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/ ‘The Vast Call Center World' \

e 70% of all customer-business interactions occur in call centers.

e 3% of the U.S. working population is currently employed in call

centers.
> 1.55 - 6 million agents

> more than in agriculture
e 20% growth rate of the call center industry.
e State-of-art technology, but 70% for human cost.

e Factory floor of modern commerce.
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‘ Classical Queueing Theory I
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/ Some Calculations based on Erlang-C Model. \

Assume Poisson arrival rate \, service rate u/server (mean 1/pu),
A offered load,

o M/M/1:

> system stable iff p = A\ /u < 1;

p_.

Ave. # of customers in system: L = s

2
Ave. # of customers in queue: Q) = {=;

Ave. # of customers in service: L, =p =L — Q;

Ave. waiting time in system: w=L/p=1/(u — \);

v V.V V V

Ave. delay in queue: d =Q/p=w — 1/p.




/ ‘M/M/N and M/G/N Models. \

e M/M/N: exact formulae exist but are complicated.
e M/G/N: approximate formulae exist — Khintchine-Pollaczek
Formula.
> General service time distribution;
> Exact for M/G/1;
> Approximate linear relationship between w and ﬁ;

N P




/ A Call Center of Bank Anonymous of IsraelI \

e Small: 15 seats at most.

e T'ypes of service:
> information for current and prospective customers
> transactions for bank accounts
> stock-trading
> I'T support for users of the bank’s website

e Working hours:
> Sundays-Thursdays: TAM — 12AM
> Fridays: TAM — 2PM
> Saturdays: 8PM — 12AM
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‘Event history of an incoming call.

(units of rates are calls per month)
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/ The Call Center Data'

e Data = whole history of every agent-seeking call in 1999.
e 450,000 observations.

e Two operational changes:
> Separate agent pool for Internet Consulting since Aug;

> One aspect of the service-time data changed since Nov.

e Focus on
> weekdays of Nov. and Dec.

> normal business hours — 7TAM to midnight.
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Arrivals: Inhomogeneous Poisson.

Figure 1: Arrivals (to queue or service) — “Regular” Calls
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Figure 2: Arrivals (to queue or service) — IN, NW, and NE Calls
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w = INternet Consulting; NW = New Customer Service; NE = Stock Exchange.

\

/

11



-

-

. Break up the interval of a day into short blocks of time, say [

. Let T;o = 0 and

. Under the null hypothesis that the arrival rate is constant

4.

‘A Test for Inhomogeneous Poisson Process. \

(equal-length) blocks of length L.

T;;: the j-th ordered arrival time in the ¢-th block, ¢ =1,...,1
and 7 =1,...., J(7),
then define

L —T;;

Ri; = (J(@) +1—7) (—log (L - Tm_l)) .

within each given time interval, the { R;;} will be independent
standard exponential variables.

Use any customary test for the exponential distribution; for
example, Kolmogorov-Smirnov test. /
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Figure 3: Exponential (A=1) Quantile plot for {R;;} from Regular
calls (11:12am — 11:18am)

Exponential Quantile
4
o)
Bo

= 6 min, n = 420, Kolmogorov-Smirnov statistic X = 0.0316 and

Qle P-value is 0.2. /
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Figure 4: Exponential (A=1) Quantile plot for {R;;} of INternet calls
(Nov. 23)

Exponential Quantile

L = 60 min, n = 172, Kolmogorov-Smirnov statistic K = 0.0423

@d the P-value is 0.2. /

14




4 A

Figure 5: Exponential Quantile plot of {R;;} for all Regular calls
(Two outliers omitted.)
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e Erlang-C assumes exponential distribution.

> simple for calculation

> memoryless property

e How about this call center?

16
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Figure 6: Service Time Distribution from This Call Center
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Figure 7: Service Time Distribution from This Call Center
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‘ Service Times are Lognormal.

Figure 8: Histogram of Log(Service Time) (Nov + Dec)
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Figure 9: Log-normal QQ Plot of Service Time (Nov + Dec)
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/ Analysis of I \

e Lognormality holds
> Overall, and at

> Lower levels:
* when conditioning on time-of-day;
x for types of service, priorities of customers, individual
servers and days of the week.

e Analysis: Data with lognormal errors

> Mean service time as a function of time-of-day -

Nonparametric Regression

> Mean service time across different categories, like service
types, day-of-week - Anova

- /
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/ ‘A Property of Lognormal Distributions. \

If Z is lognormally distributed with mean v, and
Y =log(Z) ~ N(p, 0?), then

y = ehto/2,
Similarly, if Y|X =z ~ N(u(z),o(x)?), then

v(x) = et To(x)*/2 (1)

22



/ ‘ The Problem '

The data:
(X5, 2y, "R X, 2}

where Z|X = x has a lognormal distribution. For example, in a
regression setup,

X : the time-of-day of a call

and

Z : the corresponding service time.

