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The Vast Call Center World

• 70% of all customer-business interactions occur in call centers.

• 3% of the U.S. working population is currently employed in call
centers.

� 1.55 - 6 million agents

� more than in agriculture

• 20% growth rate of the call center industry.

• State-of-art technology, but 70% for human cost.

• Factory floor of modern commerce.
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Classical Queueing Theory

Erlang-C: M/M/N
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Some Calculations based on Erlang-C Model

Assume Poisson arrival rate λ, service rate µ/server (mean 1/µ),
λ/µ: offered load,

• M/M/1:

� system stable iff ρ = λ/µ < 1;

� Ave. # of customers in system: L = ρ
1−ρ ;

� Ave. # of customers in queue: Q = ρ2

1−ρ ;

� Ave. # of customers in service: Ls = ρ = L − Q;

� Ave. waiting time in system: w = L/ρ = 1/(µ − λ);

� Ave. delay in queue: d = Q/ρ = w − 1/µ.
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M/M/N and M/G/N Models

• M/M/N: exact formulae exist but are complicated.

• M/G/N: approximate formulae exist – Khintchine-Pollaczek
Formula.

� General service time distribution;

� Exact for M/G/1;

� Approximate linear relationship between w and ρ
1−ρ ;

∗ N
E(G)w ≈ KG

ρ
1−ρ
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A Call Center of Bank Anonymous of Israel

• Small: 15 seats at most.

• Types of service:

� information for current and prospective customers

� transactions for bank accounts

� stock-trading

� IT support for users of the bank’s website

• Working hours:

� Sundays-Thursdays: 7AM – 12AM

� Fridays: 7AM – 2PM

� Saturdays: 8PM – 12AM
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Event history of an incoming call

(units of rates are calls per month)
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The Call Center Data

• Data ⇒ whole history of every agent-seeking call in 1999.

• 450,000 observations.

• Two operational changes:

� Separate agent pool for Internet Consulting since Aug;

� One aspect of the service-time data changed since Nov.

• Focus on

� weekdays of Nov. and Dec.

� normal business hours – 7AM to midnight.
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Arrivals: Inhomogeneous Poisson

Figure 1: Arrivals (to queue or service) – “Regular” Calls
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Figure 2: Arrivals (to queue or service) – IN, NW, and NE Calls
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IN = INternet Consulting; NW = New Customer Service; NE = Stock Exchange.
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A Test for Inhomogeneous Poisson Process

1. Break up the interval of a day into short blocks of time, say I

(equal-length) blocks of length L.

2. Let Ti0 = 0 and
Tij : the j-th ordered arrival time in the i-th block, i = 1, . . . , I

and j = 1, ..., J(i),
then define

Rij = (J(i) + 1 − j)
(
− log

(
L − Tij

L − Ti,j−1

))
.

3. Under the null hypothesis that the arrival rate is constant
within each given time interval, the {Rij} will be independent
standard exponential variables.

4. Use any customary test for the exponential distribution; for
example, Kolmogorov-Smirnov test.
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Figure 3: Exponential (λ=1) Quantile plot for {Rij} from Regular
calls (11:12am – 11:18am)
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L = 6 min, n = 420, Kolmogorov-Smirnov statistic K = 0.0316 and
the P-value is 0.2.
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Figure 4: Exponential (λ=1) Quantile plot for {Rij} of INternet calls
(Nov. 23)
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L = 60 min, n = 172, Kolmogorov-Smirnov statistic K = 0.0423
and the P-value is 0.2.
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Figure 5: Exponential Quantile plot of {Rij} for all Regular calls
(Two outliers omitted.)
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Service Times

• Erlang-C assumes exponential distribution.

