tmax and Fmax.

Proof. We need to show that for any given input
TS
max EDDð ÞZTS

max A1ð Þ and FSmax EDDð ÞZFSmax A1ð Þ and that
there exists at least one instance with TS

max EDDð Þ4
TS
max A1ð Þ and at least one with FSmax EDDð Þ4FSmax A1ð Þ.
A1 terminates only when TA

max EDDð ÞZTA
max A1ð Þ which

establishes domination over the Tmax criterion.
We can distinguish between two types of cases in A1, those

that are transferred during some stage of the algorithm,
denoted J, and those that were not, denoted J0. Since all cases
in J were forwarded later in the sequence, all cases in J0 are
completed no later than their completion time in the initial
FCFS sequence. According to Theorem 3, FCFS sequencing
guarantees minimal FSmax. Therefore, if F

S
max belongs to a case

in J0 then obviously FSmax EDDð ÞZFSmax A1ð Þ. A case in J is cho-
sen such that it has the maximal due date with respect to all
the cases that precede it after the transfer. Thus, according to
Lemma 1 8ξA J:

CS
ξ EDDð ÞZCS

ξ A1ð Þ
CS
ξ EDDð Þ�rξZCS

ξ A1ð Þ�rξ

FSξ EDDð ÞZFSξ A1ð Þ

which proves that FSmax EDDð ÞZFSmax A1ð Þ.
Example 1 shows that there is an instance where

TS
max EDDð Þ4TS

max A1ð Þ and FSmax EDDð Þ4FSmax A1ð Þ. Thus, A1
strongly dominates EDD with respect to both Tmax and Fmax.□

6.3.3. Scheduling with completed cases by S0

The second algorithm we present, A2, starts with any
initial sequence (for example EDD, FCFS or A1) and dyna-
mically changes the sequence according to the set of cases
completed by server S0 in the synchronizing queue. The
algorithm changes the sequence as long as domination
over the original sequence is maintained with respect to
all three criteria: Tmax, Fmax, and

P
ξAΞCξ, simultaneously.

At the completion of a service by S, cases that have
already completed their service by S0 are reevaluated by
the algorithm as the optional ‘next in line’ as long as their
being pushed forward to the head of the line does not
increase any of the three criteria at hand.

If a case is pushed forward the remainder of the
sequence remains unchanged at least until the next deci-
sion point. Consider a subset of consecutive jobs in the
current sequence, ΩðiÞðjÞ, where ðiÞ is the next case in line
and ðjÞ is considered as a candidate to be pushed forward.
Let us denote the original schedule by INIT, and a run-time
sequence (whenwe make the reordering decision) by TMP.
A change in sequence would occur if the following con-
straints are upheld:

8ξAΩðiÞðj�1Þ: T
S
ξ TMPð ÞþpðjÞrTS

max INITð Þ; ð27Þ
8ξAΩðiÞðj�1Þ: F
S
ξ TMPð ÞþpðjÞrFSmax INITð Þ; ð28Þ

X
ξAΩðiÞðj� 1Þ

pξZpðjÞ j� ið Þ: ð29Þ

The pseudocode of Algorithm A2 uses the following
notations. Υ s tð Þ is the set of cases that completed their service
s (either S or S0) at time t and are now in the synchronizing
queue. A case ξ is added to Υ S0 tð Þ if CS0

ξ rt and is subtracted
from Υ S0 tð Þ if CS

ξrt and vice versa. Note that 8t: ΥS tð Þ \
Υ S0 tð Þ ¼∅ since if both arrive at the synchronization queue
they are immediately removed from it. Let Φ t1; t2ð Þ be an
exogenous function that returns the set of cases that com-
pleted their process on machine S0 during t1; t2ð �.
σ ¼ ðiþ1Þ;…; ðnÞ� �

denotes the planned sequence for the
remaining n� ið Þ cases assuming i cases have already been
served by S. σ is initially set according to INIT but may change
during the run of A2. We denote by σ ið Þ the i-th case in the
ordered sequence σ at the time function σ ið Þ is called.
Accordingly, σ 1ð Þ denotes the ‘next in line’ scheduled job.

Algorithm 2. Scheduling with Completed Cases by S0 (A2).

1:
 t ¼ 0; Υ S tð Þ ¼ Υ S0 tð Þ ¼∅; {Initialization}

2:
 σ ¼Order cases in an INIT order

3:
 Calculate TS

max INITð Þ

4:
 Calculate FSmax INITð Þ

5:
 while σa∅ do

6:
 j¼2; s¼ 1;Δmin ¼ 0.

7:
 if σ jð ÞAΥS0 tð Þ \ σ⧹σ 1ð Þ and pσ jð Þrpσ sð Þ then

8:
 k¼1

9:
 else

10:
 go to line 28

11:
 end if

12:
 if kr j, then

13:
 CS

σ kð Þ ¼max t; rσ jð Þ
� �þpσ jð Þ þ

Pk
i ¼ 1 pσ ið Þ .
14:
 else

15:
 go to line 23

16:
 end if

17:
 if CS

σ kð Þ �dσ kð ÞrTS
max INITð Þ and CS

σ kð Þ �rσ kð ÞrFSmax INITð Þ then

18:
 k¼ kþ1

19:
 go to line 12

20:
 else

21:
 go to line 28

22:
 end if

23:
 Δ jð Þ ¼ pσ jð Þ j�1ð Þ� Pj�1

i ¼ 1 pσ ið Þ

24:
 if Δ jð ÞrΔmin then

25:
 Δmin ¼ Δ jð Þ

26:
 s¼ j

27:
 end if

28:
 j¼ jþ1

29:
 if jr σj j then

30:
 go to line 7

31:
 end if

32:
 Serve case σ sð Þ with S� �

33:
 ~t ¼max t; rσ sð Þ þpσ sð Þ n o

34:
 ΥS ~t

� �¼ ΥS tð Þ [σ sð Þ� �
⧹ ΥS0 tð Þ [Φ t; ~t

� �
n o
35:
 ΥS0 ~t
� �¼ Υ S0 tð Þ [Φ t; ~t

� �
⧹ Υ S tð Þ [σ sð Þ� �
36:
 σ ¼ σ⧹σ sð Þ

37:
 t ¼ ~t

38:
 end while
We shall illustrate Algorithm A2 with the following
simple example.

Table 6
Completion times of S0 .

ξ b a c d e

CS0

ξ
6 4 13 12 7

Table 7
Outcome of Algorithm A2.

