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Abstract:

The proposed research focuses on many-server service processing networks. Motivated by

applications such as healthcare services, in which multiple types of resources (e.g. doctor,

nurse, bed and equipment) are required for a service to be performed, we develop a resource-

based activity-network framework, under which all entities play an equal role. In particular,

customers, servers, equipment, etc. are all considered as resources, and activities are entities

which take some resources as input and output a potentially different set of resources. This

framework is natural in modeling service systems in which customers and servers have a

symmetric role. One particular case of such symmetry is closed queueing networks, where

both the customer and the server populations are finite.

In recent years, with advancements in information technology (e.g. RTLS, which stands

for Real-Time-Location-Systems), large transaction-level data sets have become available,

in which the location, time stamp, duration and participating resources of each transaction

are accurately and usefully recorded. We have access to ample such data. It will support

the development of algorithms that would automatically translate the data into our activity

network model at any choice of aggregation level. In parallel, we plan to develop theory and

tools to analyze such models in order to advise on design, staffing and control decisions for

the original system. Our modeling framework encompasses a wide range of service networks

such as closed and open queueing networks, fork-join networks, and networks that operate

in multiple operational regimes.
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Research Plan

1. A brief description of the subject and the scientific and technological

background

1.1. Data Stories. In the past, detailed (transaction-level) data collection in service systems

was costly (e.g., via time studies). However, advances in information technology have en-

abled cost-effective collection of massive amounts of operational data. For example, real-time

location systems (RTLS) are beginning to appear in hospitals and large outpatient clinics.

This data availability is prompting development of novel approaches for analysis of service

systems. In particular, the common top-down approach is replaced by the “bottom-up” al-

ternative, where system-level behavior is extracted from low-level details recorded in massive

amounts of raw data. While such amounts of data provide a detailed picture of the system,

it is typically hard to make actionable conclusions from raw data. Therefore, it is of interest

to develop a framework that can facilitate analysis and aggregation of raw data.

In Figure 1, we show two (time) snapshots of an activity network in a call center where cus-

tomers and agents interact. The left graph shows the network for customers, while the right

one for telephone agents. Rectangles in both graphs represent activities. Green rectangles

correspond to activities that involve both customers and agents: the three rectangles on the

left and the three rectangles on the right represent the same three activities. The remaining

activities involve only customers (left) or agents (right). White vertical bars on top of activ-

ities represent the numbers of customers/agents involved in a particular activity at the given

snapshot time. Directed edges between two activities indicate possible consumer/agent state

transitions in the network. Individual customers and agents are shown with small discs. A

disc moves between two activities while the corresponding customer/agent is engaged in the

activity that corresponds to the egress node. The number of customers/agents engaged in

an activity is given by the number of discs on its outgoing edges. An animation representing

the time evolution of both networks can be found at CustomerServerNet. An additional an-

imation, at ResourceNet, illustrates the same call center, but both customers and agents are

shown in a single network: the latter is a data-based animation of a resource-driven activity

network, which we now introduce.

In a call center, there exist two types of entities: customers and agents. In more complex

service operations, multiple entities might exists, and all of them might need to be taken

into account. For example, in a hospital, one might need to account not only for medical

doctors and patients, but exam rooms, nurses and equipment as well. This is one of the main

reasons to consider a unifying approach, based on resource symmetry, which allows for an

arbitrary number of entities. In general, activity networks describing healthcare operations

can have a daunting complexity. To demonstrate this point, in Figure 2, we show a (time)

snapshot of a patient appointment network in a large, complex outpatient clinic that we

are partnering with. Analogously to Figure 1, rectangles represent scheduled activities that

involve patients, edges describe routes, and discs correspond to patients. We note that this

is just a network for patients. Most of the shown activities require multiple resources. In

order to understand the whole activity network, one needs to consider similar networks for

https://www.youtube.com/watch?v=-ik5kA7aLGg
https://www.youtube.com/watch?v=jx3UUQCPODE
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Figure 1. Two snapshots of an activity network in a call center. The left
graph shows the network for customers, while the right one for agents; indi-
vidual customers and agents are shown with discs on arcs. Both snapshots
correspond to a call center where customers and agents interact. The snap-
shots are based on animations that can be viewed at CustomerServerNet and
ResourceNet.
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Figure 2. A snapshot of a patient appointment network in a complex outpa-
tient clinic. Nodes (rectangles) correspond to scheduled activities, arcs describe
patient routes. Patients are shown with discs on arcs.

