Statistical Analysis of a Telephone Call Center: A Queueing-Science Perspective

Lawrence D. Brown ^{a b}

The Wharton School

University of Pennsylvania

November 5, 2002

^aJoint work with Noah Gans, Avishai Mandelbaum, Anat Sakov, Haipeng Shen, Sergey Zeltyn and Linda Zhao.

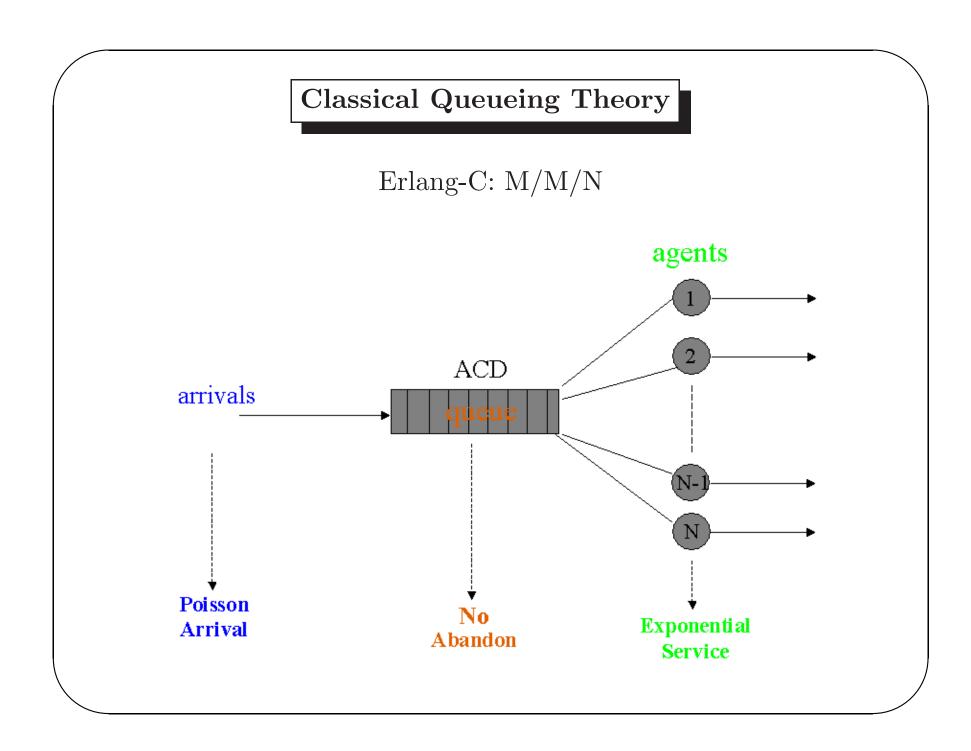
b Manuscript and talk slides will be available at http://ljsavage.wharton.upenn.edu/~lbrown.

Outline

- 1. Call Centers
- 2. Bank Call Center Data
- 3. Queueing Theory
- 4. Analysis
 - (a) Arrivals
 - (b) Service Durations
 - (c) Queueing Behavior
 - (d) Forecasting of Workload
- 5. Validation of Queueing Model Outputs
- 6. Summary

The Vast Call Center World

- 70% of all customer-business interactions occur in call centers.
- 3% of the U.S. working population is currently employed in call centers.
 - \triangleright 1.55 6 million agents
 - > more than in agriculture
- 20% growth rate of the call center industry.
- State-of-art technology, but 70% for human cost.
- Factory floor of modern commerce.



Some Calculations based on Erlang-C Model

Assume Poisson arrival rate λ , service rate μ /server (mean $1/\mu$), λ/μ : offered load,

• M/M/1:

- \triangleright system stable iff $\rho = \lambda/\mu < 1$;
- \triangleright Ave. # of customers in system: $L = \frac{\rho}{1-\rho}$;
- \triangleright Ave. # of customers in queue: $Q = \frac{\rho^2}{1-\rho}$;
- \triangleright Ave. # of customers in service: $L_s = \rho = L Q$;
- \triangleright Ave. waiting time in system: $w = L/\rho = 1/(\mu \lambda)$;
- \triangleright Ave. delay in queue: $d = Q/\rho = w 1/\mu$.

M/M/N and M/G/N Models

- M/M/N: exact formulae exist but are complicated.
- M/G/N: approximate formulae exist Khintchine-Pollaczek Formula.
 - \triangleright General service time distribution;
 - \triangleright Exact for M/G/1;
 - \triangleright Approximate linear relationship between w and $\frac{\rho}{1-\rho}$;

*
$$\frac{N}{\mathrm{E}(G)}w \approx K_G \frac{\rho}{1-\rho}$$

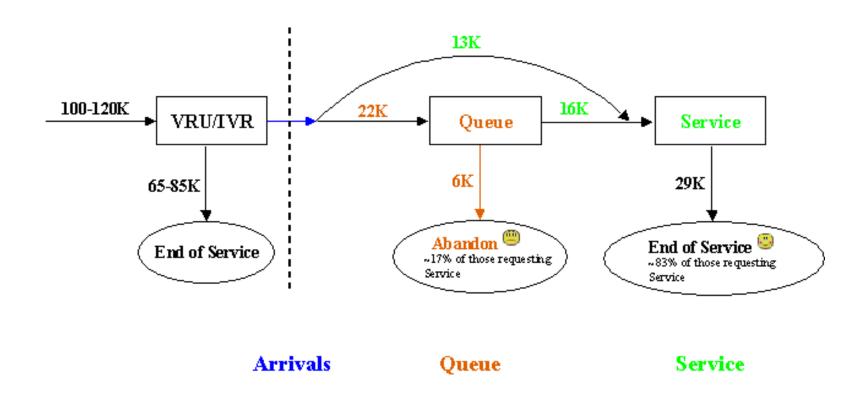
A Call Center of Bank Anonymous of Israel

- Small: 15 seats at most.
- Types of service:
 - > information for current and prospective customers
 - > transactions for bank accounts

 - > IT support for users of the bank's website
- Working hours:
 - \triangleright Sundays-Thursdays: 7AM 12AM
 - \triangleright Fridays: 7AM 2PM
 - \triangleright Saturdays: 8PM 12AM

Event history of an incoming call

(units of rates are calls per month)



The Call Center Data

- Data \Rightarrow whole history of every **agent-seeking** call in 1999.
- 450,000 observations.
- Two operational changes:
 - ▷ Separate agent pool for Internet Consulting since Aug;
 - ▷ One aspect of the service-time data changed since Nov.
- Focus on

 - \triangleright normal business hours 7AM to midnight.

