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Abstract. Problem definition: This research focuses on elderly patients who have been
hospitalized and are ready to be discharged, but they must remain in the hospital until
abed in a geriatric institution becomes available; these patients “block” a hospital bed. Bed
blocking has become a challenge to healthcare operators because of its economic impli-
cations and the quality-of-life effect on patients. Indeed, hospital-delayed patients who
do not have access to the most appropriate treatments (e.g., rehabilitation) prevent new
admissions. Moreover, bed blocking is costly, because a hospital bed is more expensive
to operate than a geriatric bed. We are thus motivated to model and analyze the flow of
patients between hospitals and geriatric institutions to improve their joint operation.
Academic/practical relevance: Practically, our joint modeling of hospital-institution is
necessary to capture blocking effects. In contrast to previous research, we address an entire
time-varying network, which enables an explicit consideration of blocking costs. Theo-
retically, our fluid model captures blocking without the need for reflection, which sim-
plifies the analysis as well as the convergence proof of the corresponding stochastic model.
Methodology: We develop a mathematical fluid model, which accounts for blocking,
mortality, and readmission—all significant features of the discussed environment. Then, for
bed allocation decisions, the fluid model and especially, its offered load counterpart turn out
insightful and easy to implement. Results: The comparison between our fluid model, a two-
year data set from a hospital chain, and simulation results shows that our model is accurate
and useful. Moreover, our analysis yields a closed form expression for bed allocation de-
cisions, which minimizes the sum of underage and overage costs. Solving for the optimal
number of geriatric beds in our system shows that significant reductions in cost and waiting
list length are achievable compared with current operations. Managerial implications: Our
model can support healthcare managers in allocating geriatric beds to reduce operational
costs. Moreover, our model facilitates three extensions: a periodic reallocation of beds, in-
corporation of setup costs into bed allocation decisions, and accommodating home care
(or virtual hospitals) when feasible.
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1. Introduction

hospitalizations. These facts are and will increasingly be
major contributors to the high occupancy levels in in-

Providing high-quality healthcare services for the aging
population is becoming a major challenge in developed
countries. This challenge is amplified by the fact that
the number of elderly people ages 65 years old and over,
who today account for 10% of the population, will
double within two decades (United Nations Population
Fund 2014, World Health Organization 2014). Moreover,
elderly patients are often frail and undergo frequent

patient wards and emergency departments (EDs). For
example, in the last several years, some Organization
for Economic Co-operation and Development (OECD)
countries reported averages of over 90% occupancy levels
in hospital inpatient wards (OECD iLibrary 2013, NHS
England 2015), and these yearly averages hardly reveal the
hour-by-hour reality of the busiest periods (e.g., winters).
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The bed blocking problem occurs when hospital pa-
tients are ready to be discharged but must remain in the
hospital until a bed in a more appropriate geriatric fa-
cility (a nursing home or a geriatric institution) becomes
available. Research about the bed blocking prob-
lem (e.g., Rubin and Davies 1975, Namdaran et al. 1992,
El-Darzi et al. 1998, Koizumi et al. 2005, Cochran and
Bharti 2006, Travers et al. 2008, Osorio and Bierlaire 2009,
Shi et al. 2015) is important, because it can potentially
improve the quality of patient care and reduce the
mounting costs associated with bed blocking (Cochran
and Bharti 2006). For example, the estimated cost of
bed blocking in the United Kingdom alone exceeds
$1.2 billion per year (BBC News 2016). In this paper,
we focus on the bed blocking problem caused by bed
shortage in geriatric institutions rather than in general
nursing homes, because in our setting and according to
the data that we analyze, the problem in geriatric in-
stitutions is much more severe. Having said that, our
modeling framework accommodates any environment
in which the phenomenon of blocking is severe and
gives rise to operational challenges.

In contrast to previous models, which relied on sim-
ulations for modeling bed blocking, our research offers an
analytical model for minimizing the overage and un-
derage costs of a system consisting of hospitals and
geriatric institutions; the model yields a tractable solu-
tion by determining the optimal number of beds for each
geriatric ward.

We focus on long-term geriatric bed allocation by
considering the environment described in Figure 1: it
covers inpatient wards in hospitals and geriatric in-
stitutions. In our setting, the central decision maker is
a large healthcare organization, which operates sev-
eral hospitals and several geriatric institutions. In some

countries (e.g., Singapore and Israel), the government
functions as this organization. In England, the National
Health Service (NHS), an arm of the government, is the
central decision maker; in Australia, it is the Medicare
Healthcare System, and in the United States, it can be
the Veterans Administration with its 500+ hospitals.

Congestion problems and their highly significant ef-
fect, both medically and financially, motivated us
to model and analyze the system, which is depicted
schematically in Figure 1. Patient flow begins when
people of all ages are admitted to hospital inpatient
wards (Station 1). On treatment completion and focus-
ing on geriatric patients, hospital doctors decide whether
the patient is capable of returning to the community or
requires additional care in a geriatric institution. We
subdivide the latter option into the three most common
long-term care geriatric wards: rehabilitation (Station 2),
mechanical ventilation (Station 3), and skilled nursing
care (Station 4).

Patients who are sent to a geriatric rehabilitation
ward stay there for one month on average before they
are able to return to full or partial functioning. Me-
chanical ventilation wards treat patients who cannot
breathe on their own, typically after three unsuccessful
weaning attempts in a hospital; the average stay in
a mechanical ventilation ward is five to six months.
Unfortunately, only a minority of these patients are
discharged; most die or are readmitted to hospitals.
Skilled nursing wards treat patients who, in addition to
functional dependency, suffer from active diseases that
require close medical supervision (for example, be-
cause of bedsores or chemotherapy); the average stay
there is 1-1.5 months. Some patients are discharged
to nursing homes, but again, most either die or are
readmitted to hospitals. According to our data and the

Figure 1. (Color online) Network of Patient Flow Through Inpatient Wards and Geriatric Institutions
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doctors and managers with whom we consulted, trans-
fers between geriatric wards of different types rarely
happen.

The methodology that we propose is rather general
and can accommodate other settings with different
numbers or types of wards. Because the system that we
analyze and the data that we use are for three types of
geriatric wards, in the empirical part of the paper, we
focus on the four stations depicted in Figure 1. Applying
our general methodology to analyzing these stations,
for which there are long waiting lists, will yield pol-
icies that significantly reduce total operational costs.
(Figure 2 in Online Appendix B is a schematic analog
of Figure 1.)

To this end, we develop a mathematical fluid model
that accounts for blocking, mortality, and readmission—all
significant features of the discussed environment. Then,
we use our fluid model and its time-varying offered load
counterpart to formulate and solve bed allocation prob-
lems for geriatric wards. Our goal is to find the optimal
number of geriatric beds to minimize the total overage
plus underage costs of the system. Moreover, we propose
two feasible extensions for capacity allocation problems
with time-varying demand of beds: a periodic reallocation
of beds and the incorporation of setup costs into bed
allocation decisions.