all other entities in the system (medical doctors, nurses, equipment, rooms, etc.). Given the

complexity of the overall network, we conclude that algorithmic tools for analysis of such

networks are warranted. There exists an analogue of Figure 2 that corresponds to events

that actually occurred in the clinic (data are obtained via about 1000 sensors of a real-time

location (RTLS) system, at a resolution of 3 seconds).

https://www.youtube.com/watch?v=-ik5kA7aLGg
https://www.youtube.com/watch?v=jx3UUQCPODE
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Exploratory analyses of transaction-level data from a call center and a hospital can be

found in [13] and [3], respectively. In [18], the authors use data to calibrate a queueing model

(estimate its parameters). The approach in [7] is exactly the one advocated here: a symmetry

between customers and servers; in their data-driven analysis, the authors first propose a

queueing model that has features observed in data, and then they estimate parameters of a

queueing model for customer-server interactions.

1.2. Symmetry between customers and servers. The data examples above underline

a notion of symmetry or duality between servers and customers in queueing systems. For

example, (i) server idleness may be interpreted as a server waiting for a customer, (ii) servers

transferring between tasks may be thought of as “server networks”, and (iii) determining

staffing levels is parallel to determining panel size. While, traditionally, the customer popu-

lation in a queue is potentially large or infinite, the number of servers tends to be relatively

small, so duality did not arise naturally. Moreover, conventionally, in heavy traffic, essentially

all customers wait while servers are always busy [31, 32]. In contrast, in recent years, with

the proliferation of information services (such as call centers, chat systems, server farms), a

theory of many-server heavy traffic has been developed, in which significantly many servers

wait for customers and similarly customers wait for servers [22, 19]. This symmetry has moti-

vated us to come up with a unified framework of an activity network, in which customers and

servers are considered simply as two different types of resources, and for an activity to occur

the participation of a certain combination of resource types is required. (This framework is

also natural to capture situations where more than one type of server is needed for a service

to take place.) We next elaborate on some specific examples where the symmetry between

customers and servers is apparent (in addition to models that are inherently symmetric, such

as those considered in [47, 1, 39, 43]).

Offered load versus offered capacity. The concept of offered load has been discussed

in the literature [51]. In a nutshell, offered load refers to the (average) number of customers

in a system when capacity constraints are removed. Offered load has been used to advise

on determining staffing levels [11, 51]. Analogously, one might look at a system that has

unlimited demand and thus measure the number of busy servers [37, 20]. We refer to this

measure as the system offered capacity, and comment that it may be used to help determine

optimal panel sizes. In our unified framework, the notion of offered load refers to either offered

load and offered capacity, which is consistent with treating both customers and servers as

resources.

QED-regime characterization. The quality-and-efficiency driven (QED) regime (origi-

nally conceived as the Halfin-Whitt regime) is a many-server heavy-traffic asymptotic opera-

tional regime that has been extensively used to model customer contact centers and recently

also healthcare systems. Traditionally, this regime has been characterized (within a spe-

cific mathematical setting) as the unique heavy-traffic regime in which the probability of

a customer being delayed before service-start is strictly between 0 and 1. As it turns out,

an equivalent characterization is given by the QED regime being the unique heavy traffic
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regime in which the probability that upon service completion the server becomes idle (waits

for customers) is strictly between 0 and 1.

Asymptotic ASTA and Little’s law. Little’s law is the well known congestion law

according to which, in steady-state, the mean queue length is equal to the arrival rate times

the mean waiting time. In heavy-traffic, a similar relationship has been established with

respect to corresponding transient performance measures, due to the snapshot principle [45,

46]. As was shown in [49], a similar relationship applies to the number of idle servers and

their idle time; [49] also establishes a server analogue of the PASTA property. According

to the PASTA property [52], customers who arrive to a system, according to a Poisson

process experience, on average, the same system state as an overall long-term time-average.

Analogously, [49] established an asymptotic server “ASTA” property, according to which,

servers, upon service completion, experience on average the same system state as an overall

long term time average, as long as service times are exponential. The results mentioned here

relate to classical input-output theorems for queueing networks, e.g. see [48].