Arrivals: Inhomogeneous Poisson

Figure 1: Arrivals (to queue or service) – "Regular" Calls

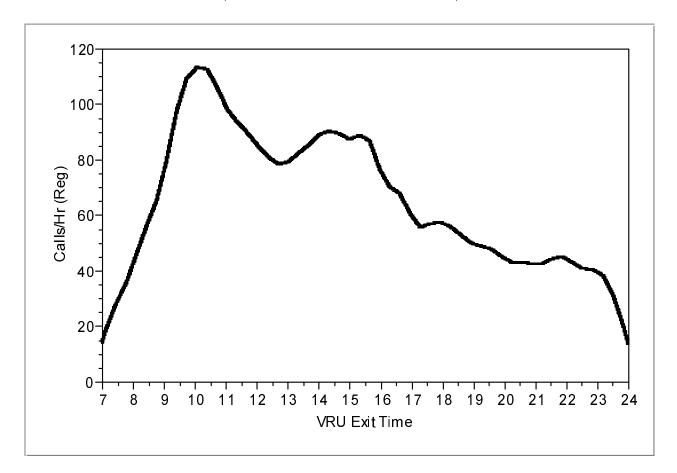
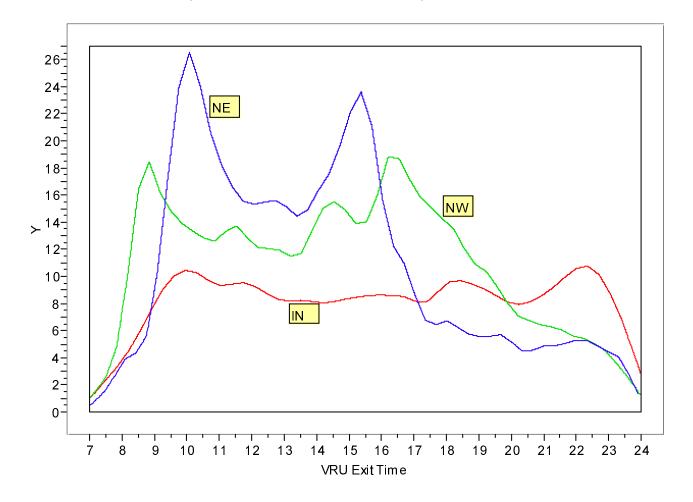


Figure 2: Arrivals (to queue or service) – IN, NW, and NE Calls



IN = INternet Consulting; NW = New Customer Service; NE = Stock Exchange.

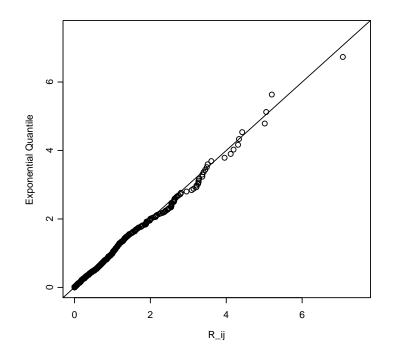
A Test for Inhomogeneous Poisson Process

- 1. Break up the interval of a day into short blocks of time, say I (equal-length) blocks of length L.
- 2. Let $T_{i0} = 0$ and T_{ij} : the *j*-th ordered arrival time in the *i*-th block, i = 1, ..., I and j = 1, ..., J(i), then define

$$R_{ij} = (J(i) + 1 - j) \left(-\log \left(\frac{L - T_{ij}}{L - T_{i,j-1}} \right) \right).$$

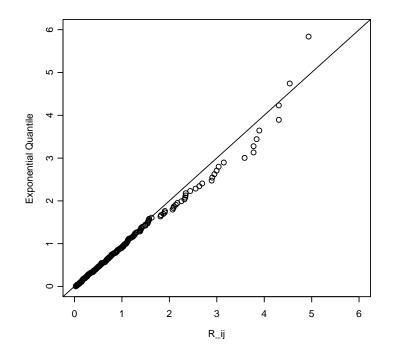
- 3. Under the null hypothesis that the arrival rate is constant within each given time interval, the $\{R_{ij}\}$ will be independent standard exponential variables.
- 4. Use any customary test for the exponential distribution; for example, Kolmogorov-Smirnov test.

Figure 3: Exponential (λ =1) Quantile plot for {R_{ij}} from Regular calls (11:12am – 11:18am)



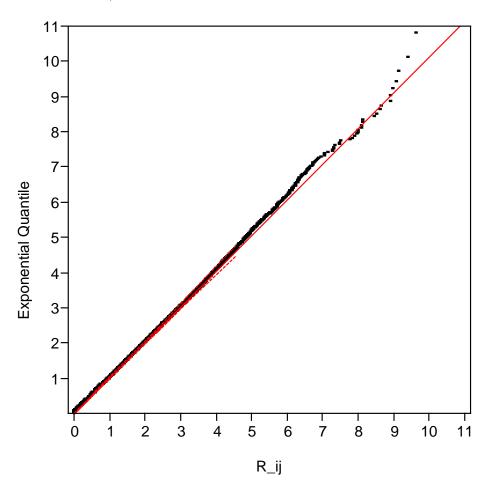
L=6 min, n=420, Kolmogorov-Smirnov statistic K=0.0316 and the P-value is 0.2.