We are interested in estimating

v(z) =E(Z|X =x)

Qith confidence band attached. Shen (PhD Thesis 2003)

/
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The Idea '

. Transform the original problem into a problem with normal

errors;
. Make inferences based on the transformed data;

. Back transform the inference results to the original scale.

24




‘ The Procedure ' \

X, Z} = {X,Yi} with Y; = log(Z:);

. The model is
Yi = u(X;) + o (X5)e
where €;|X; bR N(0, 1).
. Estimate pu(x) using any good existing nonparametric

regression method, e.g. local polynomial method.

. Estimate o(x) using some good local nonparametric regression
method, like difference-based estimate plus local polynomial

smoothing. We can get se,(z) from 6(x).

/
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/ ‘The Procedure (cont’) I \

5. We also need to estimate the variance of 6%(x) in order to get

seq 2 ().

6. Suppose [i(x) is (approximately) unbiased, then

ﬂ(X) + Z]__Oé/zSe,u (X)

will be an approximate 100(1 — «)% confidence interval for

p(x).
Similarly a 100(1 — «)% confidence interval for o*(x) is
approximately

5'2 (X) + Zl_a/zseaz (X)

Note: Clalculation of se 2 requires care, depending on the method

\ for estimating 6°. (See Levins PhD Thesis (2003).) /
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‘The Procedure (cont’) I \

7. Back-transform to the original scale and obtain the following

plug-in estimate for v(x),

eit(2)+6” (2)/2.

The corresponding 100(1 — )% confidence interval for v(x) is

o (A(X) 162 (%) /2)£Z1 _ o j2+/5e, ()2 +se,2 ()2 /4

Note:

f(z) and 6°(x) are asymptotically independent and very nearly

independent at any sample size, which gives us

se(fi(x) + 67(x)/2) ~ \/seu(x)2 + se 2 ()2 /4.

/
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CI) (n = 42613)

Figure 10: Mean of Log(Service Time) (Regular) vs. Time-of-day (95%
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Figure 11: Variance of Log(Service Time) (Regular) vs.
(95% CI) (n = 42613)
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Figure 13: Mean Service Time (INternet) vs. Time-of-day (95% CI)(n =
5066)
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/ ‘Customer Patience and Abandonment Behavior' \

e (Censored data

e Need to distinguish 3 Times:

> : the time a customer needs to wait

before reaching an agent;

> : the time a customer is willing to
wait before abandoning the system:;

> . actual observed time a customer

waits.
e Also observe the indicator Iry .

e Thus, V and R are censored.

- /
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/ Human Patience: Time willing to wait I

Figure 14: Survival curves for time willing to wait (Nov.—Dec.)
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\o Optional smoothing of the raw hazard rates estimates.

‘Hazard Rates Estimation Procedure' \

For a time ¢, choose an interval length d;, and estimate the
hazard rate at time ¢ 4 0; /2 using

| # of events during (¢,¢ + 9]
| # at risk at t| x & '

Usually 0; = 1 when t < ty, a pre-specified constant.

0; should be larger when t > ty. For example, 0; can be chosen
so that

N(t,t—l—cSt] > ng

where ]\Af(t,H(;t] is an estimate of the expected # of events
during (¢, + &¢].

/
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(Nov.—Dec.) (ng = 4)
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Figure 15: Hazard rate for the time willing to wait for Regular calls
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Figure 16: Hazard rate for virtual waiting time (Nov.—Dec.) (ng
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/ ‘ Workload '

Suppose at time ¢, the arrival rate is A(f) and the mean service
time is v(t), then the workload at time ¢ is defined as

e the expected time units of work arriving per unit of time.

e primitive quantity in building classical queueing models and

setting staffing levels.

37



/ Estimation of A(t) \

e A(t) is not a deterministic function of time of day, day of week

and type of customer. (Verified by a formal test in Brown and
Zhao (2002).)

e Random-effect model.
> Regular (non-holiday) weekdays from Aug. to Dec. indexed
by J;
> Divide the regular workhours from 7AM through midnight
into 68 quarter hours indexed by k;

- /
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>

>

Estimation of A(t) \

Njj: number of arrivals within the A-th quarter hour of the
7-th day.

Ny = Poiss(Aj), Ajr = Rjmi + €y, (2)
where

* Ti: fixed deterministic quarter-hourly effects with > 7, = 1;
* R;: suitable random daily effects;

* ?/7'133 random errors.

39



showed that, asymptotically,

V=vX+1/4 "% NV,

with good accuracy even for small .

/ ‘A Property of Poisson Variables.