� simple for calculation

� memoryless property

• How about this call center?
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Figure 6: Service Time Distribution from This Call Center
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Figure 7: Service Time Distribution from This Call Center
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Service Times are Lognormal

Figure 8: Histogram of Log(Service Time) (Nov + Dec)
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Figure 9: Log-normal QQ Plot of Service Time (Nov + Dec)
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Analysis of Service Times

• Lognormality holds

� Overall, and at

� Lower levels:
∗ when conditioning on time-of-day;
∗ for types of service, priorities of customers, individual

servers and days of the week.

• Analysis: Data with lognormal errors

� Mean service time as a function of time-of-day -
Nonparametric Regression

� Mean service time across different categories, like service
types, day-of-week - Anova
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A Property of Lognormal Distributions

If Z is lognormally distributed with mean ν, and
Y = log(Z) ∼ N(µ, σ2), then

ν = eµ+σ2/2.

Similarly, if Y |X = x ∼ N(µ(x), σ(x)2), then

ν(x) = eµ(x)+σ(x)2/2 (1)
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The Problem

The data:
{Xi, Zi}n

i=1
i.i.d.∼ {X, Z}

where Z|X = x has a lognormal distribution. For example, in a
regression setup,

X : the time-of-day of a call

and
Z : the corresponding service time.

We are interested in estimating

ν(x) = E(Z|X = x)

with confidence band attached. Shen (PhD Thesis 2003)
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The Idea

1. Transform the original problem into a problem with normal
errors;

2. Make inferences based on the transformed data;

3. Back transform the inference results to the original scale.
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The Procedure

1. {Xi, Zi} ⇒ {Xi, Yi} with Yi = log(Zi);

2. The model is
Yi = µ(Xi) + σ(Xi)εi

where εi|Xi
i.i.d.∼ N(0, 1).

3. Estimate µ(x) using any good existing nonparametric
regression method, e.g. local polynomial method.

4. Estimate σ(x) using some good local nonparametric regression
method, like difference-based estimate plus local polynomial
smoothing. We can get seµ(x) from σ̂(x).
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The Procedure (cont’)

5. We also need to estimate the variance of σ̂2(x) in order to get
seσ2(x).

6. Suppose µ̂(x) is (approximately) unbiased, then

µ̂(x) ± Z1−α/2seµ(x)

will be an approximate 100(1 − α)% confidence interval for
µ(x).
Similarly a 100(1 − α)% confidence interval for σ2(x) is
approximately

σ̂2(x) ± Z1−α/2seσ2(x).

Note: Calculation of seσ2 requires care, depending on the method

for estimating σ̂2. (See Levins PhD Thesis (2003).)
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The Procedure (cont’)

7. Back-transform to the original scale and obtain the following
plug-in estimate for ν(x),

eµ̂(x)+σ̂2(x)/2;

The corresponding 100(1 − α)% confidence interval for ν(x) is

e(µ̂(x)+σ̂2(x)/2)±Z1−α/2

√
seµ(x)2+seσ2 (x)2/4.

Note:

µ̂(x) and σ̂2(x) are asymptotically independent and very nearly

independent at any sample size, which gives us

se(µ̂(x) + σ̂2(x)/2) ≈
√

seµ(x)2 + seσ2(x)2/4.
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Figure 10: Mean of Log(Service Time) (Regular) vs. Time-of-day (95%

CI) (n = 42613)
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Figure 11: Variance of Log(Service Time) (Regular) vs. Time-of-day

(95% CI) (n = 42613)
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Figure 12: Mean Service Time (Regular) vs. Time-of-day (95% CI) (n =

42613)
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Figure 13: Mean Service Time (INternet) vs. Time-of-day (95% CI)(n =

5066)
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Customer Patience and Abandonment Behavior

• Censored data

• Need to distinguish 3 Times:

� Virtual waiting time V : the time a customer needs to wait
before reaching an agent;

� Time willing to wait R: the time a customer is willing to
wait before abandoning the system;

� Waiting time W = V ∧ R: actual observed time a customer
waits.

• Also observe the indicator IR<V .