ξ b a c d e

pSξ 5 3 4 1 2

rξ 0 2 1 7 6
dξ 9 5 10 14 13

CS
ξ

5 8 12 13 15

CS0

ξ
6 4 13 7 12

Cξ 6 8 13 13 15
Tξ 0 3 3 0 2
Fξ 6 6 12 6 9

A. Senderovich et al. / Information Systems 62 (2016) 185–206200
Example 2. To illustrate the use of A2 we pick up where
we left off with Example 1. That is, we use A2 on an initial
sequence given by A1. In our example the completion
times of S0 (revealed online and not known a priori) are
shown in Table 6.
At t¼8, the first two cases b and a were served. At that

time (computed in lines 33–37)

Υ S 8ð Þ ¼∅; ΥS0 8ð Þ ¼ ef g; σ ¼ c; d; e
� �

:

That is, case e is waiting in the synchronization queue for
its completion on machine S. Currently, cases c and d are
scheduled ahead of case e for S. We consider pushing e
ahead of c and d. However, the second condition in line 17
is unsatisfied and we continue with the initial schedule
once again ending up at t¼12 with:

Υ S 12ð Þ ¼ cf g; Υ S0 12ð Þ ¼ d; e
� �

; σ ¼ d; e
� �

:

We now illustrate the execution of the while loop (lines
5–38) for t¼12. In line 6 we set j¼2; s¼ 1;Δmin ¼ 0.
σð2Þ ¼ e, it satisfies both conditions of line 7:
σ 2ð Þ ¼ eAΥ S0 12ð Þ \ σ⧹σ 1ð Þ ¼ ef g and 1¼ peopd ¼ 2 There-
fore, we set k¼1 (line 8) and move to line 12, verify that
kr j and set CS

d ¼max 12;6f gþ1þ2¼ 15 (line 13). Both
conditions of line 17: CS

d�dd ¼ 2rTS
max INITð Þ ¼ 3 and

CS
d�rd ¼ 9rFSmax INITð Þ ¼ 11 hold. Being the last element of

σ we can now move to line 23. We set
Δ eð Þ ¼ pe 5�4ð Þ� P1

i ¼ 1 pσ ið Þ ¼ �1, which is better than the
previous value of Δmin and therefore, in lines 25–26 we set
Δmin ¼ Δ jð Þ ¼ �1 and s¼2. As a result, S provides service to
e instead of d. By swapping cases d and e, A2 decreases the
final sum of completion times of INIT by at least
Δmin ¼ �1. Table 7 sums up the final sequence of A2 as
well as all the relevant measures associated with it.

Theorem 7. A2 dominates INIT with respect to Tmax, Fmax

and
P

ξAΞCξ.

Proof. Conditions (27) and (28) (tested in line 17 of the
algorithm) quite straightforwardly guarantee that the
delay caused to any of the tasks in ΩðiÞðj�1Þ does not allow
their tardiness and flow time to exceed TS

max INITð Þ and
FSmax INITð Þ, respectively.
A case ðjÞ will be pushed forward, ahead of cases

ðiÞ;…; ðj�1Þ only (but not necessarily) if Condition (29) is
satisfied. Since ðjÞ is assumed to have also completed its
service with S0, the sum of processing times of the cases it
bypassed,

P
ξAΩðiÞðj� 1Þ

pξ, represents a lower bound to the
actual decrease in its completion time. On the other hand,
pðjÞ j� ið Þr0 represents an upper bound on the increase in
the completion times of all the cases that were originally
ahead of ðjÞ in the queue for S alone:

Pj�1
s ¼ i C

S
ðsÞ (both

bounds are tight if there is no idle time between servicing
ðiÞ and ðjÞ). This increase is an upper bound on the overall
completion time

Pj�1
s ¼ i CðsÞ. Hence, a change in sequence

occurs only if a decrease in
P

ξAΞCξ is guaranteed. Thus,
A2 dominates INIT with respect to

P
ξAΞCξ as well.□

Theorem 8. Assuming that the sequence INIT is given and
Φ t1; t2ð Þ runs in O n2

� �
, A2 runs in O n3

� �
.

Proof. Lines 2–4 require O nð Þ time. The while loop repeats
O nð Þ times. Within this loop, the indices j (outer) and k
(inner) each takes O nð Þ times. Note that the summation in
line 13 can be done incrementally and does not add to the
complexity. Line 23 runs in O nð Þ time. Line 35 depends on
the complexity of Φ t1; t2ð Þ, assumed to be O n2

� �
. Thus, A2

runs in O n3
� �

.□

It is worth noting that A2 may be easily adopted to
dominate only a subset of the measures Tmax; Fmaxð Þ by
disregarding the respective condition in lines 17–22. This
relaxation of the constraints would probably allow better
performance on the

P
ξAΞCξ measure. Both A1 and A2 are

heuristic solutions, guarantee not to do worse than the
ordering given as input, yet with no guarantees on how far
they are from the optimal solution.

As a final note, we highlight the fact that the analysis is
localized to a specific part of the F/J network, and relating
to a single server only. While the localization of the ana-
lysis fits well the optimizations of conformance failures, it
may also miss out on possible inter-relationships among
different parts of the network. We leave the analysis of
multi-servers and global network analysis to future
research.
7. Evaluation

This section presents an empirical evaluation of the
proposed methods of algorithms using data of the Dana-
Farber Cancer Institute, see Section 2. The experiments
consist of two parts, namely conformance checking and
process improvement. Section 7.1 presents an analysis of
the conformance of the service process for on-treatment
patients (OTP) to its schedule. This analysis highlights
operational deviations and links them to root causes in
terms of conceptual conformance issues. In particular, we
identify a synchronization delay in the process that is not
expected according to the schedule and which can be

2 http://ie.technion.ac.il/labs/serveng/
3 https://en.wikipedia.org/wiki/Dagum_distribution

A. Senderovich et al. / Information Systems 62 (2016) 185–206 201
traced back to the service policy implemented by the
pharmacy server node.

Section 7.2 illustrates the benefits of the process
improvement algorithms. By aiming at an optimization of
the service policy of the clinical assistance station we
demonstrate that the median tardiness and median pro-
cessing delay can be improved by more than 20%.

By evaluating service policies in both parts, we
demonstrate how conformance checking and process
improvement can be linked through data-driven queueing
networks. We conclude the section with a discussion of
our approach with its limitations, and provide a view on
overcoming these limitations with the results of the
experiments (Section 7.3).

7.1. Conformance checking

Below, we first describe the dataset and experimental
setup for the conformance checking evaluation. Then, we
turn to the results in terms of operational and conceptual
conformance.

