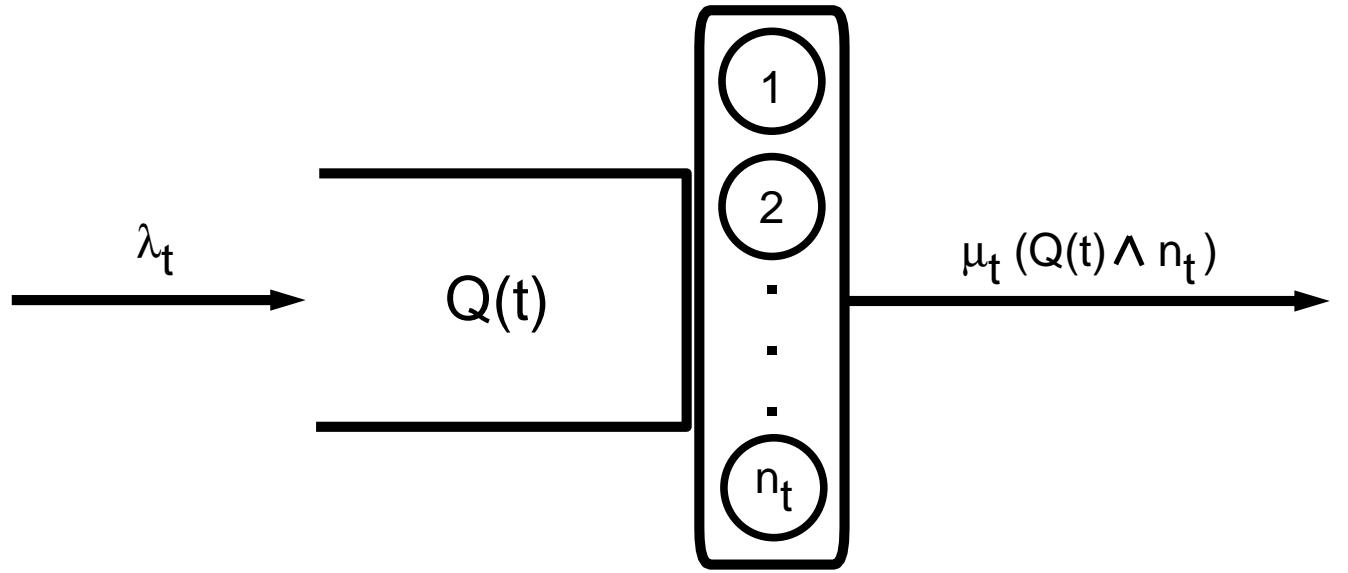


M_t/M_t/n_t : Strong Approximations

Parameters: λ_t, μ_t, n_t .



$Q = \{ Q(t) \mid t \geq 0 \}$: total number in system.

Model:

$$Q(t) \equiv Q(0) + A_1 \left(\int_0^t \lambda_s ds \right) - A_2 \left(\int_0^t \mu_s \cdot (Q(s) \wedge n_s) ds \right),$$

where A_1 and A_2 are two independent Poisson (1) processes.

Source: Predictable2_FINAL.tex

Uniform Acceleration of the $M_t/M_t/n_t$ Queue

$\lambda \leftrightarrow \eta\lambda, n \leftrightarrow \eta n.$

Take the limit as $\eta \rightarrow \infty$.

Physical interpretation:

scaling up **capacity** in response to a similar scale up of the **offered load**.

Formally:

for any $\eta > 0$, consider

$$Q^\eta(t) = Q^\eta(0) + A_1 \left(\int_0^t \eta \lambda_s ds \right) - A_2 \left(\int_0^t \mu_s \cdot (Q^\eta(s) \wedge \eta n_s) ds \right).$$

M_t/M_t/n_t Fluid

Limit, Approximation, Model

Assume λ and μ are locally integrable functions. Then

$$\lim_{\eta \rightarrow \infty} \frac{1}{\eta} Q^\eta(t) = Q^{(0)}(t) \quad u.o.c., a.s.$$

given convergence at $t = 0$.