Figure 4: Exponential (λ =1) Quantile plot for {R_{ij}} of INternet calls (Nov. 23)



L=60 min, n=172, Kolmogorov-Smirnov statistic K=0.0423 and the P-value is 0.2.

Figure 5: Exponential Quantile plot of $\{R_{ij}\}$ for all Regular calls (Two outliers omitted.)



Service Times

- Erlang-C assumes exponential distribution.
 - \triangleright simple for calculation
 - > memoryless property
- How about this call center?

Figure 6: Service Time Distribution from This Call Center

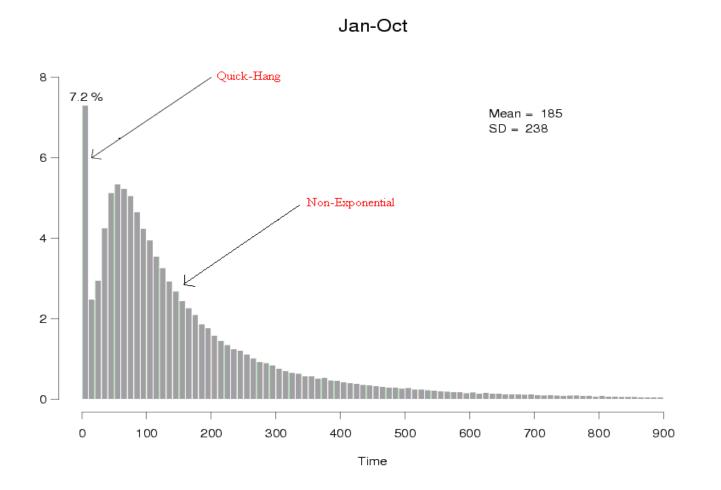
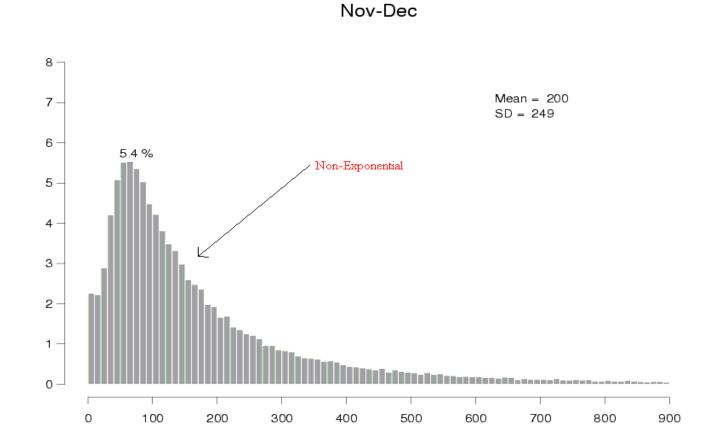


Figure 7: Service Time Distribution from This Call Center



Time

Service Times are Lognormal

Figure 8: $Histogram\ of\ Log(Service\ Time)\ (Nov+Dec)$

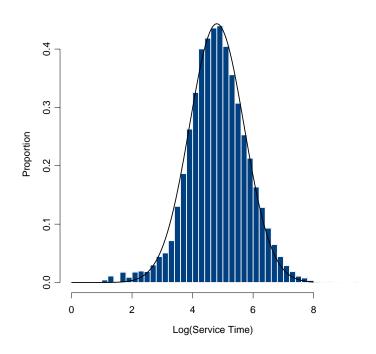
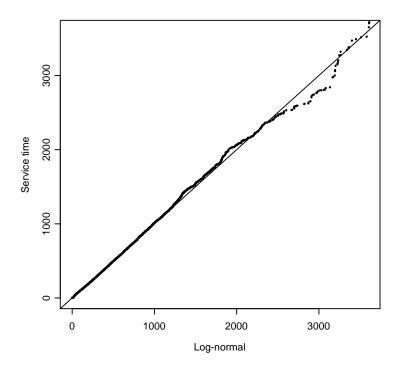


Figure 9: $Log\text{-}normal\ QQ\ Plot\ of\ Service\ Time\ (Nov+Dec)$



Analysis of Service Times

- Lognormality holds
 - > Overall, and at
 - > Lower levels:
 - * when conditioning on time-of-day;
 - * for types of service, priorities of customers, individual servers and days of the week.
- Analysis: Data with lognormal errors
 - Mean service time as a function of time-of-day Nonparametric Regression
 - ➤ Mean service time across different categories, like service types, day-of-week - Anova

A Property of Lognormal Distributions

If Z is lognormally distributed with mean ν , and $Y = \log(Z) \sim N(\mu, \sigma^2)$, then

$$\nu = e^{\mu + \sigma^2/2}.$$

Similarly, if $Y|X = x \sim N(\mu(x), \sigma(x)^2)$, then

$$\nu(\mathbf{x}) = \mathbf{e}^{\mu(\mathbf{x}) + \sigma(\mathbf{x})^2/2} \tag{1}$$

The Problem

The data:

$$\{X_i, Z_i\}_{i=1}^n \overset{i.i.d.}{\sim} \{X, Z\}$$

where Z|X=x has a lognormal distribution. For example, in a **regression** setup,

X: the time-of-day of a call

and

Z: the corresponding service time.

We are interested in estimating

$$\nu(x) = \mathbb{E}(Z|X=x)$$

with confidence band attached. Shen (PhD Thesis 2003)

The Idea

- 1. Transform the original problem into a problem with normal errors;
- 2. Make inferences based on the transformed data;
- 3. Back transform the inference results to the original scale.

The Procedure

- 1. $\{X_i, Z_i\} \Rightarrow \{X_i, Y_i\} \text{ with } Y_i = \log(Z_i);$
- 2. The model is

$$Y_i = \mu(X_i) + \sigma(X_i)\epsilon_i$$

where $\epsilon_i | X_i \stackrel{i.i.d.}{\sim} N(0,1)$.