Datasets and experimental setup: Our experiments
combine three data sources from the Dana-Farber Cancer
Institute: an appointment schedule, an RTLS log recording
movements of badges (patients and service providers), and
a pharmacy log that records checkpoints in the medication-
production process. As such, the event log as introduced in
Section 3 is actually split up into the RTLS log and the
pharmacy log. The resolution of the RTLS is around 3 s,
depending on the amount of movement of a badge. The
pharmacy log is also rather accurate, since process check-
points are prerequisites to move to the next stage of pro-
duction. From the pharmacy log, we only extracted the
start and end events for the production process, since the
pharmacy is considered as a separate server. The experi-
ments involve three weekdays, April 14–16, 2014, which
are days of ‘regular’ operation (approximately 600 OTP
patients) as was verified with local contacts.

Using this dataset, we first discovered the F/J networks
from the event logs and the schedule, as detailed in
Section 4.2. Fig. 3a illustrates the structure and determi-
nistic routing obtained from the schedule, which is plain
sequence of resource servers. Fig. 3b, in turn, presents the
structure and routing as found in the event log including
additional resource nodes (Clinical Assistant and Phar-
macy) as well as a probabilistic routing (e.g., activity
conducted by the infusion nurse is skipped with
probability 0.1).

We then assessed the operational conformance to
identify deviations between the schedule-based model
and the model constructed from the event log. Here, we
focus on findings regarding the processing delay, specifi-
cally the synchronization delay of a patient that is sched-
uled to enter infusion. Such a patient has to wait for two
concurrent activities, namely pre-infusion vital signs
(vitals) and medication production. According to the
schedule, there is no delay between the end of vitals and
the beginning of infusion.

Since this analysis reveals deviations in the scheduled
and actual delay, we then turn to conceptual conformance
checking to identify potential root causes for this
deviation. Specifically, we explore the conformance of the
server dynamics for the resource node at which the
deviation has been observed.

We implemented our experiments in two software
frameworks, SEEStat and SEEGraph. Both tools have been
developed in the Service Enterprise Engineering lab,2 and
enable, respectively, statistical and graphical analysis of
large operational datasets. In particular, they enable the
creation of new procedures for server dynamics (SEEStat),
and for the discovery of structure and routing in queueing
networks (SEEGraph).

Operational conformance: processing delays: Fig. 5 pre-
sents the actual distribution of time between vitals and the
beginning of infusion, based on the RTLS data. We observe
that, indeed, a large portion of patients go into infusion
within a minute from vitals. However, the distribution
presents a long tail of patients, who wait for the next step
with an average delay of 23 min. The hypothesis that the
synchronization delay conforms to a median value of 0 is
rejected for any significance level. In many occasions, one
can observe in the RTLS data that patients wait, while
infusion nurses are available for service. For most patients,
this is due to synchronization delays since they wait for
their medications.

This points toward synchronization delays between the
vitals activity and the pharmacy. According to schedule,
the central pharmacy is planned to deliver the medication
in synchronization with vitals (within 30 min). The
operational insight of long synchronization delays, how-
ever, hints at a conceptual issue regarding the just-in-time
arrival of the medication.

Conceptual conformance: service times and policy: Tak-
ing the structure and routing of the F/J network illustrated
in Fig. 3b, we assume that the fork is zero-delay and that
the pharmacy is notified once the patient is ready for
infusion. Therefore, we assume that the arrival times do
not deviate and diagnose the two remaining dynamics:
production time and service policy.

Fig. 6 shows the distribution of production times (for
April 2014), and the fitted Dagum distribution.3 Here, we
observe that the stochastic model shares a first moment
with the planned duration: both are 30 min on average.
This is an S2D comparison, and the result of hypothesis
testing for the median of processing time being 30 min is
not rejected with a significance level of 5%. Therefore, the
duration of the service does not explain the operational
deviation identified above.

Turning to the service policy, we realized a D2D com-
parison and adopted the similarity measure that we
defined in Section 5.1 for comparing policies. We focus on
the time until the first drug has been prepared. Although
patients often require more than one drug, the first med-
ication is the one that is needed for the process to pro-
gress. Using the method proposed in Section 5.1, we esti-
mated the expected indicators for three policies: (1)
Earliest-Due-Date (EDD) first, which corresponds to the
policy defined in the schedule, (2) First-Come First-Served

http://ie.technion.ac.il/labs/serveng/
https://en.wikipedia.org/wiki/Dagum_distribution

Fig. 5. Waiting time for Infusion (after vitals); Sample size¼996, Mean¼25 min, Stdev¼29 min.

0.000

0.250

0.500

0.750

1.000

1.250

1.500

1.750

2.000

2.250

0:00 0:10 0:20 0:30 0:40 0:50 1:00 1:10

R
el

at
iv

e
fr

eq
ue

nc
ie

s
%

Time(hh:mm) (30 sec. resolution)

Empirical

Dagum (shape1=2.50 scale=1175.34 shape2=1.45)

Fig. 6. Medication production time; Sample size¼7187, Mean¼30 min, Stdev¼24 min.

A. Senderovich et al. / Information Systems 62 (2016) 185–206202
(FCFS), which produces according to the order of pre-
scription arrivals and (3) Shortest-Processing-Time (SPT)
first, which implies that priority will be given to patients
with shorter infusion durations.

Fig. 7 presents the estimated proportion of compliance
to policy, as a function of the number of medication orders
in queue. To see an effect of selection based on a policy, the
comparison starts with a queue of size two. We observe
that as the queue grows, the decision on the next task to
enter service becomes more random. However, for short
queues, the selection policy tends towards FCFS, instead of
EDD as assumed in the schedule. The deviation between
the two policies, planned according to schedule and
actually observed in the event log, can be seen as a cause
of the synchronization delays identified above.

7.2. Process improvement

Both Algorithms 1 and 2 guarantee not to worsen per-
formance measures, yet it is unclear whether a significant
improvement can be gained. Moreover, the guarantee is
only for certain measures such as maximal tardiness and
flow time, while no guarantees are provided for other
important measures, such as median tardiness and flow
time. We set to test the projected improvement for both
types of measures (guaranteed and non-guaranteed) by
considering DFCI data again.

Specifically, we return to the pharmacy–patient flow
interaction, which involves two resource servers, see
Fig. 2b. Given that pharmacy is sequencing its jobs in an
uncontrolled order (as we demonstrated above), we aim at
improving the service policy of the clinical assistant sta-
tion. In the remainder, we provide the dataset and setup
for the experiments. Then, we go over the main results,
and demonstrate the improvement.

Datasets and experimental setup: The data is taken from
147 working days of the Dana-Farber Cancer Institute in
2014. We consider only January–August, for which we
have both patient and pharmacy data. As input to the case
sequencing problem, we consider the actual patients that
arrived along with their actual processing times, due dates
and release times.