Skill-based routing and state-space collapse. In call centers, skill-based routing

(SBR) refers to routing of customers of multiple types to servers of multiple skills. An

alternate view of SBR could be the scheduling of servers of multiple skills to customers of

multiple types. More generally, SBR is the process of matching between customers and

servers. This symmetric point of view is apparent in skill-based routing schemes such as

QIR [21] (queue and idleness ratio) and LISF [5] (last idle server first). Under the QIR

policy, servers are assigned to serve a queue so as to maintain a certain ratio between the

various queue lengths, while customers are assigned to server pools to maintain a certain

ratio between the number of idle servers in the various server pools. In [21], the authors

establish state-space collapse results with respect to this policy which show that, in the

limit, the queues and the idleness processes indeed remain at their desired ratios. In a multi-

server system, the LISF policy assigns the next customer to the server that has been idle

the longest. This parallels a FIFO discipline for a queue of customers. In [5], it is shown

that LISF maintains asymptotic fairness among servers, which is consistent with the view of

FIFO as a fair policy towards customers [6].

Closed queueing systems. In standard open queueing systems, there exists an inherent

asymmetry between servers and customers: customers spend a limited time in the system,

while servers remain in the system forever. Hence, in order to develop a completely symmet-

ric unifying approach, we have been naturally led to consider a closed model, where both

customers and servers remain in the system forever. Note that this is without loss of gen-

erality since open models can be viewed as closed (the outside “world” can be thought of

as a node in the network). Typically, closed queueing systems are harder to analyze than

their open counterparts [50]. Our project focuses on developing tools for the analysis of

closed systems. As demonstrated in [53], methods that do not take into account the repet-

itive nature of service (such as the Piecewise Stationary Approximation [33], often used to

analyze time-varying queues) may lead to poor results in closed systems. Examples of heavy-

traffic limit theorems, for closed queueing systems with a fixed number of servers, can be



5

found in [36, 27, 28, 29, 38, 2]. Closed many-server systems with state-dependent drifts are

explored in [41]. QED analyses of the machine repair model, a “closed” analogue of the

standard many-server model, appear in [17, 42]. Additional closed many-server models were

considered in [44, 8].

1.3. Fluid Networks. In fluid networks, the flow through the system is continuous and

deterministic and work is infinitely divisible. Fluid networks are helpful in modeling the first

order effects of processing networks and may be obtained as a limit of a sequence of queueing

networks following functional strong law of large numbers. Fluid networks have been used

extensively in the literature to study system stability [15, 16], to assist in capacity plan-

ning [30, 10], and establish state-space collapse results [12]. Fluid models have been shown

to be a particularly meaningful modeling tool, which captures the predictable variability of

systems [33, 53, 14].

While in conventional heavy traffic, fluid networks necessarily depend on their correspond-

ing queueing network via the first moment of the relevant distribution, the situation is signif-

icantly different for the many-server heavy-traffic regime. Specifically, it has been established

by [34, 35, 40] that, in heavy-traffic, the fluid limit depends on the queueing model through

the entire service-time and time-to-abandon distribution. This type of limit, often referred

to as measure-valued, has been useful in establishing results such as the accuracy of de-

lay announcements in call-centers [4] and optimal scheduling of customers [9]; moreover, a

measure-valued description is natural for capturing the level of details that exists in data-rich

environments.

In the initial phase of this work, we are planning to use a fluid framework for our activity-

network model. As will be demonstrated, this enables one to capture the key features of

the network without compromising tractability. For example, while the fluid model does not

capture specifics of routing schemes, it does capture the first order proportional split of traffic

that is the result of routing. Our framework of fluid-activity-network allows one to assist in

decisions that pertain to the design, planning and control of the system.

