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Sudden Rush Hour

n = 50 servers; µ = 1

λt = 110 for 9 ≤ t ≤ 11, λt = 10 otherwise
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Call Center: A Multiserver Queue with

Abandonment and Retrials
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Primitives (Time-Varying Predictably)

λt exogenous arrival rate

e.g., continuously changing, sudden peak

µ1
t service rate

e.g., change in nature of work or fatigue

nt number of servers

e.g., in response to predictably varying workload

βt abandonment rate while waiting

e.g., in response to IVR discouragement

at predictable overloading

ψt probability of no retrial

1/µ2
t average time to retry

Large system: η ↑ ∞ scaling parameter. Now define

Qη(·) via λt → ηλt

nt → ηnt

What do we get, as η ↑ ∞?
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Fluid Model

Replacing random processes by their rates yields

Q(0)(t) = (Q(0)
1 (t), Q(0)

2 (t))

Solution to nonlinear differential balance equations

d

dt
Q(0)

1 (t) = λt − µ1
t (Q(0)

1 (t) ∧ nt)

+µ2
t Q(0)

2 (t)− βt (Q(0)
1 (t)− nt)

+

d

dt
Q(0)

2 (t) = β1(1− ψt)(Q
(0)
1 (t)− nt)

+

− µ2
t Q(0)

2 (t)

Justification: Functional Strong Law of Large Numbers ,

with λt → ηλt, nt → ηnt.

As η ↑ ∞,

1

η
Qη(t) → Q(0)(t) , uniformly on compacts, a.s.

given convergence at t = 0
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Diffusion Refinement

Qη(t)
d
= η Q(0)(t) +

√
η Q(1)(t) + o (

√
η )

Justification: Functional Central Limit Theorem

√
η

[
1

η
Qη(t)−Q(0)(t)

]
d→ Q(1)(t), in D[0,∞) ,

given convergence at t = 0.

Q(1) solution to stochastic differential equation.

If the set of critical times {t ≥ 0 : Q(0)
1 (t) = nt} has Lebesque

measure zero, then Q(1) is a Gaussian process. In this case, one

can deduce ordinary differential equations for

EQ(1)
i (t) , Var Q(1)

i (t) : confidence envelopes

These ode’s are easily solved numerically (in a spreadsheet, via for-

ward differences).
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What if Pr{Retrial } increases to 0.75 from 0.25 ?
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Starting Empty and Approaching Stationarity
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Sample Mean vs. Fluid Approximation

Queue Lengths ( λt = 20 or 100)
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Sample Mean vs. Fluid Approximation

Virtual Waiting Time
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Sample Density vs. Gaussian Approximation

Multi-Server Queue
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Sample Density vs. Gaussian Approximation

Virtual Waiting Time
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Variances and Covariances

Queue Lengths
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Sample Variance vs. Diffusion Variance

Virtual Waiting Time ⇒ Future Research
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