We sequence the processing order in the clinical
assistant station according to four possible service policies:
(1) the actual ordering of patients as it was observed in the
data; (2) EDD ordering (according to the scheduled start of
infusion step); (3) the ordering defined by Algorithm 1
with EDD as the initial sequence; and (4) the ordering
defined by Algorithm 2 with the output of Algorithm 1 as
the initial sequence. The first sequence serves as a baseline
for the last three sequences.

Once patients are sequenced, a deterministic trace-
based simulation runs to calculate completion times,
along with all relevant performance measures, for all
patients.

For Algorithm 1 the non-decrease in performance with
respect to EDD is guaranteed for maximal tardiness and
flow time, while for Algorithm 2 the guarantee is for any
initial sequencing with respect to the sum of completion
times (correlated with flow time), maximal tardiness, and
maximal flow time. Therefore, we first compare the out-
comes of the four sequences with respect to the three
guaranteed performance measures, namely sum of com-
pletion times, maximal tardiness, and maximal flow. In
addition, we add two measures that better represent the
experience of an ‘average’ patient, median tardiness and

Fig. 7. Policy comparison for the pharmacy resource.

Fig. 8. Process improvement results: all patients. Fig. 9. Process improvement results: hematology patients.

A. Senderovich et al. / Information Systems 62 (2016) 185–206 203
median flow time, for which the algorithms give no
guarantees.

We start by comparing performance measures for all
arriving patients. However, the theoretical guarantees that
we show in Section 6 are for single-server stations.
Therefore, to show a more realistic setting, we move to
comparing performance at the resolution of specific clas-
ses of patients. To this end, we cluster the patients
according to their individual diagnoses. Since, in practice,
clinical assistants are dedicated per diagnosis, we get a
scenario that is closer to the single-server assumption of
our analysis.

Results: Fig. 8 presents improvement over the baseline,
in percentage, with negative values corresponding to
improvement in performance. For example, the value of
�20.66% for Fmedian corresponds to improvement of
20.66% with respect to the simulated median flow when
actual sequencing is applied.

Not surprisingly, we observe that the three guaranteed
measures, for both Algorithms 1 and 2, improve over EDD
(schedule-driven policy). Furthermore, we observe that for
median flow time and median tardiness, there is a large
improvement for Algorithm 2. Overall, Algorithm 2
improves on Algorithm 1 in all performance measures.
This is due to the consideration of the synchronization
queue, which does not exist in Algorithm 1.

Moving from all patients to specific diagnoses, Fig. 9
shows a similar analysis for hematology malignancies
patients. These patients are treated in a separate disease
center, and have dedicated clinical assistants. We observe
that the behavior of the results is similar to the overall
population, yet with bigger improvement. We believe that
this improvement stems from higher conceptual con-
formance of the single-server assumption for these
patients.

Finally, Fig. 10 presents the improvement in sum of
completion times as a day-of-week function. Wednesdays
are known to be the most loaded days in Dana-Farber
Cancer Institute (Fig. 11). We observe that the highest
improvement rate is obtained for the more loaded days.
This result puts forward the importance of correct order-
ing, especially on heavily loaded days.

7.3. Discussion and limitations

We now discuss the main results of our evaluation with
respect to both conformance checking and process
improvement.

Conformance to schedule: Our approach to assessing
conformance to schedule was demonstrated to be useful in
detecting bottlenecks and finding their corresponding
root-causes. Specifically, we instantiated our methods on
real-life data, analyzed the pharmacy station, and found its
service policy to be the cause for the bottleneck in patient
flow. However, in order to create a full multi-dimensional
comparison between a schedule and a process execution

Fig. 10. Process improvement results for sum of completions: weekdays.

Fig. 11. Number of patients per day: weekdays average.

A. Senderovich et al. / Information Systems 62 (2016) 185–206204
we need to combine the deviations. This requirement gives
rise to two limitations of the approach: (1) we perform
both D2D and S2D comparisons, thus giving hetero-
geneous answers to conformance questions (p-values vs.
similarity measures), and (2) when testing multiple
hypotheses one needs to be careful with assessing the
correctness of the overall rejection rate [38].

To handle the first limitation, one may consider the
resulting p-value (in S2D comparisons) to be a similarity
measure, and come up with a unified single measure to
quantify the distance between planned and actual. The
second limitation can be solved by employing techniques
from the statistical field of multiple comparisons [38],
which provides appropriate tools to simultaneously testing
multiple hypotheses.

Process improvement: Our experiments demonstrate
about a 20% increase in process performance, using per-
formance measures such Tmedian and Fmedian. Also, in loaded
days with more cases in the system the algorithms per-
form even better. These are definitely encouraging results.
However, the proposed techniques suffer from several
conceptual limitations. First, the techniques are applied
independently for each Fork/Join construct. This clearly
implies an independence assumption between stations in
the network, which is not always the case. Second, our
approach assumes that we can only control a single branch
of the Fork/Join construct, therefore simplifying the opti-
mization problem. Third, it is assumed that stations are of
single-server type, which is an approximation to a many-
server reality that one encounters in typical service pro-
cesses. On the one hand, assuming a fast single-server as
an approximation to many-servers was found accurate for
several special cases [39]. On the other hand, well-
established results show that different analysis techni-
ques are required to capture the operational behavior of
many-server stations [40].

To handle these conceptual limitations, one needs
preliminary analysis of the data, to test whether the
assumptions of independence, controllability, and server
capacity hold. This brings back the need to assess con-
ceptual conformance. An encouraging indicator to the
need of such preliminary analysis can be found in Fig. 9,
where conceptual conformance to these assumptions
yields double the improvement in performance.
8. Related work

Recently, there has been an increased interest in
scheduled service processes, especially in the health sec-
tor. Outpatient clinics that operate as a scheduled multi-
stage process are of particular interest, due to their per-
vasiveness and growth over the past years [3]. Perfor-
mance questions for scheduled multi-stage processes
relate to bottleneck identification, dynamic resource allo-
cation, and optimal control (decision making). Our solu-
tion to these questions is based on three central elements,
namely process modeling, assessing conformance to
schedule, and process improvement via principles of
scheduling. In the remainder of the section, we discuss
related work in these three areas, explaining how our
approach advances the state-of-art.

Process modeling: Traditionally, operational process
analysis is based on modeling methods from Operations
Research disciplines, such as Queueing Theory [41]. These
methods use hand-made (highly abstract) models of rea-
lity, and apply relevant (model-specific) analysis. The dis-
covered process perspective is typically poor in detail, and
is seldom automatically extracted from data. Moreover,
validation of the results is typically performed by simu-
lating reality (again a hand-made model), and comparing
the outputs of the modeled reality and the simulated
reality, neglecting the benefits of data-driven validation,
cf. [42].

