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Sudden Rush Hour

n = 50 servers; p=1

A = 110 foro <t <11, X\ = 10 otherwise

Lambda(t) = 110 (on 9 <=t <= 11), 110 (otherwise). n =50, mul = 1.0, mu2 = 0.1, beta = 2.0, P(retrial) = 0.25
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Call Center: A Multiserver Queue with

Abandonment and Retrials
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Primitives (Time-Varying Predictably)
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exogenous arrival rate

e.g., continuously changing, sudden peak

service rate

e.g., change in nature of work or fatigue

number of servers

e.g., in response to predictably varying workload

abandonment rate while waiting
e.g., in response to IVR discouragement
at predictable overloading

probability of no retrial

average time to retry

Large system: 17 T oo scaling parameter. Now define

QU() via )\t — ?7)\75

neg — 1NNt

What do we get, as 7 T oco?



Fluid Model
Replacing random processes by their rates yields

QO (1) = (Y ®), Q1))

Solution to nonlinear differential balance equations
d
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Justification: Functional Strong Law of Large Numbers

with At — 77>\t7 ne — MNng.
Asn T oo,

1
~ZQ"t) — QW (t), uniformly on compacts, a.s.
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given convergence att = 0



Diffusion Refinement

d
Q") =n Q) + v QP () +o(vn)
Justification: Functional Central Limit Theorem

NG %Q”(t)—Q“’)(t) 4 0W @), in DO, o),

given convergence at t = 0.

Q1) solution to stochastic differential equation.

If the set of critical times {t > O : ng)(t) = n;} has Lebesque
measure zero, then Q1) is a Gaussian process. In this case, one

can deduce ordinary differential equations for

EQ™W(t), VarQ'(t): confidence envelopes

These ode’s are easily solved numerically (in a spreadsheet, via for-

ward differences).



What if P-{Retrial } increases to 0.75 from 0.25 ?

Lambda(t) = 110 (on 9 <=t <= 11), 10 (otherwise). n = 50, mul = 1.0, mu2 = 0.1, beta = 2.0, P(retrial) = 0.75
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Lambda(t) = 110 (on 9 <=t <= 11), 110 (otherwise). n = 50, mul = 1.0, mu2 = 0.1, beta = 2.0, P(retrial) = 0.25
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Starting Empty and Approaching Stationarity

Lambda(t) = 110, n = 50, mul = 1.0, mu2 = 0.2, beta = 2.0, P(retrial) = 0.2
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Sample Mean vs. Fluid Approximation

Queue Lengths ( A+ = 20 or 100)

n=50, mul=1, mu2=.2, beta=2, P(retrial)=.5, lambda = 20 (t in [0,2), [4,6), [8,10) etc) else 100
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Sample Mean vs. Fluid Approximation

Virtual Waiting Time

n=50,mul=1,mu2=2,beta=.2,P(retrial)=.5,lambda = 20 (t in [0,2),[4,6),[8,10) etc) else 100
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Sample Density vs. Gaussian Approximation

Multi-Server Queue

n=50,mul=1mu2=2,beta=.2,P(retrial)=.5,lambda = 20 (t in [0,2),[4,6),[8,10) etc) else 100
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Sample Density vs. Gaussian Approximation

Virtual Waiting Time

n=50,mul=1,mu2=.2,beta=2,P(retrial)=.5,lambda=20 (t in [0,2),[4,6),[8,10) etc) else 100
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Variances and Covariances

Queue Lengths

n=50, mul=1, mu2=.2, beta=2, P(retrial)=.5, lambda = 20 (t in [0,2), [4,6), [8,10) etc) else 100
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Sample Variance vs. Diffusion Variance

Virtual Waiting Time = Future Research

n=50,mul=1,mu2=2,beta=.2,P(retrial)=.5,lambda = 20 (t in [0,2),[4,6),[8,10) etc) else 100
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