Here

$$Q^{(0)}(t) = Q^{(0)}(0) + \int_0^t \left[\lambda_s - \mu_s \cdot (Q^{(0)}(s) \wedge n_s) \right] ds,$$

or more compactly

$$\frac{d}{dt} Q^{(0)}(t) = \lambda_t - \mu_t \cdot (Q^{(0)}(t) \wedge n_t).$$

M_t/M_t/n_t Diffusion Limit

Assume λ and μ are locally integrable functions. Then

$$\lim_{\eta \rightarrow \infty} \sqrt{\eta} \left[\frac{1}{\eta} Q^\eta(t) - Q^{(0)}(t) \right] \stackrel{d}{=} Q^{(1)}(t),$$

given convergence at $t = 0$.

The convergence is in $D[0, \infty]$, and

$$\begin{aligned} Q^{(1)}(t) &= Q^{(1)}(0) \\ &\quad - \int_0^t \mu_s \mathbf{1}_{\{Q^{(0)}(s) < n_s\}} Q^{(1)}(s)^+ ds \\ &\quad + \int_0^t \mu_s \mathbf{1}_{\{Q^{(0)}(s) \leq n_s\}} Q^{(1)}(s)^- ds \\ &\quad + B \left(\int_0^t \lambda_s + \mu_s \cdot (Q^{(0)}(s) \wedge n_s) ds \right). \end{aligned}$$

Here $B(\cdot)$ is a standard Brownian motion.

Strong Approximations: $A_i(t) \leftrightarrow t + B_i(t)$

$$\begin{aligned}
\frac{1}{\eta} Q^\eta(t) &\approx \frac{1}{\eta} Q^\eta(0) + \\
&+ \int_0^t \left[\lambda_s - \mu_s \left(\frac{1}{\eta} Q^\eta(s) \wedge n_s \right) \right] ds \\
&+ \frac{1}{\eta} B_1 \left(\eta \int_0^t \lambda_s ds \right) - \frac{1}{\eta} B_2 \left(\eta \int_0^t \mu_s \left(\frac{1}{\eta} Q^\eta(s) \wedge n_s \right) ds \right)
\end{aligned}$$

1. **FSLLN:** As $\eta \uparrow \infty$, $\frac{1}{\eta} Q^\eta \rightarrow Q^{(0)}$ u.o.c., a.s., given convergence at $t = 0$.

Here $Q^{(0)}$ is the unique solution to the ODE

$$\frac{d}{dt} Q^{(0)}(t) = \lambda_t - \mu_t (Q^{(0)}(t) \wedge n_t), \quad t \geq 0.$$

Proof: FSLLN for the B_i 's, combined with Gronwall.

2. **FCLT:** As $\eta \uparrow \infty$, $\sqrt{\eta} \left[\frac{1}{\eta} Q^\eta - Q^{(0)} \right] \xrightarrow{d} Q^{(1)}$, given convergence at $t = 0$.

Here $Q^{(1)}$ is the unique solution to the SDE...

Proof:

Proof of FCLT

1. **Brownian Term**: as before, based on self-similarity & additivity & time-change, we get that it is distributed as:

$$B \left(\int_0^t [\lambda_s + \mu_s(Q^{(0)}(s) \wedge n_s)] ds \right), \quad t \geq 0.$$

2. **Drift** = $\sqrt{\eta} \int_0^t \left[f_s \left(\frac{1}{\eta} Q^\eta(s) \right) - f_s(Q^{(0)}(s)) \right] ds$

where $f_t(x) = \lambda_t - \mu_t(x \wedge n_t)$, $x \in \mathbb{R}^1$.

