Back to the Multiserver Queue with

Abandonment and Retrials
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Sample Path Construction of a Multiserver

Queue with Abandonment and Retrials
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A < Poisson(1), independent.



Fluid Limit for the Multiserver Queue
with Abandonment and Retrials
(2 O.D.E.s)
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Can be solved numerically (forward Euler) in a spreadsheet.



Diffusion Moments
for the Multiserver Queue with

Abandonment and Retrials

Let B.(t) = E [ §1>(t)], Fo(t) = E [ g”(t)]
Assume the set {t ‘Q&O)(t) = nt} has Lebesque measure zero.

Then
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More Diffusion Moments
(A Grand Total of 7 O.D.E.s)

Let Vi(t) = Var [ (t)], Vo(t) = Var [ (t)},

and C(¢t) = Cov [ (t), (t)]. Then
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Example: Spiked Arrival Rate:
A(t) =110, if 9 <t < 11 otherwise \(¢t) = 10,

pu1 =1.0,u2 =0.1, 3 =2.0,n =50,y = 0.25

Lambda(t) = 110 (on 9 <=t <= 11), 110 (otherwise). n = 50, mul = 1.0, mu2 = 0.1, beta = 2.0, P(retrial) = 0.25
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Theory Generalizes to

Jackson Networks with Abandonment
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Further generalizations: Pre-Emptive Priorities



Definition of Lipschitz Functions

A function f:V — R isa Lipschitz function if ||f]| < oo,
where

1] = sup @ = F@)

TFEY ‘37 — vy

V[ f(0)].

For all z and y in V, we then have

[f(x) = fF)I < £ |z =yl

and

[f (@) < [FII(L A+ z]) -



Scalable Lipschitz Differentiability

We say that f : V — IR is scalable Lipschitz differentiable at x,

if there exists a function A f, : V — IR such that

im [f (@ +y) — fl@) — Afa(y)] _
1|10 |y

0,

where Af.(-) is a Lipschitz function, or
| A fall < oo,

and A f.(-) is scalable, or

ANfz(ANy) = AN f2(y)

forall A > 0.

Note: We typically write A f.(y) as Af(x;y).



Calculus of Scalable Lipschitz Derivatives

1. f: R" — R™ differentiable at x € IR", with Jacobian matrix
Df(x). Then

Af(z y) =y Df(z).
2. Addition Formula:
NS+ g)(iy) =Nz y) + Ng(z)y).
3. Multiplication Formula:
N(fg)(z y) = f(z) - Ng(z;y) + g(z) - Af(z;y).
4. Composition Formula:
A(fog)(xiy) = Nf(9(x); g(x) - Ng(z;y)) .

5. Maximum Formula:

A(max(f, 9))(z;y)
= Af(@y)  Lipayse@) + A& y) - Lipa) <o)

+ max(Af,Ag)(z;y) - 1if)=g(a)}-
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