In our analysis, we use two data sets over a period of
two years. The first covers the patient flow in a hospital
chain made up of four hospitals and three geriatric
institutions (three rehabilitation wards, two mechani-
cal ventilation wards, and three skilled nursing wards).
The second data set includes individual in-hospital
waiting lists for each geriatric ward. (Details about our
data are provided in Online Appendix A.) These data
indicate that the average in-hospital waiting times are
28 days for mechanical ventilation, 17 days for skilled
nursing care, and 3.5 days for rehabilitation wards. Al-
though the average waiting time for rehabilitation seems
relatively short, this is definitely not the case when
considering the fact that these are elderly patients
waiting unnecessarily for their rehabilitation care while
occupying a bed that could have been used for newly
admitted acute patients. Moreover, the numbers of
patients who are referred to a rehabilitation ward are
five and nine times those of the corresponding numbers
for skilled nursing care and mechanical ventilation,
respectively; this implies (Section 4.1) that the overall
demand that they generate exceeds that of the other
patients.

Figure 2 presents the waiting list length (daily res-
olution) within the hospital for each geriatric ward over
one calendar year. The dotted lines in Figure 2 represent
length according to our data, whereas the solid lines in
Figure 2 represent our fluid model (Equations (5) and (6)
in Section 3.2). According to this plot, all three geriatric
wards work at full capacity throughout the year (long

Figure 2. (Color online) Waiting List Length in Hospital for
Each Geriatric Ward—Model (Solid Lines) vs. Data (Dashed
Lines)
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Notes. The x axis is one calendar year in units of days. (We are plotting
here the second year of our data. The first year was used to fit the
parameters of our model.)

waiting lists); furthermore, in the winter, the demand for
beds increases.

The fit between our model and the data is excellent. In
fact, in Online Appendix A, we show via multiple sce-
narios with various treatment distributions that our
continuous, deterministic fluid model approximates well
and usefully its underlying stochastic environment.

The long waiting lists and the fact that hospitaliza-
tion costs are much higher in hospitals than in geriatric
institutions indicate that the system is operated ineffi-
ciently; this leads to excessive costs that can be reduced
by adopting our solution. Moreover, in Sections 5.1
and 6.2.1, we show how the constant and periodic al-
locations that we suggest can reduce costs and shorten
waiting lists. (The latter is illustrated in Figure 3, right
panel and Figure 4, lower left panel; this is relative to the
current length of the waiting lists presented in Figure 2.)

1.1. Contributions
The main contributions of our research are as follows.
1. Modeling. We develop and analyze an analytical
model comprising both long-term care geriatric wards
and their feeding hospitals. This joint modeling is
necessary to capture blocking effects (whereas previous
research was restricted to a single-station utility max-
imization) (e.g., Jennings et al. 1997). We do so by ex-
plicitly considering geriatric ward blocking costs and
minimizing the overall underage and overage costs
within the system. Our approach has significant
modeling strength beyond its base case. For example, it
also accommodates periodic bed allocations and home
care (virtual hospital) alternatives to mention just two
relevant and important examples.
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Figure 3. (Color online) Optimal Solution
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Notes. In the left panel, the solid lines represent the offered load for each geriatric ward, and the dashed lines represent the optimal number of
beds. In the right panel, the waiting list lengths in the hospital, according to the optimal solution, are depicted; this is relative to the current

waiting list lengths presented in Figure 2.

2. Methodology. Our work contributes to the liter-
ature on queueing (fluid) networks with blocking. In-
deed, as far as we know, this is the first paper to model,
analyze, rigorously justify, and validate time-varying
fluid network models with blocking. In particular, our
proposed fluid model of a network captures blocking
without the need for reflection (Section 2.2); it applies
to general networks (for example, tandem networks),
which simplifies theory (proofs and convergence) and
numerical applications. Moreover, we use our model to
derive analytical solutions and insights about cost
minimization and bed allocation policies.

3. Practice. This research provides practical tools for
bed planning of time-varying healthcare networks with
blocking. Moreover, this research gives rise to novel
capacity allocation strategies; it also quantifies the im-
pact of emerging alternatives for care. Specifically, as
already mentioned, we offer closed form solutions for
periodic reallocation of beds that respond to seasonal
demand, for diverting patients to home care, and for
incorporating setup costs. These are but three examples
made analyzable by our model.

4. Managerial insights. Our framework amplifies the
need for an integrated view of patient flow within and
beyond hospitals. This view is required to capture the
costs of blocking, which are dramatically escalating
with population aging. Our models yield managerial
recommendations for healthcare managers in allocating
geriatric beds and rectifying the bed blocking prob-
lem. The recommendations that we provide can also be
implemented gradually (e.g., subject to budget con-
straints) while estimating the cost reduction at each step.

2. Literature Review

The review covers the main areas that are relevant to
this research: high-level modeling of healthcare sys-
tems, queueing networks with blocking, time-varying

queueing networks, and bed planning in long-term care
facilities.

2.1. High-level Modeling of Healthcare Systems
The three main approaches used for modeling healthcare
systems with elderly patients have been Markov models,
system dynamics, and discrete event simulation.

For tractability reasons, Markov models have been
applied to networks with a limited number of stations,
typically two to three, to characterize steady-state per-
formance, such as the length of stay (LOS) at each station.
For example, Harrison and Millard (1991) analyze the
empirical distribution of patient LOS in geriatric wards
by fitting a sum of two exponentials to a data set: most
patients are discharged or die shortly after admission,
whereas some stay hospitalized for months. Several
papers use Markov models to describe the flow of ge-
riatric patients between hospitals and community-based
care (Taylor et al. 1997, 2000; Faddy and McClean 2005;
Xie et al. 2005; McClean and Millard 2006). In general,
these models, which include short-stay and long-stay
states in each facility, distinguish between the movement
of patients within and between facilities. Unlike these
papers, our approach emphasizes station capacity and
time-varying parameters.

Another common approach for modeling healthcare
systems is system dynamics. It is used to analyze pa-
tient flow through healthcare services by focusing on
the need to coordinate capacity levels across all health
services. Wolstenholme (1999) develops a patient flow
model for the UK National Health Service and uses it
to analyze alternatives for shortening waiting times of
community care patients. According to the author,
reducing total waiting times can be achieved by adding
“intermediate care” facilities, which are aimed at pre-
venting elderly medical patients from hospitalization
and community care. Our approach contributes to this
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Figure 4. (Color online) Optimal Reallocation of Beds When No Reallocation Costs Are Introduced (Upper Left Panel), When
Reallocation Costs Are Introduced (Upper Right Panel), and When Four Reallocation Points Are Allowed (Lower Right Panel)
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Note. Waiting list length under the optimal reallocation policy when no reallocation costs are introduced (lower left plot).

line of research by considering the dependency between
capacity allocation and waiting time.

System dynamics is also used to analyze the bed
blocking problem (Gray et al. 2006, Travers et al. 2008,
Rohleder et al. 2013). These papers show the impor-
tance of coordinating capacity levels across different
health services. Desai et al. (2008) use system dynamics
to forecast the future demand for social care services by
elderly people. Although our proposed fluid model is
also deterministic, we are able to justify it as the fluid
limit of an underlying stochastic model/system.