If indeed $Q^\eta(t) \stackrel{d}{=} \eta Q^{(0)}(t) + \sqrt{\eta} Q^{(1)}(t) + o(\sqrt{\eta})$,

then letting $\epsilon = 1/\sqrt{\eta}$,

$$\begin{aligned} \text{Drift} &\stackrel{d}{\approx} \int_0^t \frac{1}{\epsilon} [f_s(Q^{(0)}(s) + \epsilon Q^{(1)}(s)) - f_s(Q^{(0)}(s))] ds \\ &\xrightarrow[\epsilon \downarrow 0]{} \int_0^t \wedge f_s(Q^{(0)}(s); Q^{(1)}(s)) ds \end{aligned}$$

in which $\wedge f_t(x; y) = \lim_{\epsilon \downarrow 0} \frac{1}{\epsilon} [f_t(x + \epsilon y) - f_t(x)]$,

must be defined for continuous, but **non-differentiable** functions.

“Extended Calculus”

Let $f : \mathbb{R}^1 \rightarrow \mathbb{R}^1$ be continuous at x , with left- and right-hand derivatives at x . Then,

$$\wedge f(x; y) = f'(x+)y^+ - f'(x-)y^- , \quad x, y \in \mathbb{R}^1.$$

Example:

$$\begin{aligned} f(x) &= x \wedge a \\ \wedge f(x; y) &= y \mathbf{1}_{x < a} + \mathbf{1}_{x=a}[0.y^+ - 1.y^-] = \\ &= y \mathbf{1}_{x < a} - y^- \mathbf{1}_{x=a} = y^+ \mathbf{1}_{x < a} - y^- \mathbf{1}_{x \geq a} \end{aligned}$$

Example: Slutsky's Theorem (extended)

Suppose $X_n \rightarrow \mu$, $\sqrt{n} (X_n - \mu) \xrightarrow{d} Z$, as $n \uparrow \infty$.

Then $f(x_n) \rightarrow f(\mu)$ and

$$\begin{aligned} \sqrt{n} [f(X_n) - f(\mu)] &\xrightarrow{d} \wedge f(\mu; Z) \\ &= f'(\mu+) Z^+ - f'(\mu-) Z^- \\ & (= f'(\mu) Z \quad \text{when } \exists f'(\mu)). \end{aligned}$$

Example: **FCLT** for $M_t/M_t/n_t$

Recall

$$Q^{(1)}(t) \approx \int_0^t \wedge f_s(Q^{(0)}(s); Q^{(1)}(s)) ds + B(\dots)$$

where $f_t(x) = \lambda_t - \mu_t(x \wedge n_t)$.

Since $\wedge f_t(x, y) = -\mu_t[y^+ 1_{x < n_t} - y^- 1_{x \leq n_t}]$, we conclude

$$\text{FCLT: } \lim_{\eta \uparrow \infty} \sqrt{\eta} \left[\frac{1}{\eta} Q^\eta(t) - Q^{(0)}(t) \right] \stackrel{d}{=} Q^{(1)}, \quad t \geq 0,$$

where $Q^{(1)}$ is the unique solution of the following SDE:

$$\begin{aligned} Q^{(1)}(t) &= Q^{(1)}(0) - \int_0^t \mu_s \cdot 1_{\{Q^{(0)}(s) < n_s\}} Q^{(1)}(s)^+ ds \\ &\quad + \int_0^t \mu_s \cdot 1_{\{Q^{(0)}(s) \leq n_s\}} Q^{(1)}(s)^- ds \\ &\quad + B \left(\int_0^t [\lambda_s + \mu_s(Q^{(0)}(s) \wedge n_s)] ds \right), \quad t \geq 0. \end{aligned}$$

Differential Equations for the Diffusion

Moments of the $M_t/M_t/n_t$ Queue

If $\{t \mid Q^{(0)}(t) = n_t\}$ has Lebesgue measure zero, then $Q^{(1)}(\cdot)$ is a **Gaussian** process. Furthermore,

$$\frac{d}{dt} \mathbb{E} [Q^{(1)}(t)] = -\mu_t \mathbf{1}_{\{Q^{(0)}(t) \leq n_t\}} \mathbb{E} [Q^{(1)}(t)],$$

