
Mt/Mt/nt : Strong Approximations

Parameters: λt, µt, nt.

Q(t)

2

nt

1

.

.

.

λt µt (Q(t)    nt ) 

Q = {Q(t) | t ≥ 0 } : total number in system.

Model:

Q(t) ≡ Q(0) + A1

(∫ t

0
λsds

)
−A2

(∫ t

0
µs · (Q(s) ∧ ns)ds

)
,

where A1 and A2 are two independent Poisson (1) processes.

Source: Predictable2 FINAL.tex
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Uniform Acceleration

of the Mt/Mt/nt Queue

λ ↔ ηλ, n ↔ ηn.

Take the limit as η →∞.

Physical interpretation:

scaling up capacity in response to a similar scale up of the offered

load.

Formally:

for any η > 0, consider

Qη(t) = Qη(0) + A1

(∫ t

0
ηλsds

)

− A2

(∫ t

0
µs · (Qη(s) ∧ ηns) ds

)
.
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Mt/Mt/nt Fluid

Limit, Approximation, Model

Assume λ and µ are locally integrable functions. Then

lim
η→∞

1

η
Qη(t) = Q(0)(t) u.o.c., a.s.

given convergence at t = 0.

Here

Q(0)(t) = Q(0)(0) +

∫ t

0

[
λs − µs ·

(
Q(0)(s) ∧ ns

)]
ds ,

or more compactly

d

dt
Q(0)(t) = λt − µt ·

(
Q(0)(t) ∧ nt

)
.
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Mt/Mt/nt Diffusion Limit

Assume λ and µ are locally integrable functions. Then

lim
η→∞

√
η

[
1

η
Qη(t)−Q(0)(t)

]
d
= Q(1)(t) ,

given convergence at t = 0.

The convergence is in D[0,∞], and

Q(1)(t) = Q(1)(0)

−
∫ t

0
µs1{Q(0)(s)<ns}Q

(1)(s)+ds

+

∫ t

0
µs1{Q(0)(s)≤ns}Q

(1)(s)−ds

+ B

(∫ t

0
λs + µs ·

(
Q(0)(t) ∧ ns

)
ds

)
.

Here B(·) is a standard Brownian motion.
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Strong Approximations: Ai(t) ↔ t + Bi(t)

1

η
Qη(t) ≈ 1

η
Qη(0)+

+

∫ t

0

[
λs − µs

(
1

η
Qη(s) ∧ ns

)]
ds

+
1

η
B1

(
η

∫ t

0
λsds

)
− 1

η
B2

(
η

∫ t

0
µs

(
1

η
Qη(s) ∧ ns

)
ds

)

1. FSLLN: As η ↑ ∞, 1
η

Qη → Q(0) u.o.c., a.s., given convergence

at t = 0.

Here Q(0) is the unique solution to the ODE

d

dt
Q(0)(t) = λt − µt

(
Q(0)(t) ∧ nt

)
, t ≥ 0.

Proof: FSLLN for the Bi’s, combined with Gronwall.

2. FCLT: As η ↑ ∞,
√

η
[
1
η

Qη −Q(0)
]

d→ Q(1),

given convergence at t = 0.

Here Q(1) is the unique solution to the SDE...

Proof:
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Proof of FCLT

1. Brownian Term: as before, based on self-similarity & additivity

& time-change, we get that it is distributed as:

B

(∫ t

0
[λs + µs(Q

(0)(s) ∧ ns)]ds

)
, t ≥ 0.

2. Drift =
√

η
∫ t

0

[
fs

(
1
η

Qη(s)
)
− fs

(
Q(0)(s)

)]
ds

where ft(x) = λt − µt(x ∧ nt) , x ∈ IR1.

If indeed Qη(t)
d
= ηQ(0)(t) +

√
η Q(1)(t) + o

(√
η

)
,

then letting ε = 1/
√

η ,

Drift
d≈

∫ t

0

1

ε
[fs(Q

(0)(s) + εQ(1)(s))− fs(Q
(0)(s))]ds

−→
ε↓∞

∫ t

0
∧fs(Q

(0)(s);Q(1)(s))ds

in which ∧ft(x; y) = “ lim
ε↓0

”
1

ε
[ft(x + εy)− ft(x)],

must be defined for continuous, but non-differentiable functions.
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“Extended Calculus”

Let f : IR1→IR1 be continuous at x, with left- and right-hand

derivatives at x. Then,

∧f(x; y) = f ′(x+)y+ − f ′(x−)y− , x, y ∈ IR1.