Discrete event simulation is another popular ap-
proach for analyzing complex systems and phenomena,
such as bed blocking. El-Darzi et al. (1998) examine the
impact of bed blocking and occupancy on patient flow
through geriatric wards. They show that the availability
of acute beds is strongly connected to referral rates for
long-stay care facilities. Katsaliaki et al. (2005) build a
simulation model of elderly patient flow between the
community, hospitals, and geriatric institutions. They
approximate the delay in discharge from hospital and
the relevant costs. Armony et al. (2015) and Shi et al.
(2015) discuss a two-timescale (days and hours) service
time in hospital wards. Shi et al. (2015) investigate ED

boarding times (waiting for admission to hospital wards)
at a Singaporean hospital. Via simulation studies, they
examine the effects of various discharge policies on
admission waiting times. The two-timescale service time
captures both treatment time and additional service time
caused by operational factors, such as discharge schedule.
In our research, we develop a time-varying analytical
model for setting bed capacities in geriatric institutions.
Our model evolves on a single timescale—days; because
of the decisions in which we are interested (and the data
that we have), days are natural and adequate.

2.2. Queueing Networks with Blocking
Several blocking mechanisms are acknowledged in the
literature (Perros 1994, Balsamo et al. 2001). We focus
on the blocking after service mechanism, which happens
when a patient attempts to enter a fully capacitated
Station j on completion of treatment at Station i. Be-
cause it is not possible to queue in front of Station j, the
patient must wait in Station i and therefore, blocks a
bed there until a departure occurs at Station ;.
Healthcare systems usually have complex network
topologies, multiple-server queues, and time-varying
dynamics. In contrast, closed form solutions of queueing
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models with blocking exist only for steady-state, single-
server networks with two or three tandem queues or
two cyclic queues (Osorio and Bierlaire 2009). The
solutions for more complex networks are based on
approximations, which are typically derived via de-
composition methods (Hillier and Boling 1967, Takahashi
et al. 1980, Gershwin 1987, Koizumi et al. 2005, Osorio
and Bierlaire 2009) and expansion methods (Kerbache
and MacGregor Smith 1987, 1988; Cheah and Smith 1994).
Koizumi et al. (2005) use a decomposition method to
analyze a healthcare system with mentally disabled
patients as a multiple-server queueing network with
blocking, whereas Osorio and Bierlaire (2009) develop
an analytic finite capacity queueing network that en-
ables the analysis of patient flow and bed blocking in
a network of hospital operative and postoperative units.

Bretthauer et al. (2011) offer a heuristic method for
estimating the waiting time for each station in a tandem
queueing network with blocking by adjusting the per
server service rate to account for blocking effects. Bekker
and de Bruin (2010) analyze the effect of a predictable
patient arrival pattern on a clinical ward regarding its
performance and bed capacity requirements. In partic-
ular, the authors use the offered load approximation and
the square root staffing formula for calculating the re-
quired beds for each day of the week. Although we also
use the offered load approximation for the time-varying
demand, our approach is different, because it goes be-
yond a single-station analysis and takes into account
blocking effects by minimizing overage and underage
costs. Moreover, the periodic reallocation that we sug-
gest takes into account a reallocation cost that is asso-
ciated with adding and removing a bed.

Capturing blocking in stochastic systems with a sin-
gle station in steady state has been done via reflection.
Specifically, reflection is a mathematical mechanism that
has been found necessary to capture customer loss
(Garnett et al. 2002; Whitt 2002, chapter 5.2). Reflection
modeling, however, requires the use of indicators, which
cause technical continuity problems when calculating
approximating limits. We circumvent this challenge
by developing a fluid model with blocking but without
reflection, which enables us to prove convergence of
our stochastic model without reflection. Our simple and
intuitive model, compared with models with reflection,
enables us to model, successfully and insightfully, time-
varying networks.

2.3. Queueing Networks with Time-
Varying Parameters

Time-varying queueing networks have been analyzed
by McCalla and Whitt (2002), who focused on long
service lifetimes, measured in years, in private-line
telecommunication services. Liu and Whitt (2011b) an-
alyze time-varying networks with many-server fluid
queues and customer abandonment. In addition, time-

varying queueing models have been analyzed for setting
staffing requirements in service systems with unlimited
queue capacity by using the offered load analysis (Whitt
2013). The methods for coping with time-varying de-
mand when setting staffing levels are reviewed in Green
et al. (2007) and Whitt (2007). A recent work of Li et al.
(2015) focuses on stabilizing blocking probabilities in
loss models with a time-varying Poisson arrival pro-
cess by using a variant of the modified offered load
approximation.

Fluid frameworks are well adapted to large time-
varying overloaded systems (Mandelbaum et al. 1998,
1999), which is the case here. Previous research shows
that fluid models have been successfully implemented
in modeling healthcare systems (Ata et al. 2013, Cohen
etal. 2014, Yom-Tov and Mandelbaum 2014). Moreover,
fluid models yield analytical insights, which typically
cannot be obtained using their alternatives (e.g., simu-
lation, time-varying stochastic queueing networks).

2.4. Bed Planning for Long-term Care Facilities
Most research on bed planning in healthcare systems
focuses on short-term facilities, such as hospitals (Green
2004, Akcali et al. 2006). Research about bed planning
for long-term care facilities is scarce. We now review the
existing literature.

Future demand for long-term care has a strong impact
on capacity-setting decisions. Hare et al. (2009) develop
a deterministic model for predicting future long-term
care needs in home and community care services in
Canada. Zhang et al. (2012) develop a simulation-based
approach to find the minimal number of nursing home
beds to achieve a target waiting time. The model that
we suggest considers time-varying demand for beds
throughout the year as well as mortality and readmission
rates, which are all significant in the context of geriatric
patients. In addition, we analyze a network capacity
problem of several geriatric wards by taking into account
blocking effects in hospitals.

De Vries and Beekman (1998) present a deterministic
dynamic model for expressing waiting lists and wait-
ing times of psychogeriatric patients for nursing homes
based on data from the previous year. Ata et al. (2013)
analyze the expected profit of hospice care. They
propose an alternative reimbursement policy for the US
Medicare and determine the recruiting rates of short-
and long-stay patients to maximize profitability of the
hospice. Kao and Tung (1981) consider the monthly
fluctuation in demand for hospital services, but the bed
allocation that they allow is constant throughout the
year. In particular, they try to minimize the hospital
yearly average overflow probability. To accommodate
for the seasonal demand, we suggest a periodic real-
location of beds, taking into account the reallocation
cost that is associated with adding and removing
each bed.
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Harrison and Zeevi (2005) develop a method, which
was extended in Bassamboo et al. (2006), for staffing
large call centers with multiple customer classes and
multiple-server pools; they deploy stochastic fluid
models to minimize the sum of personnel costs and
abandonment penalties. The method that they suggest
reduces the staffing problem to a multidimensional
Newsvendor problem, and hence, the critical fractile
solution that they suggest is distribution dependent. In
Remark 3, we further elaborate on the relation of
Harrison and Zeevi (2005) to this work.

Afeche et al. (2017) develop a fluid model for max-
imizing the profit of service firms by determining
customer acquisition investment as well as a bottleneck
capacity allocation among heterogeneous customer
classes. This allocation and resulting service access
quality affect customers’ routing in the network. Our
research includes finite capacities at all stations and
time variation. This allows us to consider the blocking
customers occupying servers in the first station and
explicitly accommodate the blocking costs when cal-
culating the optimal number of beds. Moreover, we
justify the fluid model by proving convergence of the
corresponding stochastic model.