• Thus, V and R are censored.
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Human Patience: Time willing to wait

Figure 14: Survival curves for time willing to wait (Nov.–Dec.)
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Hazard Rates Estimation Procedure

• For a time t, choose an interval length δt, and estimate the
hazard rate at time t + δt/2 using

[ # of events during (t, t + δt] ]
[ # at risk at t] × δt

.

• Usually δt = 1 when t ≤ t0, a pre-specified constant.

• δt should be larger when t ≥ t0. For example, δt can be chosen
so that

N̂(t,t+δt] ≥ n0

where N̂(t,t+δt] is an estimate of the expected # of events
during (t, t + δt].

• Optional smoothing of the raw hazard rates estimates.
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Figure 15: Hazard rate for the time willing to wait for Regular calls
(Nov.–Dec.) (n0 = 4)
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Figure 16: Hazard rate for virtual waiting time (Nov.–Dec.) (n0 = 4)
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Workload

Suppose at time t, the arrival rate is Λ(t) and the mean service
time is ν(t), then the workload at time t is defined as

L(t) = Λ(t)ν(t).

• the expected time units of work arriving per unit of time.

• primitive quantity in building classical queueing models and
setting staffing levels.

37



�

�

�

�

Estimation of Λ(t)

• Λ(t) is not a deterministic function of time of day, day of week
and type of customer. (Verified by a formal test in Brown and
Zhao (2002).)

• Random-effect model.

� Regular (non-holiday) weekdays from Aug. to Dec. indexed
by j;

� Divide the regular workhours from 7AM through midnight
into 68 quarter hours indexed by k;
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Estimation of Λ(t)

� Njk: number of arrivals within the k-th quarter hour of the
j-th day.

�
Njk = Poiss(Λjk), Λjk = Rjτk + ε′jk, (2)

where
∗ τk: fixed deterministic quarter-hourly effects with

∑
τk = 1;

∗ Rj : suitable random daily effects;
∗ ε′jk: random errors.
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A Property of Poisson Variables

Suppose X ∼ Poiss(λ), then Brown, Zhang and Zhao (2001)
showed that, asymptotically,

V =
√

X + 1/4
app.∼ N(

√
λ,

1
4
),

with good accuracy even for small λ.
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An Equivalent Gaussian Model

• Let Vjk =
√

Njk + 1
4 ;

• Gaussian model:

Vjk = θjk + ε∗jk with ε∗jk
iid∼ N

(
0, 1

4

)
,

θjk = αjβk + εjk,

αj = µ + γVj−1,+ + ε∗∗j ,

(3)

where ε∗∗j ∼ N(0, σ∗∗2), εjk ∼ N(0, σ2
ε), Vj,+ =

∑
k

Vjk, and

ε∗∗j and εjk are independent of each other and of values of Vj′,k

for j′ < j.

• αj : random effect with an AR(1) type structure.

• ∑
β2

k = 1.
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Estimation

Here µ, γ, σ∗∗2, σ2
ε and βk can be estimated by a combination of

least-squares and method of moments.

Denote the corresponding estimates as µ̂, γ̂, σ̂∗∗2, σ̂2
ε and β̂k.
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Prediction of Tomorrow’s Λk

• Following today’s value of V+, tomorrow’s θk is predicted to be

θ̂k = β̂k (µ̂ + γ̂V+)

as an estimate of

θk = βk (µ + γV+ + ε∗∗) + ε (4)

where ε∗∗ ∼ N(0, σ∗∗2) and ε ∼ N(0, σ2
ε) are independent.

•
Λ̂k = θ̂2

k = β̂2
k (µ̂ + γ̂V+)2 .

• Var(θ̂k) can be derived from (4), which can be used to calculate
prediction interval for θ̂k.

• The above interval can be squared to get prediction interval for
Λ̂k.
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Figure 17: 95% prediction intervals for, Λ, following a day with V+

= 340. (“V+ = 340” ⇒ “N+ = 1800” (> N+ = 1570))

Vertical axis is prediction of # of arrivals/qtr. hr..
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Forecasting of the Load

• Point estimate: L̂(t) = Λ̂(t)ν̂(t).