The rapidly evolving field of process mining, in turn, is
driven by data [17]. Models are discovered from and vali-
dated against event data from recorded process execu-
tions, see [43]. Mined models are used as the basis for
prediction [44,45], simulation [46], and resource-behavior
analysis [47,48]. However, much work in this field focuses
on the control-flow perspective, i.e. the order of activities
and their corresponding resources, times and decisions [17,
Chapter 8], so that the created models cannot benefit from
the analysis techniques developed in Operations Research.

In earlier work, therefore, we argued for an explicit
representation of the queueing perspective and demon-
strated its value for several real-world processes [20,22].
However, the existing techniques all considered the sim-
plistic setting of a single-station system, whereas, this

A. Senderovich et al. / Information Systems 62 (2016) 185–206 205
paper addressed the more complex scenario of service
processes that are scheduled and have a multi-stage
structure that involves resource synchronization.

Conformance to schedule: One of the main questions in
scheduled processes is that of conformance of the actual
process execution to the plan. Techniques for conformance
checking in process mining primarily focus on behavioral
conformance, see [49–52]. A few works also addressed
time and resource conformance of discovered models
[53,54], where the replay method, as in [55], is used to
quantify deviations in performance measures. In these
approaches, conceptual conformance (model assumptions)
is mixed with operational conformance (resulting perfor-
mance measures). This paper argues for a clear separation
between operational and conceptual conformance, and
introduces a methodology for assessing the operational
and conceptual validity of Fork/Join networks. Moreover,
we link the two conformance types together via con-
tinuous conformance.

Another related line of work is concerned with business
process deviance [56]. Here, two business processes are
compared either by comparing a normative model to a log,
or by comparing two logs (log Delta analysis) [57]. State-
of-art literature in business process deviance is mainly
concerned with the control-flow perspective, and other
perspectives (i.e., time, resources) are neglected. Our
approach for conformance to schedule covers all opera-
tional perspectives when comparing two data logs.

Typically, process mining techniques for conformance
checking are concerned with deterministic to determinis-
tic comparisons only, since the underlying models are
assumed to be deterministic in nature. In this work, we
consider some of the process elements, such as processing
times and arrival rates to be stochastic. Further, we provide
techniques for stochastic to deterministic comparisons.

Process improvement with scheduling: In deterministic
scheduling, problem settings with due-dates and non-zero
release times have been extensively studied [33]. Yet, we
are not aware of literature that covers the Fork/Join setting
as it is presented in Section 6.

Fork/Join networks are stochastic models that naturally
arise when modeling service processes. Therefore, most of
the existing literature on scheduling F/J networks assumes
stochastic processing times [8]. The theoretical results in
these works are typically limited to approximations, and to
restrictive assumptions (e.g., single-station models, heavy-
traffic assumptions). Our work uses a deterministic setting
and provides two novel algorithms for improving
performance.

Both stochastic and deterministic processing times
have merit in different settings. Therefore, in processes
with high variability in activity durations, one should
consider the stochastic setting, while for processes with
low variability the deterministic assumption can yield
good approximation.
9. Conclusion

In this work, we provided methods for conformance
checking and performance improvement of scheduled
multi-stage service processes, as they are observed in such
domains as healthcare and transportation. To assess the
conformance of a schedule of a process to its actual
execution, we presented an approach based on process
discovery and statistical analysis of Fork/Join networks.
The discovered Fork/Join network was then facilitated to
improve the underlying scheduled process via techniques
of mathematical scheduling. Specifically, we developed
theoretical results that guarantee a non-decreasing per-
formance measure, such as tardiness and flow time, when
ordering cases for concurrent processing.

We evaluated the approach with real-world data from
an outpatient clinic in two steps. First, we showcased how
our approach for conformance checking leads to the
identification of operational bottlenecks and supports the
analysis of the root-causes of these bottlenecks. Second,
we demonstrated the value of our process improvement
approach by simulating alternative scheduling realities
that used case orderings as recommended by our algo-
rithms. The experiments resulted in a 20–40% improve-
ment, with respect to a baseline of the actual ordering
of cases.

In future work, we aim at developing a unified measure
for quantifying the gap between scheduled and actual
execution, with accent on mixing D2D and S2D compar-
isons, and multiple hypothesis testing. We plan to facilitate
the quantified gap between scheduled and actual process
executions for improving prediction of outcomes in the
scheduled process (e.g., performance measures, patient
behavior). Furthermore, we target the extension of the
proposed conformance checking techniques, to allow
comparison of the resource perspective of normative
models to execution data. Last but not least, we aim at
lifting our results for process improvement to stochastic
processing times, many-server stations with less restric-
tions on process controllability.
Acknowledgment

We are grateful to the SEELab members, Dr. Valery
Trofimov, Igor Gavako and especially Ella Nadjharov, for
their help with the statistical analysis. We also thank
Kristen Camuso, from Dana-Faber Cancer Institute for the
insightful data discussions.
References

[1] M. Dumas, M.L. Rosa, J. Mendling, H.A. Reijers, Fundamentals of
Business Process Management, Springer, Berlin, 2013.

[2] M.S. Daskin, Service Science, Wiley.com, Hoboken, New Jersey, 2011.
[3] C.M. Froehle, M.J. Magazine, Improving scheduling and flow in

complex outpatient clinics, in: Handbook of Healthcare Operations
Management, Springer, Berlin, 2013, pp. 229–250.

[4] A. Gal, A. Mandelbaum, F. Schnitzler, A. Senderovich, M. Weidlich, Tra-
veling Time Prediction in Scheduled Transportation with Journey Seg-
ments, Technical Report, Technion-Israel Institute of Technology, 2014.

[5] A. Senderovich, M. Weidlich, A. Gal, A. Mandelbaum, Queue mining –

predicting delays in service processes, in: 26th International Con-
ference on Advanced Information Systems Engineering, CAiSE 2014,
Thessaloniki, Greece, Proceedings, June 16–20, 2014, pp. 42–57.

[6] G. Bolch, S. Greiner, H. de Meer, K.S. Trivedi, Queueing Networks and
Markov Chains—Modeling and Performance Evaluation with

http://refhub.elsevier.com/S0306-4379(15)30109-5/sbref1
http://refhub.elsevier.com/S0306-4379(15)30109-5/sbref1
http://refhub.elsevier.com/S0306-4379(15)30109-5/sbref2
http://refhub.elsevier.com/S0306-4379(15)30109-5/sbref6
http://refhub.elsevier.com/S0306-4379(15)30109-5/sbref6

A. Senderovich et al. / Information Systems 62 (2016) 185–206206
Computer Science Applications, 2nd edition, . Wiley, Hoboken, New
Jersey, 2006.

[7] M.H. Ammar, S.B. Gershwin, Equivalence relations in queueing
models of fork/join networks with blocking, Perform. Eval. 10 (3)
(1989) 233–245.