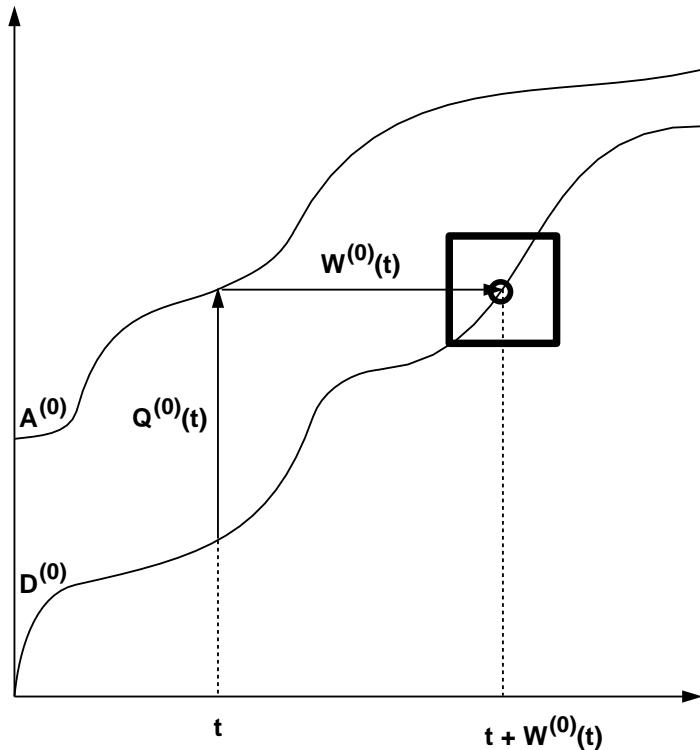
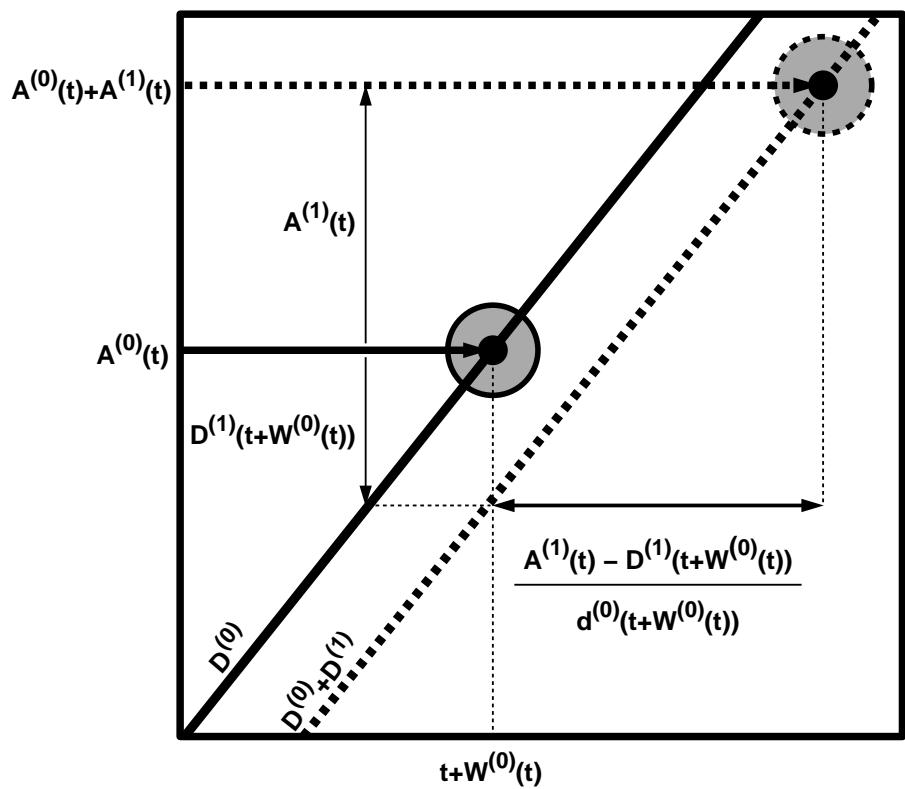
$$\begin{aligned} \frac{d}{dt} \text{Var} [Q^{(1)}(t)] &= -2\mu_t \mathbf{1}_{\{Q^{(0)}(t) \leq n_t\}} \text{Var} [Q^{(1)}(t)] \\ &\quad + \lambda_t + \mu_t (Q^{(0)}(t) \wedge n_t), \end{aligned}$$