Our framework relates to and amply draws from stochastic processing networks (SPNs) [23,

24, 26] and their corresponding activity analysis [25]. However, there exist some fundamental

differences, which we now explain. In SPNs, resources (servers) interact with customers

(materials) via activities. Materials arrive to the network at specifies arrival rates and traverse

the network according to some specified rules. Resource pools can be thought of as single

server queues with high processing capacities – individual service times are negligibly short,

as is typically assumed when considering the conventional heavy traffic regime (due to a time

speedup). As a result, for example, non-bottleneck nodes can be removed from the network

for analysis purposes. In contrast, our model is based on a many-server regime, implying

that activity durations are characterized by proper probability distributions (there is no time

speedup). As a consequence, all activities (nodes) in the network must be considered, since

one cannot focus on bottleneck nodes only as it is the case in SPNs. Finally, in SPNs,

constraints are due to finiteness of processing capacities of resources (servers). On the other
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hand, constraints in our models must be based on limited amounts (numbers) of resources

(both servers and customers) in the network.

2. Objectives and significance of the research

Our research agenda has been motivated by the increasing availability of transaction-level

data from service systems. The overall goal is to create data-driven models that can be used

to improve operations of such systems. The specific items we plan to develop are:

• A unified framework based on the symmetry of all entities in the system. Earlier ap-

proaches focused typically on one type of entities in the system (e.g., customers or

servers). In contrast, our framework considers all entities in the system simultane-

ously, since multiple entities can be needed to conduct a single activity. For example,

in order for a medical exam to take a place, a medical provider, a patient, an exam

room and some equipment must be all available simultaneously.

• An algorithm for generating and analyzing data-based models. Even service systems

of a moderate size can generate vast amounts of transaction-level data. Thus, tools

for automatically translating data into models are of interest. Our framework is

particularly suitable for this task, since it is based on a “bottom-up” approach –

transaction-level data describe the basic elements of our model (activities).

• A methodology for addressing design/staffing/control problems. The models devel-

oped will be particularly suitable for addressing such challenges. For example, our

framework allows one to generalize the notion of offered load/capacity.

A detailed description of our methodology is provided next.

3. Comprehensive description of the methodology and plan of operation,

including respective roles of the Israeli and American principal

investigators

Plan of operation: All parts of the research agenda will be investigated jointly by re-

searchers from the Israeli and American side. Mutual visits will facilitate this cooperation.

Students working with the PIs, as well as the SEE Laboratory staff, will be expected to

participate in research activities.

We now provide an overview of our research approach with some specific examples that

illustrate the main ideas.

3.1. Fluid Activity Network: The Static Model. Consider a closed system comprised

of n different resource pools and m different activities. Resources engage in activities. A

unit of resource can be in several states (one at a time) – we use the notion of sub-resource

to describe the resource-state pair. Let k be the number of sub-resources in the system. Any

two units of a specific sub-resource are interchangeable. An n × k matrix R with values in

{0, 1} describes the relationship between resources and sub-resources. In particular, Ri,l = 1

whenever sub-resource l corresponds to resource i. Model primitives include also an n-vector b

of resource amounts and an m-vector a of mean activity durations; the element aj represents

the mean duration of activity j. We define A := diag(a) for notational convenience. Initially,
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we assume that a unit of resource may correspond to a unit of one sub-resource at a time.

We refer to this assumption as a one-to-one correspondence. We shall relax this assumption

later (Example 4). Activities are described also by two nonnegative k×m matrices: an input

(consumption) matrix C and an output (production) matrix P . The element Cl,j defines

the amount of sub-resources l required to be engaged in activity j. Similarly, Pl,j specifies

the amount of sub-resources l created upon completion of activity j. Given the one-to-one

correspondence assumption, we require that RC = RP (conservation of resources at each

activity).

A plan x, an m-vector of activity levels, is feasible if

(1) RCAx ≤ b, (C − P )x = 0 and x ≥ 0.

It is appropriate to think of x as a vector of rates at which activities are being conducted (thus

the constraint x ≥ 0). The vector CAx represents the total amount of sub-resources engaged

in activities under x; RCAx indicates the corresponding amount of required resources. The

equality (C−P )x = 0 represents flow conservation constraints. The feasibility condition (1) is

very similar to the corresponding condition for activity networks [25, (2.1)]. The fundamental

difference is that the bound in (1) is in terms of resource counts (amounts) rather than

processing rates as in [25]; in our framework, processing rates are assigned to activities, not

sub-resources. We remark that additional constraints for x might be imposed due to system

specific dynamics, e.g., routing as illustrated in Example 2.