• Approx. 95% Prediction Interval:

L̂(t) ± 2L̂(t)P̂CV (L̂)(t)

where PCV = “Prediction CV ” = Prediction S.E.
Mean

and

P̂CV (L̂)(t)

=
√

P̂CV
2
(Λ̂)(t) + P̂CV

2
(ν̂)(t) + P̂CV

2
(Λ̂)(t) · P̂CV

2
(ν̂)(t)

≈
√

P̂CV
2
(Λ̂)(t) + P̂CV

2
(ν̂)(t)

given the independence of Λ̂(t) and ν̂(t).
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Figure 18: 95% prediction intervals for the load, L, following a day
with V+ = 340.

Units on vertical axis are “required agents”.
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Validation of Queueing Model: Failure of Erlang-C

Figure 19: Agents’ Occupancy versus Ave. Waiting Time
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According to Erlang-C, the plot should be approx. linear with slope=1.
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Validation of Queueing Model: Success of Erlang-A

Figure 20: Waiting Time: Data Ave. versus Erlang-A Prediction
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Summary

• Arrivals

� Testing inhomogeneous Poisson process

� Test for applicability of fixed effects model

� Forecasting Poisson arrival rate

∗ Sqrt-Gaussian Model

∗ AR structure

• Service Times

� Lognormal

� Nonparametric regression with lognormal errors

• Abandonment Behavior

� Graphical technique for nonparametric hazard rate estimation

� Estimation under high-censoring

• Workload

� Forecasting with prediction-confidence bands

• Validation of Queueing Models: Erlang-C (No) and Erlang-A(Yes).
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Model Diagnostics for Service Time Analysis

• Look at the residuals from the regression of Log(Service Time)
on Time-of-day for the PS calls.

• Figures 21 and 22 give the histogram and normal quantile plot
of the residuals, from which we can see that the residuals are
pretty normal.

• Consequently provides additional validation of our assumption
of the log-normality of the service times.
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Figure 21: Histogram of The Residuals from Modeling Mean Log(Service

Time) on Time-of-day (PS)
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Figure 22: QQ-plot of The Residuals from Modeling Mean Log(Service

Time) on Time-of-day (PS)
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Human Patience

• Clear stochastic order among service types.

• Censoring rate is quite high. Most of the customers are served.

• Anomalistic behavior of K-M estimator, especially for PS and
NE calls.

Table 1: Means, SDs and Medians for R (Nov.–Dec.)

Mean SD Median

All Combined 803 905 457

PS 642 446 1048

NE 806 471 1225

NW 535 885 169

IN 550 591 302
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Figure 23: Comparison Between Different Priority Customers
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Patience Index

Let the means of V and R be mV and mR, and define

Patience Index
�
=

mR

mV
.

• Call-by-call data

• Survival analysis. High-censoring might be a problem.

• Ancillary measure:

Empirical Index
�
=

# served
# abandoned

.

� The usual plug-in MLE for Patience Index if V and R are
independent exponential.

� Works well empirically .
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Figure 24: Patience Indices: empirical vs. theoretical (R2 = 0.94)
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Estimation Procedure for the Gaussian Model

µ, γ, σ2
α, σ2

ε and βk need to be estimated.

• Treat the {αj}’s as if they were fixed effects and using least-squares

to fit the model

Vjk = αjβk +
(
εjk + ε∗jk

)
.

This yields estimates α̂j , β̂k and σ̂2.

• Estimate σ2
ε by method-of-moments as

σ̂2
ε = σ̂2 − 1

4
.

• Use the “observations” α̂j to construct the least squares estimates of

µ, γ and σ2
α by fitting the following model

α̂j = µ + γVj−1,+ + εαj ,

with R2 ≈ 0.5.
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