Example :

f(x) = x ∧ a

∧f(x; y) = y 1x<a + 1x=a[0.y+ − 1.y−] =

= y 1x<a − y−1x=a = y+1x<a − y−1x≥a

Example : Slutsky’s Theorem (extended)

Suppose Xn→µ,
√

n (Xn − µ)
d→ Z, as n ↑ ∞.

Then f(xn)→f(µ) and

√
n [f(Xn)− f(µ)]

d→ ∧f(µ;Z)

= f ′(µ+)Z+ − f ′(µ−)Z−

(= f ′(µ)Z when ∃ f ′(µ)).
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Example : FCLT for Mt/Mt/nt

Recall

Q(1)(t)
d≈

∫ t

0
∧fs(Q

(0)(s);Q(1)(s))ds + B(· · ·)

where ft(x) = λt − µt(x ∧ nt).

Since ∧ft(x, y) = −µt[y+1x<nt
− y−1x≤nt

], we conclude

FCLT: lim
η↑∞

√
η

[
1

η
Qη(t)−Q(0)(t)

]
d
= Q(1), t ≥ 0 ,

where Q(1) is the unique solution of the following SDE:

Q(1)(t) = Q(1)(0) −
∫ t

0
µs · 1{Q(0)(s)<ns}Q

(1)(s)+ds

+

∫ t

0
µs · 1{Q(0)(s)≤ns}Q

(1)(s)−ds

+ B

(∫ t

0
[λs + µs(Q

(0)(s) ∧ ns)]ds

)
, t ≥ 0.
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Differential Equations for the Diffusion

Moments of the Mt/Mt/nt Queue

If
{

t
∣∣ Q(0)(t) = nt

}
has Lebesque measure zero, then

Q(1)(·) is a Gaussian process. Furthermore,

d

dt
E

[
Q(1)(t)

]
= −µt1{Q(0)(t)≤nt}E

[
Q(1)(t)

]
,

d

dt
Var

[
Q(1)(t)

]
= −2µt1{Q(0)(t)≤nt}Var

[
Q(1)(t)

]

+λt + µt

(
Q(0)(t) ∧ nt

)
,

and

d

dt
Cov

[
Q(1)(s), Q(1)(t)

]

= −µt1{Q(0)(t)≤nt}Cov
[
Q(1)(s), Q(1)(t)

]
.

The above is solvable numerically,

in a spreadsheet, via forward increments.

9



Waiting Time

t t + W (0)(t)

W (0)(t)

 Q (0)(t)

D (0)

A (0)

 A(1)(t)

 D(1)(t+W(0)(t))

A(1)(t) − D(1)(t+W(0)(t))
 

d(0)(t+W(0)(t))

 A(0)(t)

 A(0)(t)+A (1)(t)

t+W(0)(t)

D (0
)

D (0
) +D

 (1
)
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Virtual Waiting Times for the

Mt/Mt/nt/∞/FCFS Queue

Fix a time τ .

Define
{

Q̂(t) | t ≥ 0
}

to be the queue length process associated

with an Mt/Mt/nt system, with parameters µt and nt as before, but

with arrival rates λ̂t that are modified as follows:

λ̂t =

{
λt if t ≤ τ,

0 if t > τ.

The virtual waiting time for a customer arriving at time τ is

W (τ)− τ where

W (τ) = inf
{

t ≥ τ
∣∣ Q̂(t) ≤ nt − 1

}
.

The uniformly-accelerated version is

W η(τ) = inf
{

t ≥ τ
∣∣ Q̂η(t) ≤ ηnt − 1

}
.
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Virtual Waiting Time: Fluid Limit

FSLLN lim
η→∞

W η = W (0) a.s.

where

W (0)(τ) = inf
{

t ≥ τ
∣∣∣ Q̂(0)(t) ≤ nt

}

with

Q̂(0)(t) = Q(0)(τ)−
∫ t

τ

µsnsds.

The analysis is extendable to the

process
{

W (0)(τ) | τ ≥ 0
}

(from merely the random variable W (0)(τ)).
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Virtual Waiting Time: Diffusion Limit

FCLT lim
η→∞

√
η (W η −W (0))

d
= W (1)

where

W (1)(τ) =
Q̂(1)(W (0)(τ))

µW (0)(τ)nW (0)(τ)

If Q̂(1) is a Gaussian process, then Var
[
W (1)(τ)

]
is calculated via

Var
[
Q̂(1)(W (0)(τ))

]
= Var

[
Q(1)(τ)

]
+

∫ W (0)(τ)

τ

µsnsds.

The analysis is extendable to the

stochastic process
{

W (1)(τ) | τ ≥ 0
}

(from merely the random variable W (1)(τ)).
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