Other related research is from the telecommunication
field. Jennings et al. (1997) find the optimal number of
leased private lines for profit maximization. Because of
very long service times (years), their analysis is tran-
sient—the system does not reach steady state within the
observation period. Because hospitalization time is
long compared with the planning horizon, transient
analysis is also relevant in the context of geriatric
hospitalization.

3. The Model

In this section, we describe our environment and its
dynamics. We then formally introduce model notation
and equations.

3.1. Environment, Dynamics, and Notation
Consider the four stations in Figure 1: hospital wards
(Station 1) and long-term care geriatric wards—
rehabilitation (Station 2), mechanical ventilation (Sta-
tion 3), and skilled nursing care (Station 4). Station 1
includes all ward patients, whereas Stations 2—4 in-
clude only geriatric patients who need long-term care
beyond hospitalization.

Our model is at the macrolevel; thus, the capacity of
each station is an aggregation of the individual capac-
ities of all stations of this type in the discussed geo-
graphical area (e.g., assume that a district includes three
rehabilitation wards; then, the capacity of the modeled
rehabilitation station is the sum of all three individual
capacities). Such aggregated capacities are justified,
because in practice, patients can be sent from any in-
dividual hospital to any individual geriatric ward and

vice versa, especially if they are all within the same
geographic area (a city or a district).

Online Appendix I summarizes the notation that
we use. We model the exogenous arrival rate to hos-
pital wards as a continuous time-varying function A(f)
(Mandelbaum et al. 1999). Internal arrivals are pa-
tients returning from geriatric wards back to the hos-
pital. Hospital wards include N; beds. If there are
available beds, arriving patients are admitted and hos-
pitalized; otherwise, they wait in the queue. We assume
that hospital wards have ample waiting rooms, because
the ED serves as a buffer for them; nevertheless, our
model can accommodate blocking of the first station (e.g.,
when ambulance diversion is significant enough). Pa-
tients leave the queue either when a bed becomes
available or if they, unfortunately, die. Medical treatment
is performed at a known service rate ;. On treatment
completion, patients are discharged back to the com-
munity, admitted to nursing homes, or referred to a ge-
riatric ward (2—4) with routing probabilities p1;(t),
i =2,3,4, respectively. The number of beds in each ge-
riatric ward i, i = 2,3,4, is N;. If there are no available
beds in the requested geriatric ward, its referred patients
must wait in the hospital while blocking their current bed.
This blocking mechanism is known as blocking after
service (Balsamo et al. 2001). The treatment rates in
Stations i, i = 2,3,4, are ;. Frequently, the clinical con-
dition of patients deteriorates while hospitalized in
a geriatric ward, and they are hence readmitted to the
hospital according to rate 3, i = 2,3, 4.

As mentioned, patients do die during their stay in a
station, which we assume occurs at individual mortality
rates 0;,i = 1,2, 3, 4, for Stations 1-4. These mortality rates
are significant and cannot be ignored. We follow the
modeling of mortality as in Cohen et al. (2014), and in
queueing theory parlance, we refer to it as “abandonments”
that can occur while waiting or being treated. Although we
use the same mortality rates while waiting and while being
treated, if data prevail, our model can easily accommodate
two different mortality rates per station.

3.2. Model Equations

We now introduce the functions g;(t), i=1,2,3,4,
which denote the number of patients at Station i at
time t. The standard fluid modeling approach defines
differential equations (DEs) describing the rate of change
for each g;. This direct approach leads to analytically
intractable models that cannot not be justified as fluid
limits of their corresponding stochastic counterparts.
Moreover, these direct descriptions based on g; include
indicator functions that are harder to analyze because of
their discontinuity. Hence, we propose a new modeling
approach, in which we introduce alternative functions
xi(t), i=1,.4, that suffice to capture the state of the
system. Then, we develop differential equations for x;,
which are tractable, and ultimately, we deduce g; from x;.
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This novel modeling approach also simplifies the con-
vergence proof of the corresponding stochastic model,
which is provided in Online Appendix B.

The value x1(t) denotes the number of arrivals to
Station 1 who have not completed their treatment at
Station 1 at time t. The values x;(t), i = 2,3, 4, denote the
number of patients who have completed treatment at
Station 1 and require treatment at Station i but have not
yet completed their treatment at Station i at time ¢
(these patients may still be blocked in Station 1). The
dynamics of the system is captured through a set of DEs;
each characterizes the rate of change in the number of
patients at each state at time f. Let Auy(t) denote the
arrival rate to Station 1 at time t and O;y(t) denote its
departure rate. The DE for x; is, therefore,

dxy(t)

ht) ==

= /\total(t) - 5f0fﬂl(t)‘ (1)

Patients arrive to Station 1 from two sources: exter-
nally, according to rate A(f), and internally from Sta-
tions 2—4. Because f, is the readmission rate from
Station i back to Station 1, the internal arrival rate to
Station 1 is X1, B,(xi(t) A N;), where x Ay = min(x, y);
here, (x;i(t) AN;) denotes the number of patients in
treatment at Station i. The total arrival rate to Station 1
at time ¢t is, therefore,

4
Atotal(t) = /\(t) + Z ﬁ,‘(xi(t) A Ni)' (2)
i=2

The total departure rate, Oy(f), consists of two types.
The first is owing to patients who die at an individual
mortality rate 0;. Because patients might die while
being hospitalized or waiting in queue, the rate at which
patients die is 01x1(f). Let bi(t) = (x;(f) — Ni)+, i=2,3,4,
denote the number of blocked patients in Station 1 at
time t (waiting for an available bed in Station 7). If data
are distinguished between different mortality rates
while waiting (qu) versus being treated (01;), then the
total mortality rate from Station 1 would be

eﬁmﬂ{M—gmmﬁ+%hmAmf§¥mﬂ

here, the first addend represents the mortality rate while
waiting for Station 1, and the second addend represents
the mortality rate while being treated in Station 1. Note
that the number of unblocked beds at Station 1 is
(N1 — 2,bi(t)), which can vary from zero to Nj.

The second departure type, 6,(t), is of patients who
complete their treatment at Station 1. The rate at which
patients complete their treatment in Station 1 is

0= m[noA (- 00), O

where the expression in the brackets indicates the
number of occupied unblocked beds at Station 1. Thus,
the total departure rate at time ¢ is

Ototar () = O1x1(F) + 0,(t). 4)

Using similar principles, we construct the DEs for the
rate of change in x;, i = 2, 3, 4. The referral rate to Station 7
is p1;(t) multiplied by 6,(t), the rate at which patients
complete their treatment at Station 1. The departure rate
of patients who have completed service at Station 1 but
not at Station i at time ¢ consists of the mortality rate
0;x;(t), readmission rate back to the hospital §,(x;(t) A N;),
and treatment completion rate p,(x;(t) A Nj).