Example 1 (Machine repair). Consider the standard machine repair model: the resource pools

1 and 2 correspond to repairmen and machines, respectively (there are b1 repairmen and b2

machines). There exist two activities (1 = machine being repaired, 2 = machine working)

and three sub-resources (1 = repairman, 2 = broken machine, 3 = working machine) – see

Figure 3. Let 1/µ and 1/λ be the average repair and working times for a machine, respectively.

One has

(2) R =

[

1 0 0

0 1 1

]

, A =

[

1/µ 0

0 1/λ

]

, C =







1 0

1 0

0 1






and P =







1 0

0 1

1 0






,

since activity 1 consumes a broken machine and a repairmen (sub-resource 1) to produce a

working machine and a repairmen; and activity 2 “creates” a broken machine (sub-resource 2)

from a working machine (sub-resource 3). Therefore, in view of (1), a plan x with x1 = x2 ≥ 0

is feasible if
[

1/µ 0

1/µ 1/λ

]

x ≤ b,

or equivalently 0 ≤ x1 = x2 ≤ µb1 ∧
λµ

λ+µ
b2. �

Remark 1 (Open systems). An open system with exogenous arrivals and departures may be

obtained as a limit of a sequence of closed systems. In particular, suppose that units of

resource i arrive to the system at rate λi. Then, an activity exclusively involving resource i

can be used to representing an external source. All sub-resources corresponding to resource i
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Figure 3. Graphical representations of the activity networks described in
Example 1 (left), Example 3 (center), and Example 4 (right). Boxes represent
activities, and arrows indicate flows of sub-resources between activities. Lines
within boxes indicate correspondence between input and output sub-resources.

that leave the system are routed to this activity. Upon completing the activity (sub)-resources

enter the system. The mean activity time is set to γi, while the amount of resource i is set

to λiγi. Then, in the limit, as γi → ∞, resource i enters the system with rate λi. For example,

consider a fluid many-server open system: the number (amount) of servers (resource 1) is b,

customers (resource 2) arrive at rate λ, and the mean service time is 1/µ (activity 1). In

order to create a closed system, activity 2 is introduced: its output is a customer that is

ready to receive service (sub-resource 2), and its input is a customer that completes service

(sub-resource 3). Then, a = [1/µ γ]⊤; R, C, P are as in (2); and (1) yields that x with

x1 = x2 ≥ 0 is feasible if
[

1/µ 0

1/µ γ

][

x1

x2

]

≤

[

b

λγ

]

.

Letting γ → ∞ results in 0 ≤ x1 ≤ λ ∧ µb, i.e., the total service rate cannot be higher than

the arrival rate or the total processing capacity. �

Example 2 (Closed Jackson network). Consider a fluid version of a Jackson network with m

stations. The number (amount) of servers at node i is bi and the mean service time is ai.

There are (m + 1) (sub)-resources in the system: resources 1, . . . , m correspond to servers

at different nodes, and the (m + 1)st resource corresponds to customers. The amount of

customers in the system is bm+1. Matrix R is an identity matrix. There are m activities

in the system – the ith activity represents service of customers at node i. Based on the

preceding description, one has C = P = [I e]⊤, where e is a vector of ones and I is an

identity matrix (activity i consumes/produces a type-i server and a customer). Routing of

customers among the nodes is described by a stochastic matrix Π. This yields an additional

constraint: Πx = x. Hence, a plan x is feasible if

(3) aixi ≤ bi, i = 1, . . . , m, a⊤x ≤ bm+1, x ≥ 0, Πx = x. �

The conditions in (1) characterize the set of feasible plans x. A number of optimization

problems with respect to this region arise naturally. The most straightforward one is to

maximize v⊤x (subject to (1)), where v is an m-vector of value rates associated with the

various activities; this assumes that b is given. For example, for the closed Jackson network

of Example 2, solving this optimization problem with respect to any non-zero v ≥ 0, will

result in at least one binding constraint in (3), and if aixi = bi node i is a bottleneck, while

a⊤x = bm+1 implies that no customer is waiting to receive service.
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Offered load/rates. Another natural problem is that of determining offered load. As

opposed to the traditional one-dimensional notion of offered load, in our context the offered

load may be multi-dimensional, and is dependent on the subset of resources one wishes to