[8] R. Atar, A. Mandelbaum, A. Zviran, Control of fork–join networks in
heavy traffic, in: 2012 50th Annual Allerton Conference on Commu-
nication, Control, and Computing (Allerton), Allerton Park & Retreat
CenterMonticello, IL, USA, IEEE, 2012, pp. 823–830.

[9] A. Senderovich, M. Weidlich, A. Gal, A. Mandelbaum, S. Kadish, C.A.
Bunnell, Discovery and validation of queueing networks in sched-
uled processes, in: 27th International Conference on Advanced
Information Systems Engineering, CAiSE 2015, Stockholm, Sweden,
Proceedings, June 8–12, 2015, pp. 417–433.

[10] G. Balbo, S. Bruell, M. Sereno, On the relations between bcmp
queueing networks and product form solution stochastic petri nets,
Petri Nets and Performance Models, IEEE, 2003, p. 103, http://doi.
ieeecomputersociety.org/10.1109/PNPM.2003.1231547.

[11] F. Baccelli, W.A. Massey, D. Towsley, Acyclic fork–join queuing net-
works, J. ACM 36 (3) (1989) 615–642.

[12] F.P. Kelly, Networks of queues with customers of different types,
J. Appl. Probab. (1975) 542–554.

[13] P.S. Adler, A. Mandelbaum, V. Nguyen, E. Schwerer, From project to
process management: an empirically-based framework for analyz-
ing product development time, Manag. Sci. 41 (3) (1995) 458–484.

[14] J.M. Harrison, Stochastic networks and activity analysis, Transl. Am.
Math. Soc. Ser. 2 (207) (2002) 53–76.

[15] D.G. Kendall, Stochastic processes occurring in the theory of queues
and their analysis by the method of the imbedded Markov Chain,
Ann. Math. Stat. 24 (3) (1953) 338–354.

[16] L. Brown, N. Gans, A. Mandelbaum, A. Sakov, H. Shen, S. Zeltyn,
L. Zhao, Statistical analysis of a telephone call center, J. Am. Stat.
Assoc. 100 (469) (2005) 36–50.

[17] W. van der Aalst, Process Mining: Discovery, Conformance and
Enhancement of Business Processes, Springer, Berlin, 2011.

[18] A. Burattin, Heuristics miner for time interval, in: Process Mining Tech-
niques in Business Environments, Springer, Berlin, 2015, pp. 85–95.

[19] J.F. Allen, P.J. Hayes, A common-sense theory of time, in: IJCAI, vol.
85, 1985, pp. 528–531.

[20] A. Senderovich, M. Weidlich, A. Gal, A. Mandelbaum, Queue mining—
predicting delays in service processes, in: 26th International Con-
ference on Advanced Information Systems Engineering, CAiSE 2014,
Thessaloniki, Greece, Proceedings, June 16–20, 2014, pp. 42–57.

[21] P. Zhang, N. Serban, Discovery, visualization and performance ana-
lysis of enterprise workflow, Comput. Stat. Data Anal. 51 (5) (2007)
2670–2687.

[22] A. Senderovich, M. Weidlich, A. Gal, A. Mandelbaum, Mining resource
scheduling protocols, in: S.W. Sadiq, P. Soffer, H. Völzer (Eds.), 12th
International Conference on Business Process Management, BPM
2014, Lecture Notes in Computer Science, Haifa, Israel, Proceedings,
vol. 8659, Springer, Berlin, September 7–11, 2014, pp. 200–216.

[23] R.G. Sargent, Verification and validation of simulation models, in:
S. Jain, Roy R Creasy, Jr., J. Himmelspach, K.P. White, M.C. Fu (Eds.),
Winter Simulation Conference, WSC, 2011, pp. 183–198.

[24] P.J. Bickel, K.A. Doksum, Mathematical Statistics: Basic Ideas and Selected
Topics, volume I, vol. 117, CRC Press, Boca Raton, Florida, 2015.

[25] T.W. Anderson, L.A. Goodman, Statistical inference about Markov
Chains, Ann. Math. Statist. 28 (1) (1957) 89–110.

[26] P. Momcilovic, N. Trichakis, A. Mandelbaum, S. Kadish, C.A. Bunnell,
Data-driven appointment scheduling under uncertainty, Working Paper.

[27] J.D. Gibbons, S. Chakraborti, Nonparametric Statistical Inference,
Springer, Berlin, 2011.

[28] S. Maman, Uncertainty in the demand for service: the case of call
centers and emergency departments (Master's thesis), 2009.

[29] J.D. Little, A proof for the queuing formula: L¼λw, Oper. Res. 9 (3)
(1961) 383–387.

[30] S.-H. Kim, W. Whitt, Estimating waiting times with the time-varying
Little's law, Prob. Eng. Inf. Sci. 27 (4) (2013) 471–506.

[31] D.H. Maister, The Psychology of Waiting Lines, Harvard Business
School, Boston, MA, USA, 1984.

[32] A. Mandelbaum, W.A. Massey, M.I. Reiman, A. Stolyar, B. Rider, Queue
lengths and waiting times for multiserver queues with abandonment
and retrials, Telecommun. Syst. 21 (2–4) (2002) 149–171.

[33] M.L. Pinedo, Scheduling: Theory, Algorithms, and Systems, Springer
Science & Business Media, Berlin, 2012.

[34] A. Senderovich, A. Rogge-Solti, A. Gal, J. Mendling, A. Mandelbaum,
S. Kadish, C.A. Bunnell, Data-driven performance analysis of sched-
uled processes, in: 13th International Conference on Business
Process Management, BPM 2015, Innsbruck, Austria, Proceedings,
August 31–September 3, 2015, pp. 35–52.

[35] J.R. Jackson, Scheduling a Production Line to Minimize Maximum
Tardiness, Technical Report, DTIC Document, 1955.

[36] J.K. Lenstra, A.R. Kan, P. Brucker, Complexity of machine scheduling
problems, Ann. Discrete Math. 1 (1977) 343–362.

[37] J. Du, J.Y.-T. Leung, Minimizing total tardiness on one machine is np-
hard, Math. Oper. Res. 15 (3) (1990) 483–495.

[38] A. Farcomeni, A review of modern multiple hypothesis testing, with
particular attention to the false discovery proportion, Stat. Methods Med.
Res. 17 (4) (2008) 347–388, http://dx.doi.org/10.1177/0962280206
079046.

[39] E. Arjas, T. Lehtonen, Approximating many server queues by means
of single server queues, Math. Oper. Res. 3 (3) (1978) 205–223.

[40] S. Halfin, W. Whitt, Heavy-traffic limits for queues with many
exponential servers, Oper. Res. 29 (3) (1981) 567–588.