The set of DEs for x;, i = 1,2,3,4, is, therefore,

X1 (t) = /\total(t) - 6totul(t)/
xXi(t) = pui(t) - 6,(8) — (u; + B)(xi(t) ANy) ©)
- Gl-x,-(t), i= 2, 3,4

The functions gi(t), i =1,2,3,4, which denote the
number of patients at Station 7 at time ¢, are

4
q(t) = x1(t) + D bilt);

P (6)
qi(H) =xi() AN;, =234

The validation of the model, against both data and a
discrete event stochastic simulation with different treat-
ment distributions, is detailed in Online Appendix A. It
shows that there is an excellent fit between the fluid model,
the actual data, and the corresponding simulation results.

4. The Bed Allocation Model
The decision maker in our analysis is an organization
that operates both hospitals and geriatric institutions.
The objective is to find the optimal number of beds for
each geriatric ward to minimize overall long-term un-
derage and overage costs of care (beds) in the system.
Minimizing overage and underage costs is a typical
objective in resource allocation problems (Porteus 2002).
In our context, overage costs are incurred when geriatric
beds remain empty while medical equipment, supply,
and labor costs are still being paid. Labor costs in re-
habilitation, for example, include, in addition to the cost
of doctors and nurses, other professionals as well, such
as neurophysiotherapists, orthopedic physical thera-
pists, and occupational therapists. We denote by C, the
per bed per day overage cost: this is the amount that
could have been saved if the level of geriatric beds had
been reduced by one unit in the event of an overage. This
cost includes the per day per bed cost required for
operating a geriatric bed. Underage cost, C,, is incurred
when patients are delayed in the hospital because of
a lack of availability in the geriatric wards. Thus, it is the
amount that could have been saved if the level of ge-
riatric beds had been increased by one unit in the event
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of an underage; C, is hence the per bed per day cost of
hospitalization in hospitals minus the per bed per day
cost in geriatric institutions. To elaborate, hospitalization
costs also include risk costs, which are incurred when a
patient is required to remain hospitalized. These costs
include expected costs of patient medical deterioration
of not providing the proper medical treatment (e.g.,
rehabilitation) and by exposing the patient to diseases
and contaminations prevalent in hospitals. The sum of
C, and C,;, which will later appear in the optimal solution
in (15), amounts to the per bed per day hospitalization
cost in hospitals. Excluding or underestimating the cost of
risk will yield a lower bound for the required number of
beds. Because our solution serves as a guide for thinking,
meaningful insights can already be derived from such
a lower bound.

We denote by C,, and C,, the overage and underage
costs, respectively, for Stations i, i = 2, 3, 4. The resulting
overall cost for Stations 2—4 over a planning horizon T is

1
CON2, N3, Ny) = >, COy), @)
p=)

where CO(N;) is the total overage and underage costs
for each Station i given by

T
COMY = [ [Cubilt)+ Co (N = i) [,
0
i=2,34. ®)

The first integrand is the underage cost calculated by
adding up the number of blocked patients, and the
second integrand is the overage cost calculated via the
total number of vacant beds. Minimizing (7) will yield
a constant capacity level for each geriatric ward over
the whole planning horizon. In Section 6.2, we introduce
a periodic reallocation of beds, which yields several ca-
pacity levels for each ward during the planning horizon.

Remark 1. Calculating the cost from (7) and (8) requires
forecasting the arrival rate A(t) for the planning horizon
[0, T]. This is done by using historical data: they show
that there is an annual arrival rate pattern that repeats
itself, whereas the volume increases at a rather constant
rate each year. Hence, our healthcare partners can ac-
curately predict the arrival rate over the planning horizon.

Minimizing (7), subject to (2)—(6), is analytically in-
tractable, because ¢;(f) and b;(t) are solutions of a com-
plex system of differential equations. To estimate the
total cost, we use an offered load approximation to the
time-varying demand for beds (Jennings et al. 1997,
Whitt 2007). Thus, in Section 4.2, we present a closed
form solution for minimizing the total underage and
overage costs based on the offered load. Then, in Sec-
tion 5.2, we compare our closed form solution with
a numerical solution of the original problem.

4.1. Offered Loads in Our System
Given a resource, its offered load r = {r(t), t > 0} represents
the average amount of work being processed by that
resource at time ¢ under the assumption that waiting and
processing capacities are ample (no one queues up before
service). In our context, offered load analysis is important
for understanding demand. Indeed, we express demand
in terms of patient bed days per day for the geriatric
wards to determine appropriate bed capacity levels.
The calculation of the offered load is carried out by
solving (5) (and (2)-(4)) with an unlimited capacity in
Stations 2—4 (N; = o0, i = 2,3,4). (Note that b;(t) = 0 for
i =2,3,4, which means that no patients are blocked.)
These conditions yield the following set of DEs for the
offered load r;,i =1, ..., 4 (just substitute 7; for x; in (5)):

4
1 () = At + > Byri(t) = O171(t) = iy (11 (£) ANY),
i=

7i (8) = pri(t) - py (11 () AN1) = (B; + O; + w)ri(t),
i=2,34. )

4.2. Estimating the Optimal Number of Beds Based
on the Offered Load

The estimated overall cost for Stations 2—4 based on the

offered load over the planning horizon T is

4
C(Na,N3,Ny) = > C(Ny); (10)
i

here, C(N;) is the underage plus overage cost for Station i
given by

C(Ny) = /T [Cui (ri(H) = Np)" + Co, - (N; = ()" |dt,
i= 2,03,4.
(11)

The first integrand corresponds to the underage cost,
which is calculated by multiplying C,, with the (proxy
for) bed shortage (r;(t) — N, )" and integrating it over the
planning horizon. The second integrand, the overage
cost, is obtained by multiplying C,, with the proxy for
bed surplus (N; — ri(t)" and integrating it over the
planning horizon as well.

Remark 2. How are these two proxies motivated?

First, under bed shortage (at cost C,, per bed), we
substitute 7; for x;. Second, under bed surplus (at cost
C,, per bed), we substitute r; for g;. Third, because
practically, C,, > C,, (Section 5.1), the optimal solution
must amplify reducing the number of blocked pa-
tients; hence, the more significant cost is incurred by
bed surplus. Fourth, for calculating the latter cost and
according to the offered load definition, g; = #; when
the system is underloaded. Under optimal bed allo-
cation, bed blocking occurs infrequently enough so
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that the load on each station is close to its offered load.
Indeed, comparing the solutions according to the fluid
model, its offered load approximation, and simulation
results (Section 5.2) shows an excellent fit. Additional
demonstration for the high quality of the offered load
approximation is given in Online Appendix C.

The offered load for each station is a known function
of t that depends solely on input parameters but not on
Ny, N3, Ny. Thus, minimizing (10) is, in fact, a separable
problem, which can be solved for each station sepa-
rately. (When doing so below, we shall omit the i in (11)
for simplicity of notation.)