and

$$\begin{aligned} \frac{d}{dt} \text{Cov} [Q^{(1)}(s), Q^{(1)}(t)] \\ = -\mu_t \mathbf{1}_{\{Q^{(0)}(t) \leq n_t\}} \text{Cov} [Q^{(1)}(s), Q^{(1)}(t)]. \end{aligned}$$

The above is solvable numerically,
in a spreadsheet, via forward increments.

Waiting Time



Virtual Waiting Times for the $M_t/M_t/n_t/\infty/FCFS$ Queue

Fix a time τ .

Define $\{\hat{Q}(t) \mid t \geq 0\}$ to be the queue length process associated with an $M_t/M_t/n_t$ system, with parameters μ_t and n_t as before, but with arrival rates $\hat{\lambda}_t$ that are modified as follows:

$$\hat{\lambda}_t = \begin{cases} \lambda_t & \text{if } t \leq \tau, \\ 0 & \text{if } t > \tau. \end{cases}$$

The virtual waiting time for a customer arriving at time τ is $W(\tau) - \tau$ where

$$W(\tau) = \inf \{ t \geq \tau \mid \hat{Q}(t) \leq n_t - 1 \}.$$

The uniformly-accelerated version is

$$W^{\eta}(\tau) = \inf \{ t \geq \tau \mid \hat{Q}^{\eta}(t) \leq \eta n_t - 1 \}.$$

Virtual Waiting Time: Fluid Limit

FSLLN

$$\lim_{\eta \rightarrow \infty} W^\eta = W^{(0)} \text{ a.s.}$$

where

$$W^{(0)}(\tau) = \inf \left\{ t \geq \tau \mid \hat{Q}^{(0)}(t) \leq n_t \right\}$$

with

$$\hat{Q}^{(0)}(t) = Q^{(0)}(\tau) - \int_\tau^t \mu_s n_s ds.$$

The analysis is extendable to the

process $\{ W^{(0)}(\tau) \mid \tau \geq 0 \}$

(from merely the random variable $W^{(0)}(\tau)$).

Virtual Waiting Time: Diffusion Limit

FCLT

$$\lim_{\eta \rightarrow \infty} \sqrt{\eta} (W^\eta - W^{(0)}) \stackrel{d}{=} W^{(1)}$$

where

$$W^{(1)}(\tau) = \frac{\hat{Q}^{(1)}(W^{(0)}(\tau))}{\mu_{W^{(0)}(\tau)} n_{W^{(0)}(\tau)}}$$

If $\hat{Q}^{(1)}$ is a Gaussian process, then $\text{Var} [W^{(1)}(\tau)]$ is calculated via

$$\text{Var} [\hat{Q}^{(1)}(W^{(0)}(\tau))] = \text{Var} [Q^{(1)}(\tau)] + \int_{\tau}^{W^{(0)}(\tau)} \mu_s n_s ds.$$

The analysis is extendable to the stochastic process $\{W^{(1)}(\tau) \mid \tau \geq 0\}$ (from merely the random variable $W^{(1)}(\tau)$).