[41] J.A. Buzacott, J.G. Shanthikumar, Stochastic Models of Manufacturing
Systems, Prentice Hall, Englewood Cliffs, NJ, 1993.

[42] R.S. Mans, N.C. Russell, W.M. van der Aalst, A.J. Moleman, P.J. Bakker,
Schedule-aware workflow management systems, in: Transactions
on Petri Nets and other Models of Concurrency IV, Springer, 2010,
pp. 121–143.

[43] A. Rogge-Solti, W.M.P. van der Aalst, M. Weske, Discovering sto-
chastic petri nets with arbitrary delay distributions from event logs,
in: Business Process Management Workshops - BPM 2013 Interna-
tional Workshops, Beijing, China, August 26, 2013, Revised Papers,
2013, pp. 15–27.

[44] W.M. van der Aalst, M. Schonenberg, M. Song, Time prediction based
on process mining, Inf. Syst. 36 (2) (2011) 450–475.

[45] A. Rogge-Solti, M. Weske, Prediction of remaining service execution
time using stochastic petri nets with arbitrary firing delays, in:
S. Basu, C. Pautasso, L. Zhang, X. Fu (Eds.), ICSOC, Lecture Notes in
Computer Science, vol. 8274, Springer, Berlin, 2013, pp. 389–403.

[46] A. Rozinat, R. Mans, M. Song, W.M.P. van der Aalst, Discovering
simulation models, Inf. Syst. 34 (3) (2009) 305–327.

[47] A. Pika, M.T. Wynn, C.J. Fidge, A.H. ter Hofstede, M. Leyer, W.M. van
der Aalst, An extensible framework for analysing resource behaviour
using event logs, in: Advanced Information Systems Engineering,
Springer, Berlin, 2014, pp. 564–579.

[48] J. Nakatumba, W.M. van der Aalst, Analyzing resource behavior
using process mining, in: Business Process Management Workshops,
Springer, Berlin, 2010, pp. 69–80.

[49] A. Rozinat, W.M.P. van der Aalst, Conformance checking of processes
based on monitoring real behavior, Inf. Syst. 33 (1) (2008) 64–95.

[50] R.P.J.C. Bose, W.M.P. van der Aalst, Process diagnostics using trace
alignment: opportunities, issues, and challenges, Inf. Syst. 37 (2)
(2012) 117–141.

[51] M. Weidlich, A. Polyvyanyy, N. Desai, J. Mendling, M. Weske, Process
compliance analysis based on behavioural profiles, Inf. Syst. 36 (7)
(2011) 1009–1025.

[52] S.K.L.M. vanden Broucke, J.D. Weerdt, J. Vanthienen, B. Baesens,
Determining process model precision and generalization with
weighted artificial negative events, IEEE Trans. Knowl. Data Eng. 26
(8) (2014) 1877–1889.

[53] E.R. Taghiabadi, V. Gromov, D. Fahland, W.M.P. van der Aalst, Com-
pliance checking of data-aware and resource-aware compliance
requirements, in: On the Move to Meaningful Internet Systems:
OTM 2014 Conferences - Confederated International Conferences:
CoopIS, and ODBASE 2014, Amantea, Italy, October 27–31, 2014,
Proceedings, 2014, pp. 237–257.

[54] M. de Leoni, W.M.P. van der Aalst, B.F. van Dongen, Data- and
resource-aware conformance checking of business processes, in: 15th
International Conference on Business Information Systems, BIS 2012,
Vilnius, Lithuania, May 21–23, 2012. Proceedings, 2012, pp. 48–59.

[55] A. Adriansyah, B.F. van Dongen, W.M.P. van der Aalst, Conformance
checking using cost-based fitness analysis, in: EDOC, IEEE Computer
Society, Helsinki, Finland, 2011, pp. 55–64.

[56] M. Dumas, L. García-Bañuelos, Process mining reloaded: event
structures as a unified representation of process models and event
logs, in: 36th International Conference on Application and Theory of
Petri Nets and Concurrency, PETRI NETS 2015, Brussels, Belgium,
June 21–26, 2015, Proceedings, 2015, pp. 33–48.

[57] N.R.T.P. van Beest, M. Dumas, L. García-Bañuelos, M.L. Rosa, Log delta
analysis: interpretable differencing of business process event logs,
in: 13th International Conference on Business Process Management,
BPM 2015, Innsbruck, Austria, August 31–September 3, 2015, Pro-
ceedings, 2015, pp. 386–405.