To minimize C(N), we adopt the approach of Jennings
et al. (1997) and treat N as a continuous variable. We let
rg = {rq(t)| 0 <t < T} denote the decreasing rearrangement
of r on the interval [0, T]: 4 on [0, T] is characterized by
being the unique decreasing function such that, for all
x>0, we have

T T
/o Lo(p=ndt = /0 Ly hzndt; (12)
here, 1>y denotes the indicator function for the
event {r(f) >x}. Existence and uniqueness of r; were
established in Hardy et al. (1952). The interpretation of
Equation (12) is that both r(t) and r4(t) spend the same

amount of time above and under any level x. We can
now rewrite C(N) as follows:

T
C(N) = /0 [Cu-(r(t) = N)* + Co- (N — ()" 1dt (13)

0o T N T
= / Cu/ 1{r(t)2x}dt dx +/ CO/ 1{V(t)sx}dt dx
N 0 0 0
00 T N T
= / Cu/ 1{r(t)2x}dt dx —/ CM/ 1{r(t)2x}dt dx
0 0 0 0
N T
+/ Co|T - / 1{r(t)2x}dt
0 0
00 T N
= / Cy / 1{r(t)2x}dt dx - / (Cu + Co)
0 0 0
T

. / 1{r(t)2x}dt dx + C,TN
0

0o T N
=/ Cu/ 1{rd(t)2x}dtdx_/ (Cu+co)
0 0 0
T

/ 1{rd(t)2x}dt dx + C,TN,
0

dx

where the first equality is achieved by substituting

(r(t) - N)* = /N Loy d,
(14)

N
(N =r(t)" = /0 1in<xydx

and interchanging the order of integration.

We are now ready for Theorem 1, which identifies the
optimal number of beds, N *. The proof of the theorem is
provided in Online Appendix D. Note that our proof
does not require that r(t) and A(f) be continuous or
differentiable. (These assumptions were needed in
Jennings et al. (1997).)

Theorem 1. The number of beds that minimizes C(N) is
given by

G T
N* = . 15
i) 15
In Online Appendix E, we explain how N” arose as
a candidate for minimizing C(N).

Remark 3. Alternatively, one can obtain the solution by
building the cumulative relative frequency function for r
and noting the similarity between our problem and the
Newsvendor problem (Arrow et al. 1951, Nahmias and
Cheng 2009) for inventory management. In this case, we
interpret the frequency as probability. This approach is
similar to the reduction to the Newsvendor problem in
Harrison and Zeevi (2005). However, our solution in (15)
is more natural (more directly related to the time-varying
nature of our models and their underlying systems); more
importantly, this time-varying view naturally enables
the solution of two extensions: setup cost per new bed
(Section 6.1) and periodic reallocation of beds (Section 6.2)
(these are beyond the scope of the Newsvendor problem
extension). Note that, in the case of constant arrival rates,
the offered load would also be constant, and the optimal
number of beds would exactly equal the offered load.

5. Numerical Results

In this section, we apply our model to data to validate
our solution (Sections 5.1 and 5.2), calculate the im-
puted costs (Section 5.3), and provide structural in-
sights and managerial recommendations (Section 5.4).

5.1. An lllustrative Example

Our healthcare partners were willing to share with us
some of their financial reports and cost data. Rigorous
calculations based on these data (some of which are
confidential) yielded the following critical fractiles re-
quired for (15). The hospitalization cost in mechanical
ventilation wards is the highest among the geriatric
wards, and as it turns out, C,,, = 1.882C,,. In rehabilitation
wards, the ratio is C, = 2.667C,,, because the hospitali-
zation there is less expensive. Finally, the ratio for skilled
nursing care is C,,, = 4.267C,,, because the hospitalization
cost there is the lowest among the geriatric wards.

We used the fluid model developed in Section 3 to-
gether with our two-year historical data to forecast the
offered load for a subsequent three-year planning ho-
rizon, where the demand for beds (e.g., the arrival rate)
increases every year because of population aging
and growth. Then, by using Matlab, we numerically
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constructed the functions r; for each ward (by sorting
the function values of 7). The optimal number of beds is
the value of these functions at the critical point as in (15).
Because the value of N* is not necessarily an integer, it
must be rounded. Rounding up versus down has minor
significance, because the solution here serves as a guide
for a large organization that provides healthcare services
for an entire district. Therefore, our solution provides
insights regarding the difference between the suggested
allocation and the current capacity.

Figure 3, left panel presents the optimal number of beds
(the dashed lines) compared with the offered load (solid
lines). The optimal number of beds for each ward was
calculated by rounding up the result from Equation (15).
The optimal solution implies increasing the current
number of beds by 25%, 35%, and 33% in rehabilitation,
mechanical ventilation, and skilled nursing care, re-
spectively. In total, this is an increase to 577 beds from the
current 439 beds. This will lead to overage and underage
cost reductions of 51%, 53%, and 69%, respectively; here,
we compared the cost using our solution with the current
number of beds for the same arrival forecast. We believe
that there are two major reasons for this dramatic cost
reduction. The first is the lack of a model in practice, such
as the one introduced here: such a model would take
blocking and its related costs into account, which would
guide planners. The second reason is the difficulties in
increasing the present budget toward acquiring new
beds. We provide more details and calculate imputed
costs in Section 5.3.

Figure 3, right panel presents the waiting list length
of each geriatric ward under the optimal number of
beds. Note that the waiting lists are shorter (compared
with the current situation presented in Figure 2) by
67%, 74%, and 88% in rehabilitation, mechanical ven-
tilation, and skilled nursing care, respectively. This
occurs, although shortening the waiting lists is not
directly included in our objective function. Indeed,
we aimed at minimizing overage and underage costs;
because blocking costs are significant, reducing the
total cost is achieved by reducing blocking, which in
turn, leads to significant shorter waiting lists.

5.2. Solution Validation and Cost Comparison
In addition to validating our fluid model against data
and stochastic simulation results (Online Appendix A),
in this section, we validate our bed planning solution.
Thus far, two cost functions were presented for es-
timating the optimal number of geriatric beds. The first,
CO(N,, N3, Ny) in (7), is based on the time-varying
number of patients as derived from the solution of the
fluid equations in (6). Because minimizing CO(N>, N3, Ny)
is analytically intractable, we introduce the second cost
function, C(N3, N3, Ny) in (10), which estimates the total

cost based on an offered load approximation to the time-
varying demand for beds.

To validate the approximated cost function, we
compared the optimal solutions for the two problems
with the optimal solution derived from our stochastic
simulation model. In the latter, the arrivals, duration
times, and routing percentages are random variables
(Online Appendix A). All parameters, including the
size of the system, are realistic for the system that we
analyze.

The solution for C(N,, N3, N4) was calculated by
our closed form expression in (15). The solution for
CO(N,,N3,N,) was achieved by numerically solving
the optimization problem in (7) and (8); this was done
by solving the fluid model in (5) and (6) for each ca-
pacity combination, calculating the total cost according
to (7), and choosing the capacity combination with the
minimal cost. Finally, the solution for the stochastic
simulation model was achieved by calculating, for each
capacity combination, the total underage and overage
costs. This was done by using (7) and (8), where instead
of g; and b;, i=2,3,4, we used the corresponding
numbers from the simulation results. Then, we chose the
combination that minimized the cost. In other words,
the solutions according to CO(N,,N3,N,) and simula-
tion were carried out by a three-dimensional search
(over N, N3, and Ny). Table 1 summarizes this com-
parison by presenting the optimal number of beds and
the optimal cost according to each method. In addi-
tion, we calculated the differences in percentages be-
tween the two methods for each ward separately and
then, all together. The last column in Table 1 presents the
maximal difference between the solutions. The maximal
difference varied from 1% to 1.6% when comparing bed
allocations and from 1.1% to 3.4% when comparing
total cost. This excellent fit is typical; indeed, we ob-
tained similar differences when comparing the three
solutions under several other scenarios of overage and
underage costs.