Suppose X ~ Poiss(A), then Brown, Zhang and Zhao (2001)

~
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/ ‘An Equivalent Gaussian Model. \

o Let Vix = /Nji +

e (Gaussian model:

« tid

Vii = 01 + €%y, with e, ~ N (0, 1),
Ok = o0k + €jk, (3)
;= U —|—’)/‘/j_17_|_ —+ 5;*’

where 7" ~ N(0,0%*%), ejr ~ N(0,02), V; 4 = Zk;ij, and

*k k
&5

for j' < j.

and €, are independent of each other and of values of Vj i

e «a;: random effect with an AR(1) type structure.

\° > B =1. /
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Here pu, v, o

*2

‘ Estimation '

, 02 and (3} can be estimated by a combination of

least-squares and method of moments.

Denote the corresponding estimates as i, 4, 6**2, 62 and [y.

~
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Prediction of Tomorrow’s Ay I \

Following today’s value of V, tomorrow’s 6} is predicted to be
Ok = Bk (1 +4V4)
as an estimate of
O =0k (L+YVi+e™) +¢ (4)

where e** ~ N(0, 0**?) and € ~ N (0, 02) are independent.

Ay =607 = 3L (h+AVy)”.
Var(0y,) can be derived from (4), which can be used to calculate

prediction interval for 0.

The above interval can be squared to get prediction interval for

Ay /
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Figure 17: 95% prediction intervals for, A, following a day with V.
= 340. (“V, = 340" = “N, = 1800" (> N = 1570))
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\Vertical axis is prediction of # of arrivals/qtr. hr.. /
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/ ‘ Forecasting of the Load I

e Point estimate: L(t) = A(t)i(t).
e Approx. 95% Prediction Interval:
L(t) £ 2L(H POV (L)(¢)

where PCV = “Prediction CV? = Lrediction S.E.

and o
PCV(L)(t)
_ p/c\v2([\)(t) + P/CWQ(ﬁ)(t) + /C\V2(]\)(t) : P/(W2(ﬁ)(t)
~ POV (A)(t) + POV (9)(1)

given the independence of A(t) and ¥(t).
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with V. = 340.
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Figure 18: 95% prediction intervals for the load, L, following a day
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/ Validation of Queueing Model: Failure of Erlang-C I \

Figure 19: Agents’ Occupancy versus Ave. Waiting Time
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%ecording to Erlang-C, the plot should be approx. linear with slope=1 /
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/ Validation of Queueing Model:

of Erlang-A \

Figure 20: Waiting Time: Data Ave. versus Erlang-A Prediction
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Summary I \

> Testing inhomogeneous Poisson process

e Arrivals

> Test for applicability of fixed effects model
> Forecasting Poisson arrival rate

x Sqrt-Gaussian Model
* AR structure

e Service Times
> Lognormal

> Nonparametric regression with lognormal errors

> Graphical technique for nonparametric hazard rate estimation

> Estimation under high-censoring
e Workload

> Forecasting with prediction-confidence bands

\o Validation of Queueing Models: Erlang-C (No) and Erlang-A(Yes). /
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/ ‘ Model Diagnostics for Analysis I \

e Look at the residuals from the regression of Log(Service Time)
on Time-of-day for the PS calls.

e Figures 21 and 22 give the histogram and normal quantile plot
of the residuals, from which we can see that the residuals are

pretty normal.

e Consequently provides additional validation of our assumption
of the log-normality of the service times.
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Figure 22: QQ-plot of The Residuals from Modeling Mean Log(Service
Time) on Time-of-day (PS)
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Human Patience '

e (Clear stochastic order among service types.

\

e Censoring rate is quite high. Most of the customers are served.

e Anomalistic behavior of K-M estimator, especially for PS and

NE calls.

Table 1: Means, SDs and Medians for R (Nov.—Dec.)

Mean SD Median

All Combined 803 905 457
PS 642 446 1048
NE 806 471 1225
NW 535 885 169
591 302

\ IN 550
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Figure 23: Comparison Between Different Priority Customers
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/ ‘ Patience Index '

Let the means of V and R be my and mpg, and define

. AN MR
Patience Index = —.
my

e (Call-by-call data
e Survival analysis. High-censoring might be a problem.

e Ancillary measure:

. A # served
E ] Index = .
mpirical Index 2 abandonod

> The usual plug-in MLE for Patience Index if V' and R are

independent exponential.

> Works well empirically .

-
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/ Estimation Procedure for the Gaussian Model' \

u, v, o2, 02 and B need to be estimated.

e Treat the {a;}’s as if they were fixed effects and using least-squares
to fit the model

Vik = ;B + (g6 + €5k -
This yields estimates &;, Bk and 62.

e Estimate o2 by method-of-moments as

e Use the “observations” &; to construct the least squares estimates of

1, v and o2 by fitting the following model

aj = p+yVj-1,4 + €aj;

\\wmu#zua //
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