http://refhub.elsevier.com/S0306-4379(15)30109-5/sbref6
http://refhub.elsevier.com/S0306-4379(15)30109-5/sbref6
http://refhub.elsevier.com/S0306-4379(15)30109-5/sbref7
http://refhub.elsevier.com/S0306-4379(15)30109-5/sbref7
http://refhub.elsevier.com/S0306-4379(15)30109-5/sbref7
http://refhub.elsevier.com/S0306-4379(15)30109-5/sbref7
http://doi.ieeecomputersociety.org/10.1109/PNPM.2003.1231547
http://doi.ieeecomputersociety.org/10.1109/PNPM.2003.1231547
http://refhub.elsevier.com/S0306-4379(15)30109-5/sbref11
http://refhub.elsevier.com/S0306-4379(15)30109-5/sbref11
http://refhub.elsevier.com/S0306-4379(15)30109-5/sbref11
http://refhub.elsevier.com/S0306-4379(15)30109-5/sbref12
http://refhub.elsevier.com/S0306-4379(15)30109-5/sbref12
http://refhub.elsevier.com/S0306-4379(15)30109-5/sbref12
http://refhub.elsevier.com/S0306-4379(15)30109-5/sbref13
http://refhub.elsevier.com/S0306-4379(15)30109-5/sbref13
http://refhub.elsevier.com/S0306-4379(15)30109-5/sbref13
http://refhub.elsevier.com/S0306-4379(15)30109-5/sbref13
http://refhub.elsevier.com/S0306-4379(15)30109-5/sbref14
http://refhub.elsevier.com/S0306-4379(15)30109-5/sbref14
http://refhub.elsevier.com/S0306-4379(15)30109-5/sbref14
http://refhub.elsevier.com/S0306-4379(15)30109-5/sbref15
http://refhub.elsevier.com/S0306-4379(15)30109-5/sbref15
http://refhub.elsevier.com/S0306-4379(15)30109-5/sbref15
http://refhub.elsevier.com/S0306-4379(15)30109-5/sbref15
http://refhub.elsevier.com/S0306-4379(15)30109-5/sbref16
http://refhub.elsevier.com/S0306-4379(15)30109-5/sbref16
http://refhub.elsevier.com/S0306-4379(15)30109-5/sbref16
http://refhub.elsevier.com/S0306-4379(15)30109-5/sbref16
http://refhub.elsevier.com/S0306-4379(15)30109-5/sbref17
http://refhub.elsevier.com/S0306-4379(15)30109-5/sbref17
http://refhub.elsevier.com/S0306-4379(15)30109-5/sbref21
http://refhub.elsevier.com/S0306-4379(15)30109-5/sbref21
http://refhub.elsevier.com/S0306-4379(15)30109-5/sbref21
http://refhub.elsevier.com/S0306-4379(15)30109-5/sbref21
http://refhub.elsevier.com/S0306-4379(15)30109-5/sbref25
http://refhub.elsevier.com/S0306-4379(15)30109-5/sbref25
http://refhub.elsevier.com/S0306-4379(15)30109-5/sbref25
http://refhub.elsevier.com/S0306-4379(15)30109-5/sbref27
http://refhub.elsevier.com/S0306-4379(15)30109-5/sbref27
http://refhub.elsevier.com/S0306-4379(15)30109-5/sbref29
http://refhub.elsevier.com/S0306-4379(15)30109-5/sbref29
http://refhub.elsevier.com/S0306-4379(15)30109-5/sbref29
http://refhub.elsevier.com/S0306-4379(15)30109-5/sbref29
http://refhub.elsevier.com/S0306-4379(15)30109-5/sbref29
http://refhub.elsevier.com/S0306-4379(15)30109-5/sbref29
http://refhub.elsevier.com/S0306-4379(15)30109-5/sbref30
http://refhub.elsevier.com/S0306-4379(15)30109-5/sbref30
http://refhub.elsevier.com/S0306-4379(15)30109-5/sbref30
http://refhub.elsevier.com/S0306-4379(15)30109-5/sbref31
http://refhub.elsevier.com/S0306-4379(15)30109-5/sbref31
http://refhub.elsevier.com/S0306-4379(15)30109-5/sbref32
http://refhub.elsevier.com/S0306-4379(15)30109-5/sbref32
http://refhub.elsevier.com/S0306-4379(15)30109-5/sbref32
http://refhub.elsevier.com/S0306-4379(15)30109-5/sbref32
http://refhub.elsevier.com/S0306-4379(15)30109-5/sbref33
http://refhub.elsevier.com/S0306-4379(15)30109-5/sbref33
http://refhub.elsevier.com/S0306-4379(15)30109-5/sbref33
http://refhub.elsevier.com/S0306-4379(15)30109-5/sbref36
http://refhub.elsevier.com/S0306-4379(15)30109-5/sbref36
http://refhub.elsevier.com/S0306-4379(15)30109-5/sbref36
http://refhub.elsevier.com/S0306-4379(15)30109-5/sbref37
http://refhub.elsevier.com/S0306-4379(15)30109-5/sbref37
http://refhub.elsevier.com/S0306-4379(15)30109-5/sbref37
http://dx.doi.org/10.1177/0962280206079046
http://dx.doi.org/10.1177/0962280206079046
http://dx.doi.org/10.1177/0962280206079046
http://dx.doi.org/10.1177/0962280206079046
http://refhub.elsevier.com/S0306-4379(15)30109-5/sbref39
http://refhub.elsevier.com/S0306-4379(15)30109-5/sbref39
http://refhub.elsevier.com/S0306-4379(15)30109-5/sbref39
http://refhub.elsevier.com/S0306-4379(15)30109-5/sbref40
http://refhub.elsevier.com/S0306-4379(15)30109-5/sbref40
http://refhub.elsevier.com/S0306-4379(15)30109-5/sbref40
http://refhub.elsevier.com/S0306-4379(15)30109-5/sbref41
http://refhub.elsevier.com/S0306-4379(15)30109-5/sbref41
http://refhub.elsevier.com/S0306-4379(15)30109-5/sbref44
http://refhub.elsevier.com/S0306-4379(15)30109-5/sbref44
http://refhub.elsevier.com/S0306-4379(15)30109-5/sbref44
http://refhub.elsevier.com/S0306-4379(15)30109-5/sbref45
http://refhub.elsevier.com/S0306-4379(15)30109-5/sbref45
http://refhub.elsevier.com/S0306-4379(15)30109-5/sbref45
http://refhub.elsevier.com/S0306-4379(15)30109-5/sbref45
http://refhub.elsevier.com/S0306-4379(15)30109-5/sbref45
http://refhub.elsevier.com/S0306-4379(15)30109-5/sbref46
http://refhub.elsevier.com/S0306-4379(15)30109-5/sbref46
http://refhub.elsevier.com/S0306-4379(15)30109-5/sbref46
http://refhub.elsevier.com/S0306-4379(15)30109-5/sbref49
http://refhub.elsevier.com/S0306-4379(15)30109-5/sbref49
http://refhub.elsevier.com/S0306-4379(15)30109-5/sbref49
http://refhub.elsevier.com/S0306-4379(15)30109-5/sbref50
http://refhub.elsevier.com/S0306-4379(15)30109-5/sbref50
http://refhub.elsevier.com/S0306-4379(15)30109-5/sbref50
http://refhub.elsevier.com/S0306-4379(15)30109-5/sbref50
http://refhub.elsevier.com/S0306-4379(15)30109-5/sbref51
http://refhub.elsevier.com/S0306-4379(15)30109-5/sbref51
http://refhub.elsevier.com/S0306-4379(15)30109-5/sbref51
http://refhub.elsevier.com/S0306-4379(15)30109-5/sbref51
http://refhub.elsevier.com/S0306-4379(15)30109-5/sbref52
http://refhub.elsevier.com/S0306-4379(15)30109-5/sbref52
http://refhub.elsevier.com/S0306-4379(15)30109-5/sbref52
http://refhub.elsevier.com/S0306-4379(15)30109-5/sbref52
http://refhub.elsevier.com/S0306-4379(15)30109-5/sbref52

	Conformance checking and performance improvement in scheduled processes: A queueing-network perspective
	Introduction
	A service process in an outpatient clinic
	Schedules and event logs of service processes
	Running example
	Schedule
	Event log

	Fork/Join networks: definition and discovery
	Fork/Join networks: definition
	Discovery of Fork/Join networks

	Conformance checking in scheduled processes
	Conceptual conformance to schedule
	Operational conformance to schedule
	The relation of conceptual and operational conformance

	Process improvement in Fork/Join networks
	Optimization setting
	Improvement problem
	Input measures
	Output measures
	Problem statement

	Improvement algorithms
	EDD properties in scheduled F/J networks
	Combining EDD and FCFS
	Scheduling with completed cases by Sprime

	Evaluation
	Conformance checking
	Process improvement
	Discussion and limitations

	Related work
	Conclusion
	Acknowledgment
	References