5.3. The Imputed Overage and Underage Costs

In addition to estimating the C,/C, ratio given to us by
our healthcare organization, it is of interest to examine
C, and C, as imputed costs. These imputed costs are
based on observed decisions that, in our case, are the
numbers of beds that decision makers allocate to each
geriatric ward. To this end, we use the current number
of beds in each geriatric ward to extract the model’s
parameters C, and C,, or more accurately, the ratio
Co/Cy. (A similar approach was taken by Olivares et al.
2008.) Suppose that the current allocation N is optimal;
we then define

r;l(N) = sup {t|r4(t) > N} (16)
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Table 1. Comparing Optimal Solutions (Number of Beds and Overage and Underage Costs per Year)—C® (N,, N3, Ny) Vs.

C(Nz, N3, N4) Vs. Simulation

N (total cost)

Ward CO(N,, N3, Ny) C(N3, N3, Ny) Simulation Maximal difference, %
Rehabilitation 295 (2,601,667) 292 (2,683,042) 294 (2,633,167) 1.0 (3.0)
Mechanical ventilation 128 (1,493,917) 126 (1,547,000) 128 (1,499,167) 1.6 (3.4)
Skilled nursing 161 (1,213,333) 159 (1,226,750) 160 (1,215,667) 1.3 (1.1)
Total number of beds 584 (5,308,917) 577 (5,456,792) 582 (5,348,000) 1.2 (2.7)

as the time during which underage costs were incurred.
Let I denote the fraction of time during which underage
costs were incurred. Consequently, from Theorem 1,
we have

Ny G

I= = .
T C, +Cy

17)

We now present our data as a sequence of n days:
(t;,r(t;) for i =1,...,n, where f; denotes a single time
point for day i. Then, we define I to be an estimator for
the fraction of time during which underage costs were
incurred:

R
I == 1 r(t;))>N}- (18)
2Ltz
We replace r;'(N)/T with I in (17) to get
) C,
I= . 19
C,+Cy (19)

According to our data, I, = 0.74 in rehabilitation, I3 =
0.91 in skilled nursing care, and Iy = 1 in mechanical
ventilation. Therefore, the imputed costs are C,, =
0.35C,, (versus C,, = 2.667C,, according to the financial
reports) in rehabilitation, C,, = 0.099C,, (versus C,, =
1.882C,,) in skilled nursing care, and C,,, = 0 (versus C,,, =
4.267) in mechanical ventilation. The differences in the
imputed costs among the three wards are caused by dif-
ferent hospitalization costs as explained in Section 5.1.

There is a big difference between the ratio C,/C,
according to the financial reports and according to the
imputed costs. This may imply that blocking costs are
neglected or underestimated when determining the
geriatric bed capacity. Another possible explanation is
that, although there is a central decision maker that
owns both the hospitals and geriatric institutions, de-
cisions are locally optimized.

Note that the financial estimations of overage and
underage costs are adequate for situations close to the
current one. Adding hundreds of beds will require ad-
ditional investment (e.g., real estate) that is not captured
by the current estimates. The case where the marginal
cost per bed is higher because of bed setup is addressed
in Section 6.1.

5.4. Managerial Insights for the Optimal Solution
The function r; in the optimal solution (15) is decreasing
in [0, T]. As explained earlier, the ratio C,/(C, + C,) in
the optimal solution is the hospitalization cost ratio
between a geriatric bed and a hospital bed. As the gap
between these two costs widens, more geriatric beds will
be needed. Indeed, in Figure 3, the optimal number of
beds in skilled nursing care is relatively high compared
with the offered load. The reason for this is the relatively
low hospitalization cost in this ward. In mechanical
ventilation, however, the optimal number of beds is
relatively low compared with the offered load, because
the hospitalization cost there is higher.

Note that, when the optimal allocation provided in (15)
is too large to be implemented at once, it can also be
implemented gradually while estimating the cost re-
duction for each step according to (10). In addition, given
a specific budgetary constraint, our approach allows one
to evaluate the cost of (or numerically seek an optimal)
bed capacity.

Figure 3 shows long periods of low bed occupancy,
especially in skilled nursing care and rehabilitation. To
accommodate for the seasonal demand, we seek a more
flexible solution, such as reallocating beds between
wards. To this end, we first calculate the total offered
load for the three wards; then, we minimize (11) to find
the total required number of beds. The optimal solution
will then require fewer beds overall (566 beds instead of
577), but it will lead to only an additional decrease of 5%
in the total cost. The improvement is relatively modest
because of the correlated patterns of the offered load
among the wards; this implies that more beds are needed
in all three wards at the same time. Thus, reallocating
beds between wards is less effective in reducing the cost.

Consequently, a more flexible and responsive policy
to fluctuations in demand can be achieved by adding
and removing beds throughout the year. Because the
costs that we consider are for staffed beds (namely beds
for which there is an assigned medical staff) regardless
of their occupancy, not staffing beds during overage
periods would reduce the costs. According to our
healthcare partners, implementing two bed capacity
levels per year, which by our model, implies two ca-
pacity switches each year, is feasible. For example, it is
possible to open a specific area/ward when demand is
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high (usually in the winter) and close this area when
demand is low (usually in the summer). The described
policy is feasible, because most “bed cost” is related to
labor cost and medical supplies; the latter can be pur-
chased seasonally, whereas the former can be changed
because of the existing flexibility of staffing levels (e.g.,
reallocating workers within facilities in the same orga-
nization or changing the work load of part-time workers
throughout the year). We formally introduce and ana-
lyze the periodic reallocation problem in Section 6.2.

6. Extensions

In this section, we present two extensions to our model.
The first extension, at the strategic level, adds setup costs
for allocating new beds. The second extension, at the
operational level, allows a periodic reallocation of beds.

6.1. Including Setup Cost per New Bed

In this section, we analyze a case where there is a fixed
setup cost, K, associated with the introduction of each
new bed. The setup cost may be associated with re-
cruitment and training of new staff or the purchase of
new equipment. We assume that the setup cost may
vary with bed types. Let B denote the current bed
capacity; then, the overall cost for a geriatric ward is

Ck(N) = C(N) + K(N - B)*, (20)

where C(N) is the overall cost analyzed in Section 4 and
(N - B)* is the number of new beds. The planning
horizon, T, reflects an organizational policy regarding
investments and hence, should be long enough for an
investment in new beds to be worthwhile.

Theorem 2. The optimal number of beds that minimizes
Ck(N) is given by

c,T , c,T
<
T (Co + Cu)’ if T (Co n Cu) =5
N, = C,T+K , C,T+K 21
Cllese) o elese)ze
B, otherwise.

We prove Theorem 2 in Online Appendix F.
Note that 7,4(-) is defined on the interval [0, T]; hence,
when C, T <K, then r4(-) is undefined, because

CDT+K>COT+CHT_T
C,+C,  C,+C,

In this case, only the first condition of Ny is relevant.
Therefore, the solution will not include the introduction
of new beds. An intuitive explanation is that, for a high
bed setup cost, it may be preferable to pay the underage
cost for the entire planning horizon.