- 3. Estimate $\mu(x)$ using any good existing nonparametric regression method, e.g. local polynomial method.
- 4. Estimate $\sigma(x)$ using some good local nonparametric regression method, like difference-based estimate plus local polynomial smoothing. We can get $\operatorname{se}_{\mu}(x)$ from $\hat{\sigma}(x)$.

The Procedure (cont')

- 5. We also need to estimate the variance of $\hat{\sigma}^2(x)$ in order to get $\sec_{\sigma^2}(x)$.
- 6. Suppose $\hat{\mu}(x)$ is (approximately) unbiased, then

$$\hat{\mu}(\mathbf{x}) \pm \mathbf{Z}_{1-\alpha/2} \mathrm{se}_{\mu}(\mathbf{x})$$

will be an approximate $100(1-\alpha)\%$ confidence interval for $\mu(x)$.

Similarly a $100(1-\alpha)\%$ confidence interval for $\sigma^2(x)$ is approximately

$$\hat{\sigma}^2(\mathbf{x}) \pm \mathbf{Z}_{1-\alpha/2} \operatorname{se}_{\sigma^2}(\mathbf{x}).$$

Note: Calculation of \sec_{σ^2} requires care, depending on the method for estimating $\hat{\sigma}^2$. (See Levins PhD Thesis (2003).)

The Procedure (cont')

7. Back-transform to the original scale and obtain the following plug-in estimate for $\nu(x)$,

$$e^{\hat{\mu}(x)+\hat{\sigma}^2(x)/2}$$
;

The corresponding $100(1-\alpha)\%$ confidence interval for $\nu(x)$ is

$$e^{(\hat{\mu}(\mathbf{x})+\hat{\sigma}^2(\mathbf{x})/2)\pm \mathbf{Z}_{1-\alpha/2}\sqrt{\operatorname{se}_{\mu}(\mathbf{x})^2+\operatorname{se}_{\sigma^2}(\mathbf{x})^2/4}}$$

Note:

 $\hat{\mu}(x)$ and $\hat{\sigma}^2(x)$ are asymptotically independent and very nearly independent at any sample size, which gives us

$$\operatorname{se}(\hat{\mu}(x) + \hat{\sigma}^2(x)/2) \approx \sqrt{\operatorname{se}_{\mu}(x)^2 + \operatorname{se}_{\sigma^2}(x)^2/4}.$$

Figure 10: Mean of Log(Service Time) (Regular) vs. Time-of-day (95% CI) (n=42613)

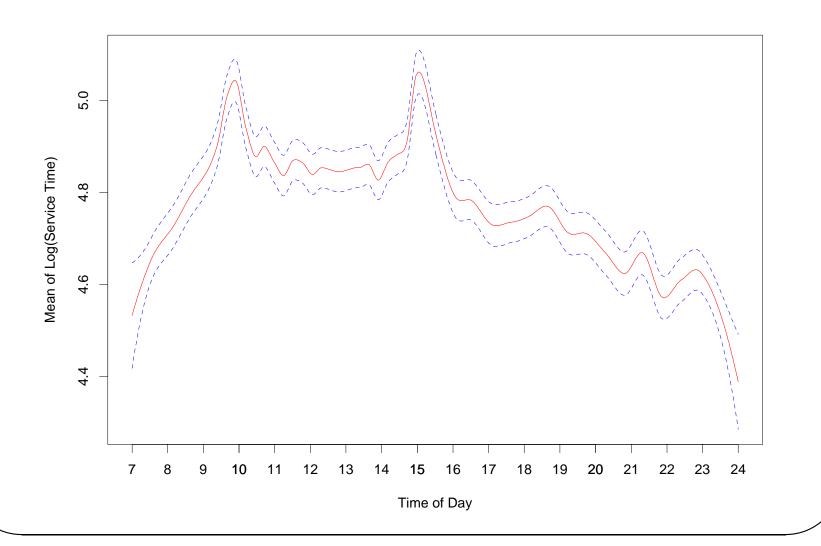


Figure 11: Variance of Log(Service Time) (Regular) vs. Time-of-day (95% CI) (n=42613)

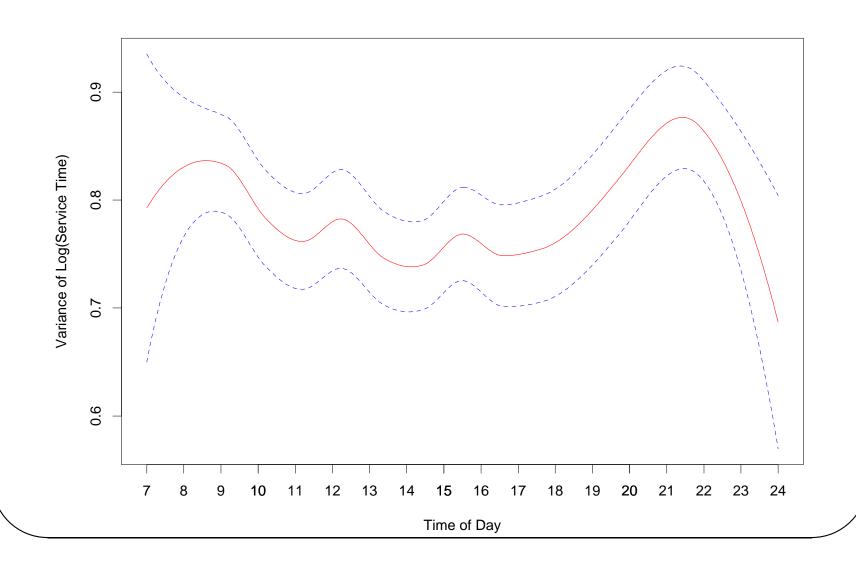


Figure 12: Mean Service Time (Regular) vs. Time-of-day (95% CI) (n=42613)

