
Back to the Multiserver Queue with

Abandonment and Retrials
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Sample Path Construction of a Multiserver

Queue with Abandonment and Retrials

Q1(t) = Q1(0) + Aa

(∫ t

0
λsds

)

+ Ac
21

(∫ t

0
Q2(s)µ

2
sds

)
−Ac

(∫ t

0
(Q1(s) ∧ ns)µ

1
sds

)

− Ab
12

(∫ t

0
(Q1(s)− ns)

+βs(1− ψs)ds

)

− Ab

(∫ t

0
(Q1(s)− ns)

+βsψsds

)

and

Q2(t) =

Q2(0) + Ab
12

(∫ t

0
(Q1(s)− ns)

+βs(1− ψs)ds

)

− Ac
21

(∫ t

0
Q2(s)µ

2
sds

)
.

A··
d
= Poisson(1), independent.
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Fluid Limit for the Multiserver Queue

with Abandonment and Retrials

(2 O.D.E.’s)

d

dt
Q(0)

1 (t) = λt + µ2
t Q(0)

2 (t)− µ1
t

(
Q(0)

1 (t) ∧ nt

)

− βt

(
Q(0)

1 (t)− nt

)+

and

d

dt
Q(0)

2 (t) = βt(1− ψt)
(
Q(0)

1 (t)− nt

)+
− µ2

t Q(0)
2 (t) .

Can be solved numerically (forward Euler) in a spreadsheet.
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Diffusion Moments

for the Multiserver Queue with

Abandonment and Retrials

Let E1(t) = E
[
Q(1)

1 (t)
]
, E2(t) = E

[
Q(1)

2 (t)
]
.

Assume the set
{

t
∣∣∣Q(0)

1 (t) = nt

}
has Lebesque measure zero.

Then

d

dt
E1(t) = −

(
µ1

t 1{Q(0)
1 (t)≤nt} + βt1{Q(0)

1 (t)>nt}
)

E1(t)

+ µ2
t E2(t)

and

d

dt
E2(t) = βt(1− ψt)E1(t)1{Q(0)

1 (t)≥nt} − µ2
t E2(t).
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More Diffusion Moments

(A Grand Total of 7 O.D.E.’s)

Let V1(t) = Var
[
Q(1)

1 (t)
]
, V2(t) = Var

[
Q(1)

2 (t)
]
,

and C(t) = Cov
[
Q(1)

1 (t), Q(1)
1 (t)

]
. Then

d

dt
V1(t) = − 2

(
βt1{Q(0)

1 (t)>nt} + µ1
t 1{Q(0)

1 (t)≤nt}
)

V1(t)

+ λt + βt

(
Q(0)

1 (t)− nt

)+
+ µ1

t

(
Q(0)

1 (t) ∧ nt

)

+ µ2
t Q(0)

2 (t),

d

dt
V2(t) = − 2µ2

t V2(t) + βt(1− ψt)
(
Q(0)

1 (t)− nt

)+

+ µ2
t Q(0)

2 (t) + 2βt(1− ψt)C(t)1{Q(0)
1 (t)≥nt},

and

d

dt
C(t) = −

(
βt1{Q(0)

1 (t)≥nt} + µ1
t 1{Q(0)

1 (t)<nt}
)

C(t)

+ µ2
t (V2(t)− C(t))− βt(1− ψt)

(
Q(0)

1 (t)− nt

)

− µ2
t Q(0)

2 (t) .
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Example: Spiked Arrival Rate:
λ(t) = 110, if 9 ≤ t ≤ 11 otherwise λ(t) = 10,

µ1 = 1.0, µ2 = 0.1, β = 2.0, n = 50, ψ = 0.25
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Lambda(t) = 110 (on 9 <= t <= 11), 110 (otherwise). n = 50, mu1 = 1.0, mu2 = 0.1, beta = 2.0, P(retrial) = 0.25
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Theory Generalizes to

Jackson Networks with Abandonment
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.

.
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i iij

λt
j

µt (Qj(t)    nt) 
j j

βt (Qj(t) − nt)
+j j

βtψt (Qk(t) − nt)
+k kkj

Further generalizations: Pre-Emptive Priorities
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Definition of Lipschitz Functions

A function f : V → IR is a Lipschitz function if ||f || < ∞,

where

||f || ≡ sup
x 6=y

|f(x)− f(y)|
|x− y| ∨ |f(0)| .

For all x and y in V , we then have

|f(x)− f(y)| ≤ ||f || |x− y|

and

|f(x)| ≤ ||f ||(1 + |x|) .

8



Scalable Lipschitz Differentiability

We say that f : V → IR is scalable Lipschitz differentiable at x,

if there exists a function ∧fx : V → IR such that

lim
|y|↓0

|f(x + y)− f(x)− ∧fx(y)|
|y| = 0,

where ∧fx(·) is a Lipschitz function, or

‖ ∧ fx‖ < ∞,

and ∧fx(·) is scalable, or

∧fx(λy) = λ ∧ fx(y)

for all λ ≥ 0.

Note: We typically write ∧fx(y) as ∧f(x; y).
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Calculus of Scalable Lipschitz Derivatives

1. f : IRn → IRm differentiable at x ∈ IRn, with Jacobian matrix

Df(x). Then

∧f(x; y) = y ·Df(x).

2. Addition Formula:

Λ(f + g)(x; y) = Λf(x; y) + Λg(x; y).

3. Multiplication Formula:

Λ(fg)(x; y) = f(x) · Λg(x; y) + g(x) · Λf(x; y).

4. Composition Formula:

Λ(f ◦ g)(x; y) = Λf (g(x); g(x) · Λg(x; y)) .

5. Maximum Formula:

Λ(max(f, g))(x; y)

= Λf(x; y) · 1{f(x)>g(x)} + Λg(x; y) · 1{f(x)<g(x)}

+max(Λf,Λg)(x; y) · 1{f(x)=g(x)}.
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