When implementing the method described in Sec-
tion 5.3, we get that K, the imputed setup cost per new
bed, follows the condition K > T(IC, — (1 — I)C,); here, I
is the estimator for the fraction of time during which
underage costs were incurred (Section 5.3). Under the
current financial estimations and a five-year planning
horizon, we get that the imputed setup costs are K, > 620,
600; K3 >587,940; and Ky >1,596,970. These costs are
about three times higher than the setup costs according
to our healthcare partners. This implies that, even when
considering setup costs, the blocking costs are under-
estimated when determining geriatric bed capacities.

6.2. Periodic Reallocation of Beds

Managers of geriatric institutions acknowledge that it is
feasible to change the number of beds during the year
to compensate for seasonal variations in demand.
Note that changing the number of beds also implies
changing staff levels (which are typically proportional
to the number of beds) and other related costs. The
planning horizon remains the same, but we divide each
year into several periods. We assume that labor can be
flexible but only to a certain degree (e.g., staffing levels
can be adjusted twice a year but not on a daily /weekly
basis). We then determine the preferable periods (lo-
cation and length) and the number of beds required for
each period. For example, an optimal reallocation
policy would determine a certain capacity during the
first three months and the last two months of every year
in the planning horizon and possibly, a different ca-
pacity during the seven other months of every year. To
this end, we introduce a reallocation cost, C,, associated
with adding and removing a bed.

Because of feasibility constraints from our partner
hospital chain, we allow only two capacity levels
throughout the planning horizon. Nevertheless, the
methodology that we present can be implemented in
other settings where more capacity levels are possible.
Moreover, because of the nature/shape of the demand,
having two capacity levels corresponds to changing
capacity levels twice each year.

Let 9 = [0, T] denote the planning horizon interval,
and let $ denote the time interval (location and length)
in which there are Ny geriatric beds (in 7\¢, there
are Ng\ 4 geriatric beds). Our objective is to find ¥, Ny,
and Nq\y4 that minimize the total underage and over-
age costs.

To this end, we split r(t) into two functions: rg(t) for
the capacity level in $ and 7\ 4(t) for the capacity level
in J\$. The functions rg4(t) and rq\4(t) are defined on
the intervals [0, |%#|] and [0, |7\$|], respectively, by
concatenating the relevant intervals from r(f) and
shifting the functions to t = 0. We define the functions
r4,(t) and r4, ,(t) to be the decreasing rearrangements
of r4(t) and rq\4(t), respectively, exactly as we defined



Zychlinski et al.: Bed Blocking Owing to Scarce Capacity in Geriatric Institutions
14 Manufacturing & Service Operations Management, Articles in Advance, pp. 1-16, © 2019 INFORMS

r4(f) in Section 4. The total underage and overage costs
are, therefore,

C(¥,Ng,Ng\5) = C($,Ng) + C(T\F, Ng\g)
+ Cy|Na\y — Ny

- L |Culr(t) = N3)* + CoNy = ()|
+/g\y[cu(r(t) ~ Nagg)©

+ Co(Nag — 7(t))+]dt + C/|Na\s — Ny,
(22)

where C($,Ng) and C(7\$,Ng\5) denote the overage
and underage costs for intervals § and I\ %, respectively.

Theorem 3. The number of beds that minimizes (22) for
a fixed $ is

Ny =N?, Ny, =N7V, if N?<N7Y,

Ny =NI, Ny, =NTY, if N{zNTV,
Ny = NTT\SL =N, as in (15), otherwise.

(23)

Here, N =14, (%) for every interval 1 (where s is

either $ or T\$).

We prove Theorem 3 in Online Appendix G.

Note that the option in the third line in (23) suggests
determining only one capacity level (e.g., it is prefer-
able not to reallocate beds throughout the planning
horizon). In particular, because r4,(-) and r4, (") are
defined on the intervals [0,|%|] and [0, |T\%|], re-
spectively, when C,|$|>C, or C,|T\$|>C,, it is
preferable to pay the underage cost for the entire period
than to pay the reallocation cost, C,.

6.2.1. A Numerical Example. We now solve the periodic
reallocation problem for a three-year planning horizon.
Figure 4 depicts the solutions for three cases. The solid
lines in Figure 4 represent the offered load for each ward,
whereas the dashed lines in Figure 4 represent the op-
timal number of beds. The first case (Figure 4, upper left
panel) is when no reallocation costs are introduced
(C, = 0). This solution yields 35%, 22%, and 31% un-
derage and overage cost reductions in rehabilitation,
mechanical ventilation, and skilled nursing care, re-
spectively, compared with the constant allocation. The
second case (Figure 4, upper right panel) is when
reallocation costs are introduced; in this case, the gap
between the two capacity levels narrows. In particular,
the optimal allocation in mechanical ventilation is
constant, because it is not worthy to invest the reallo-
cation cost (e.g., C, > Cy|¥| or C,>C,|T\J|). The third
case (Figure 4, lower right panel) presents the optimal
periodic reallocation when four reallocation points are
allowed and no reallocation costs are introduced. Figure
4, lower left panel presents the waiting list lengths for

each ward under the optimal reallocation policy when
no reallocation costs are introduced; this is in compar-
ison with the current situation presented in Figure 2 and
the constant allocation presented in Figure 3, right panel.

6.3. Managerial Recommendations on Extensions
The major cost reduction compared with the current
situation for the three wards is achieved by adopting
the proposed policy of a constant number of beds.
Periodic allocations allow for extra cost reductions
compared with the policy with a constant number of
beds. Thus, a reasonable policy would be to adopt the
constant allocation as a clear first step; then, if feasible,
a periodic reallocation ought to be contemplated. In
some cases, when the reallocation cost is higher than
the underage period cost, it is preferable to remain with
the constant allocation (see the case for mechanical
ventilation ward in Figure 4, upper right panel).

Another option, which can help reduce the load, is to
divert more geriatric patients in peak periods to home
healthcare services or virtual hospitals rather than to
geriatric institutions (Ticona and Schulman 2016). In
this case, multidisciplinary home teams treat the pa-
tient at home rather than in the hospital. Home care
hospitalization was found to be as effective, be less
expensive, be shorter duration, and increase patient
satisfaction compared with the same treatment re-
ceived in a hospital (Shepperd et al. 2008, Caplan et al.
2012). Moreover, according to our analysis, even a 10%
diversion of patients requiring geriatric hospitalization
to home care will reduce the overage and underage
costs by about 25% on average and will shorten the
waiting lists in hospital by 30% on average.

7. Future Research
There are multiple directions worthy of future research,
and two of which will now be described. The first is to
modify the structure of the system by adding an in-
termediate ward (i.e., a stepdown unit) for subacute
geriatrics (Wolstenholme 1999) between the hospital
and the geriatric institutions. Such an intermediate
ward would be designated for elderly patients with an
expected long stay in the hospital before continuing on
to a geriatric ward. Adding a subacute ward can both
reduce the workload and bed occupancy in hospitals
and improve the patient flow in and out of the hospital.
The second direction is a capacity allocation problem
in which, given a predefined budget, the planners must
decide where it is most beneficial to add new beds: in
hospitals, intermediate wards, or geriatric wards. The
simple version of this question (without intermediate
wards), in fact, triggered this research.
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