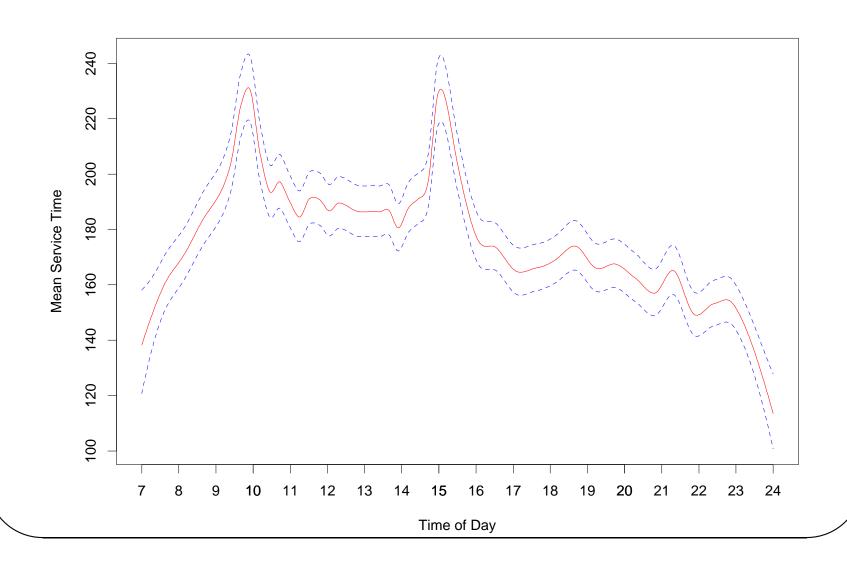
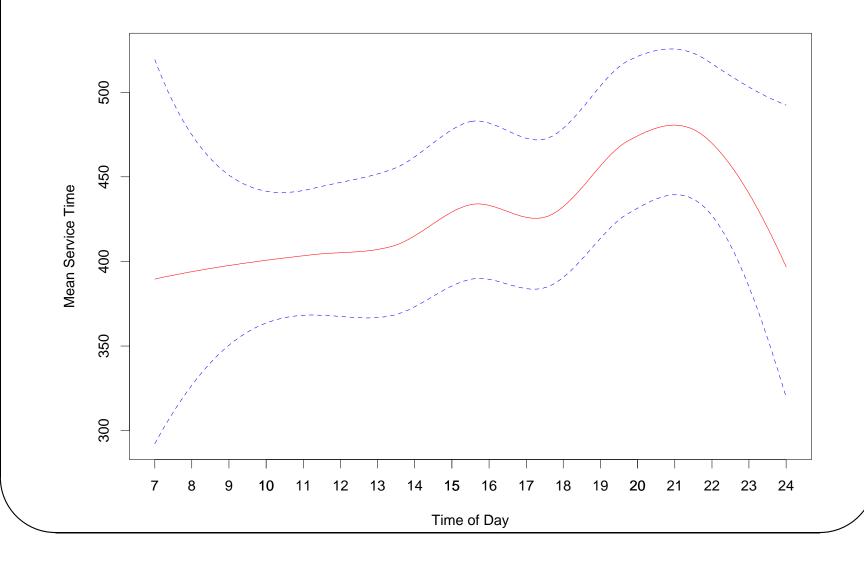


Figure 13: Mean Service Time (INternet) vs. Time-of-day (95% CI)(n=5066)

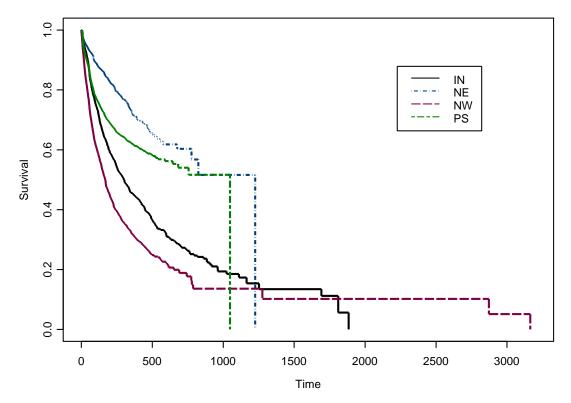


Customer Patience and Abandonment Behavior

- Censored data
- Need to distinguish 3 Times:
 - \triangleright Virtual waiting time V: the time a customer needs to wait before reaching an agent;
 - ightharpoonup Time willing to wait R: the time a customer is willing to wait before abandoning the system;
 - \triangleright Waiting time $W = V \land R$: actual observed time a customer waits.
- Also observe the indicator $I_{R < V}$.
- Thus, V and R are censored.

Human Patience: Time willing to wait

Figure 14: Survival curves for time willing to wait (Nov.–Dec.)



IN = INternet Consulting; NE = Stock Exchange; NW = New Customer Service; PS = Regular Service.

Hazard Rates Estimation Procedure

• For a time t, choose an interval length δ_t , and estimate the hazard rate at time $t + \delta_t/2$ using

$$\frac{[\# \text{ of events during } (t, t + \delta_t)]}{[\# \text{ at risk at } t] \times \delta_t}.$$

- Usually $\delta_t = 1$ when $t \leq t_0$, a pre-specified constant.
- δ_t should be larger when $t \geq t_0$. For example, δ_t can be chosen so that

$$\hat{N}_{(t,t+\delta_t]} \ge n_0$$

where $\hat{N}_{(t,t+\delta_t]}$ is an estimate of the expected # of events during $(t, t + \delta_t]$.

• Optional smoothing of the raw hazard rates estimates.

Figure 15: Hazard rate for the time willing to wait for Regular calls (Nov.–Dec.) $(n_0 = 4)$

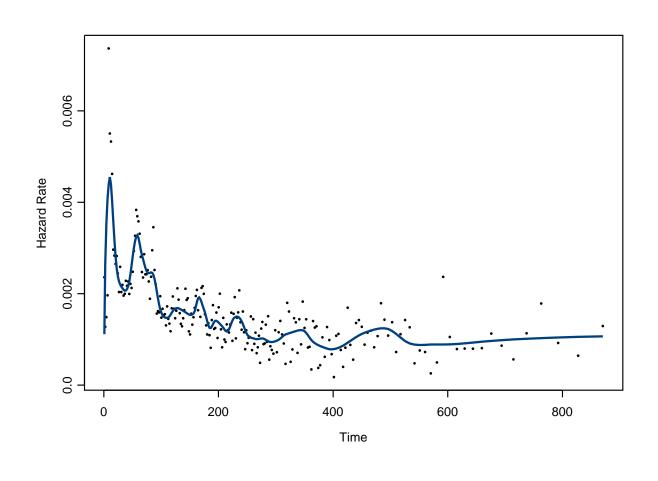
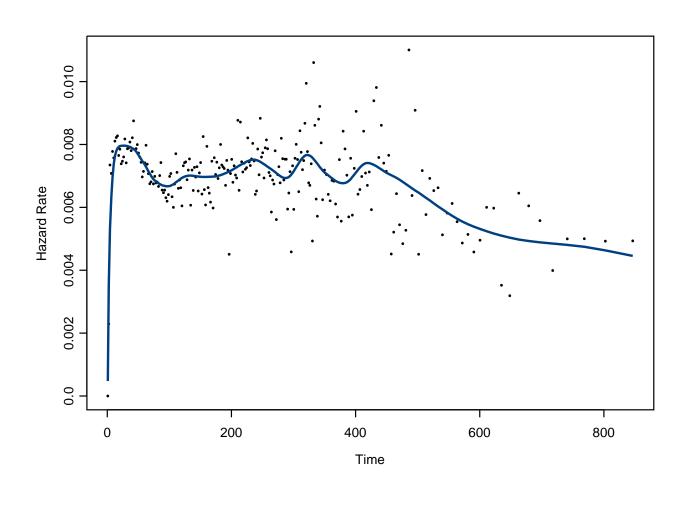


Figure 16: Hazard rate for virtual waiting time (Nov.–Dec.) $(n_0 = 4)$



Workload

Suppose at time t, the arrival rate is $\Lambda(t)$ and the mean service time is $\nu(t)$, then the workload at time t is defined as

$$L(t) = \Lambda(t)\nu(t).$$

- the expected time units of work arriving per unit of time.
- primitive quantity in building classical queueing models and setting staffing levels.

Estimation of $\Lambda(t)$

- $\Lambda(t)$ is not a deterministic function of time of day, day of week and type of customer. (Verified by a formal test in Brown and Zhao (2002).)
- Random-effect model.
 - \triangleright Regular (non-holiday) weekdays from Aug. to Dec. indexed by j;
 - \triangleright Divide the regular workhours from 7AM through midnight into 68 quarter hours indexed by k;

Estimation of $\Lambda(t)$

 $\triangleright N_{jk}$: number of arrivals within the k-th quarter hour of the j-th day.

$$N_{jk} = \text{Poiss}(\Lambda_{jk}), \quad \Lambda_{jk} = R_j \tau_k + \varepsilon'_{jk},$$
 (2)

where

- * τ_k : fixed deterministic quarter-hourly effects with $\sum \tau_k = 1$;
- * R_j : suitable random daily effects;
- * ε'_{ik} : random errors.

A Property of Poisson Variables

Suppose $X \sim \text{Poiss}(\lambda)$, then Brown, Zhang and Zhao (2001) showed that, asymptotically,

$$V = \sqrt{X + 1/4} \stackrel{app.}{\sim} N(\sqrt{\lambda}, \frac{1}{4}),$$

with good accuracy even for small λ .

An Equivalent Gaussian Model

- Let $V_{jk} = \sqrt{N_{jk} + \frac{1}{4}};$
- Gaussian model:

$$V_{jk} = \theta_{jk} + \varepsilon_{jk}^* \quad \text{with} \quad \varepsilon_{jk}^* \stackrel{iid}{\sim} N\left(0, \frac{1}{4}\right),$$

$$\theta_{jk} = \alpha_j \beta_k + \varepsilon_{jk},$$

$$\alpha_j = \mu + \gamma V_{j-1,+} + \varepsilon_j^{**},$$
(3)

where $\varepsilon_j^{**} \sim N(0, \sigma^{**2})$, $\varepsilon_{jk} \sim N(0, \sigma_{\varepsilon}^2)$, $V_{j,+} = \sum_k V_{jk}$, and ε_{jk}^{**} and ε_{jk} are independent of each other and of values of $V_{j',k}$ for j' < j.

- α_i : random effect with an AR(1) type structure.
- $\bullet \ \sum \beta_k^2 = 1.$

Estimation

Here μ , γ , σ^{**2} , σ_{ε}^2 and β_k can be estimated by a combination of least-squares and method of moments.

Denote the corresponding estimates as $\hat{\mu}$, $\hat{\gamma}$, $\hat{\sigma}^{**2}$, $\hat{\sigma}_{\varepsilon}^{2}$ and $\hat{\beta}_{k}$.

Prediction of Tomorrow's Λ_k

• Following today's value of V_+ , tomorrow's θ_k is predicted to be

$$\hat{\theta}_k = \hat{\beta}_k \left(\hat{\mu} + \hat{\gamma} V_+ \right)$$

as an estimate of

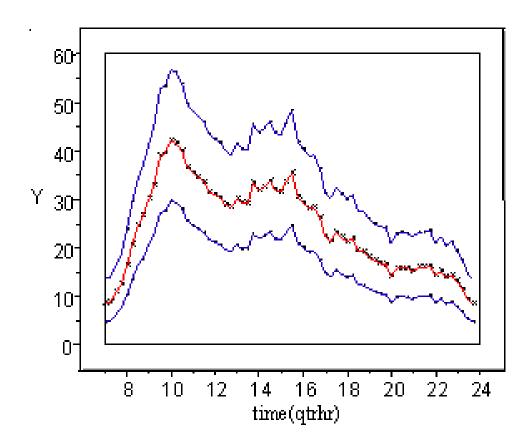
$$\theta_k = \beta_k \left(\mu + \gamma V_+ + \varepsilon^{**} \right) + \varepsilon \tag{4}$$

where $\varepsilon^{**} \sim N(0, \sigma^{**2})$ and $\varepsilon \sim N(0, \sigma_{\varepsilon}^2)$ are independent.

$$\hat{\Lambda}_k = \hat{\theta}_k^2 = \hat{\beta}_k^2 \left(\hat{\mu} + \hat{\gamma} V_+ \right)^2.$$

- $Var(\hat{\theta}_k)$ can be derived from (4), which can be used to calculate prediction interval for $\hat{\theta}_k$.
- The above interval can be squared to get prediction interval for $\hat{\Lambda}_k$.

Figure 17: 95% prediction intervals for, Λ , following a day with V_+ = 340. (" V_+ = 340" \Rightarrow " N_+ = 1800" ($> \overline{N}_+$ = 1570))



Vertical axis is prediction of # of arrivals/qtr. hr...

Forecasting of the Load

- Point estimate: $\hat{L}(t) = \hat{\Lambda}(t)\hat{\nu}(t)$.
- Approx. 95% Prediction Interval:

$$\hat{L}(t) \pm 2\hat{L}(t)\widehat{PCV}(\hat{L})(t)$$

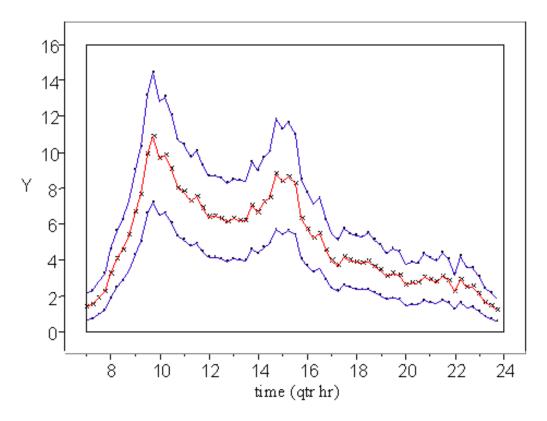
where $PCV = "Prediction CV" = \frac{Prediction S.E.}{Mean}$ and

$$\widehat{PCV}(\hat{L})(t) = \sqrt{\widehat{PCV}^{2}}(\hat{\Lambda})(t) + \widehat{PCV}^{2}(\hat{\nu})(t) + \widehat{PCV}^{2}(\hat{\Lambda})(t) \cdot \widehat{PCV}^{2}(\hat{\nu})(t)$$

$$\approx \sqrt{\widehat{PCV}^{2}}(\hat{\Lambda})(t) + \widehat{PCV}^{2}(\hat{\nu})(t)$$

given the independence of $\hat{\Lambda}(t)$ and $\hat{\nu}(t)$.

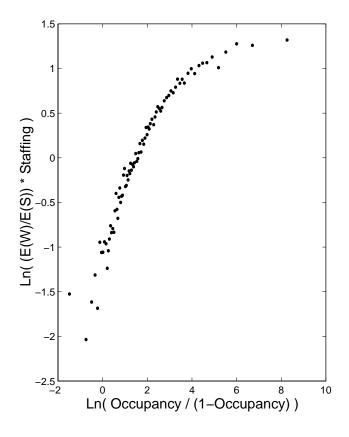
Figure 18: 95% prediction intervals for the load, L, following a day with $V_{+}=340$.



Units on vertical axis are "required agents".

Validation of Queueing Model: Failure of Erlang-C

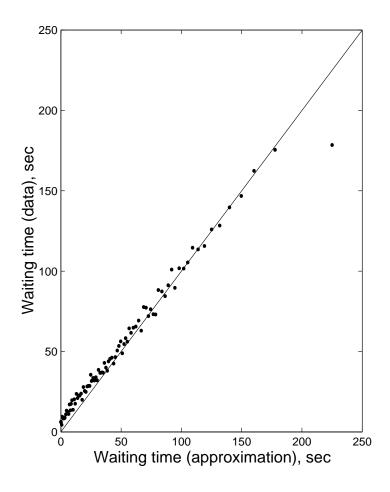
Figure 19: Agents' Occupancy versus Ave. Waiting Time



According to Erlang-C, the plot should be approx. linear with slope=1.

Validation of Queueing Model: Success of Erlang-A

Figure 20: Waiting Time: Data Ave. versus Erlang-A Prediction



Summary

Arrivals

- > Testing inhomogeneous Poisson process
- > Test for applicability of fixed effects model
- > Forecasting Poisson arrival rate
 - * Sqrt-Gaussian Model
 - * AR structure

• Service Times

- ▶ Lognormal
- ▷ Nonparametric regression with lognormal errors

• Abandonment Behavior

- > Graphical technique for nonparametric hazard rate estimation
- ▷ Estimation under high-censoring

Workload

- > Forecasting with prediction-confidence bands
- Validation of Queueing Models: Erlang-C (No) and Erlang-A(Yes).

Reference

- Brown, L. D., Gans, N., Mandelbaum, A., Sakov, A., Shen, H., Zeltyn, S. and Zhao, L. H. (2002), "Statistical Analysis of a Telephone Call Center: A Queueing-Science Perspective", submitted to Journal of American Statistics Association.
- Brown, L., Zhang, R., and Zhao, L. (2001), "Root un-root methodology for nonparametric density estimation", *Technical Report*, University of Pennsylvania.
- Brown, L., and Zhao, L. (2002), "A new test for the Poisson distribution", To appear in Sankhya.
- Levins, M. (2003), "On The New Local Variance Estimator", Working PhD Thesis, University of Pennsylvania.
- Shen, H. (2003), "Estimation, Confidence Intervals and Nonparametric Regression for Problems Involving Lognormal Distribution", Working Phd Thesis, University of Pennsylvania.

Model Diagnostics for Service Time Analysis

- Look at the residuals from the regression of Log(Service Time) on Time-of-day for the PS calls.
- Figures 21 and 22 give the histogram and normal quantile plot of the residuals, from which we can see that the residuals are pretty normal.
- Consequently provides additional validation of our assumption of the log-normality of the service times.

Figure 21: Histogram of The Residuals from Modeling Mean Log(Service Time) on Time-of-day (PS)

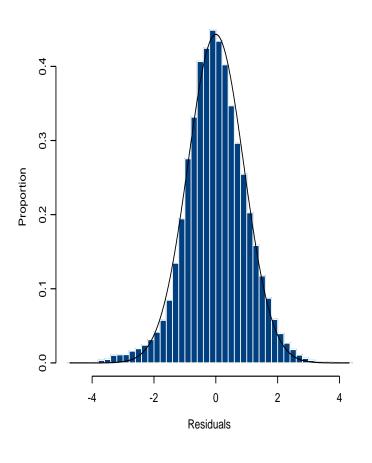
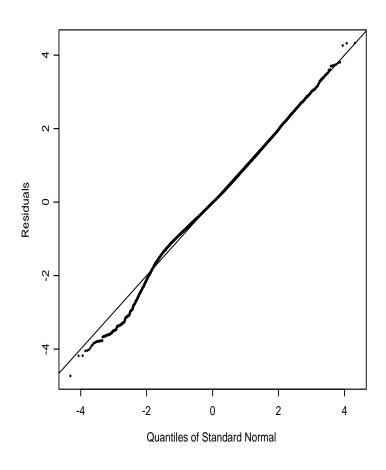


Figure 22: QQ-plot of The Residuals from Modeling Mean Log(Service Time) on Time-of-day (PS)



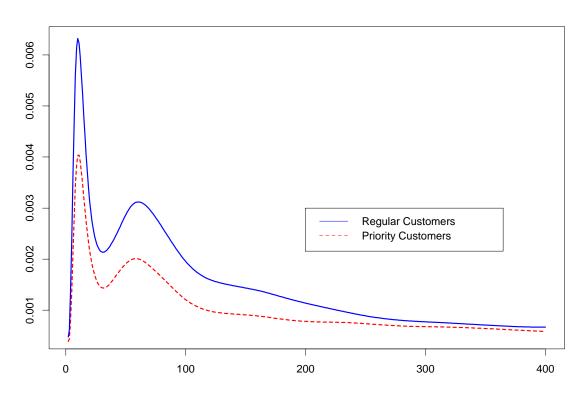
Human Patience

- Clear stochastic order among service types.
- Censoring rate is quite high. Most of the customers are served.
- Anomalistic behavior of K-M estimator, especially for PS and NE calls.

Table 1: Means, SDs and Medians for R (Nov.–Dec.)

	Mean	SD	Median
All Combined	803	905	457
PS	642	446	1048
NE	806	471	1225
NW	535	885	169
IN	550	591	302

Figure 23: Comparison Between Different Priority Customers



Patience Index

Let the means of V and R be m_V and m_R , and define

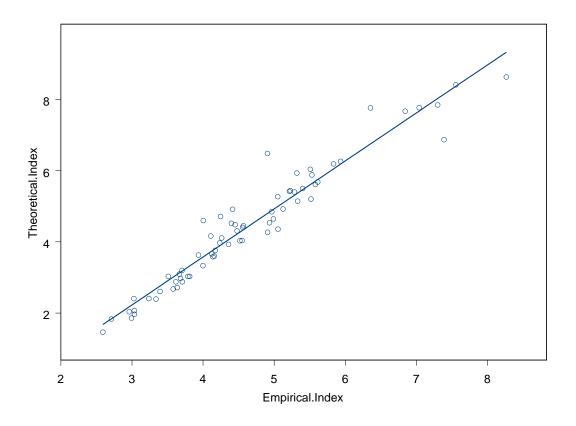
Patience Index
$$\stackrel{\triangle}{=} \frac{m_R}{m_V}$$
.

- Call-by-call data
- Survival analysis. High-censoring might be a problem.
- Ancillary measure:

Empirical Index
$$\stackrel{\triangle}{=} \frac{\text{\# served}}{\text{\# abandoned}}$$
.

- \triangleright The usual plug-in MLE for Patience Index if V and R are independent exponential.
- > Works well empirically.

Figure 24: Patience Indices: empirical vs. theoretical $(R^2 = 0.94)$



Estimation Procedure for the Gaussian Model

 μ , γ , σ_{α}^2 , σ_{ε}^2 and β_k need to be estimated.

• Treat the $\{\alpha_j\}$'s as if they were fixed effects and using least-squares to fit the model

$$V_{jk} = \alpha_j \beta_k + (\varepsilon_{jk} + \varepsilon_{jk}^*).$$

This yields estimates $\hat{\alpha}_j$, $\hat{\beta}_k$ and $\hat{\sigma}^2$.

• Estimate σ_{ε}^2 by method-of-moments as

$$\hat{\sigma}_{\varepsilon}^2 = \hat{\sigma}^2 - \frac{1}{4}.$$

• Use the "observations" $\hat{\alpha}_j$ to construct the least squares estimates of μ , γ and σ_{α}^2 by fitting the following model

$$\hat{\alpha}_j = \mu + \gamma V_{j-1,+} + \varepsilon_{\alpha j},$$

with $R^2 \approx 0.5$.