focus on. For S ⊆ {1, 2, . . . , n}, finding the rate offered by the set S corresponds to finding

the maximal activity rates that are feasible under the constraint that the capacities of the

resources in S are given. Similarly, finding the load offered by S corresponds to finding the

minimal resource levels that would permit the offered rate to be a feasible plan. To this

end, given a vector of capacities b, define b(S) by bi(S) = bi, for i ∈ S, and bi(S) = ∞, for

i 6∈ S. That is, b(S) is obtained from b by removing any capacity bounds for resources that

are outside the set S. Let X (S) be the set of maximal m-vectors x such that (1) holds with b

replaced with b(S). That is X (S) is the set of offered rates. In addition, for x ∈ X (S),

we introduce a set B(x,S) as a set of minimal n-vectors b′ such that b′ = RCAy for some

m-vector y with (RCAy)i = (RCAx)i, i ∈ S. B(x,S) is then the offered load associated with

offered rates x. One of our goals is to formulate a procedure for automatically calculating

these offered rates and loads; subsequently, they will be used to advise on capacity planning

and control.

Example 3 (Closed N-system). Consider an N-system with two customer pools (resources 1

and 2) and two server pools (resources 3 and 4). This example is depicted in Figure 3 as

an activity network with 4 resources, 7 sub-resources and 6 activities. The first server pool

(resource 3, sub-resource 3) can serve only the first pool of customers (resource 1) with unit

rate – this corresponds to the activity 1. The second server pool (resource 4, sub-resource 4)

can serve both classes of customers – activities 2 and 3 (the corresponding rates are 0.5

and 1). Upon a service completion, a customer enters an orbit. The mean time spent in

the orbit depends on the customer-server pair. In particular, after activities 1, 2 and 3, a

customer becomes sub-resource 5, 6 or 7, and enters activity 4, 5 or 6, respectively, with

corresponding mean durations 1, 0.5 and 1. Finally, sub-resources 1 and 2 correspond to

pool one and two customers that have completed their orbits, respectively. Thus, the system

is described by a = [1 0.5 1 1 0.5 1]⊤,

R =













1 0 0 0 1 1 0

0 1 0 0 0 0 1

0 0 1 0 0 0 0

0 0 0 1 0 0 0













, C =



























1 1 0 0 0 0

0 0 1 0 0 0

1 0 0 0 0 0

0 1 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1



























and P =



























0 0 0 1 1 0

0 0 0 0 0 1

1 0 0 0 0 0

0 1 1 0 0 0

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0



























;

RC = RP holds. For the pair of server pools ({3, 4}), we have

X ({3, 4}) = Conv〈





















b3

0

b4

b3

0

b4





















,





















b3
1
2b4

0

b3
1
2b4

0





















〉 and B(





















b3
1
2b4

0

b3
1
2b4

0





















, {3, 4}) = {













2b3 +
5
4b4

0

b3

b4













},
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where Conv denotes the convex hull. The set X ({3, 4}) is relatively simple due to the fact

that no activity involves servers from the two pools. In the case when one considers the pair

{2, 4}, note that activity 3 involves both resources 2 and 4; while, resource 2 can engage in

activity 3 only. Hence, one has

X ({2, 4}) = Conv〈





















∞
1
2(b4 −

1
2b2)

+

1
2b2 ∧ b4

∞
1
2(b4 −

1
2b2)

+

1
2b2 ∧ b4





















,





















∞
1
2b4

0

∞
1
2b4

0





















〉 and B(





















∞
1
2b4

0

∞
1
2b4

0





















, {2, 4}) = {













5
4b4

0

0

b4













}.

�

Remark 2 (Conventional heavy-traffic regime). Our framework stems from a many-server

regime: many activities of the same type take place simultaneously (with non-negligible

durations in general). In some cases, a system might involve some resources that indeed

operate in a many-server regime (such as beds in a hospital ward), while others operate in

conventional heavy-traffic (such as physicians in the same ward; see [3]); By considering a

limit of a systems in a many-server regime, one can obtain a characterization of a system

in which some or all activities/resources operate in the conventional heavy-traffic regime (or

a single-server mode in general). In the conventional heavy-traffic regime, a “processing”

capacity of a resource is large, but only one activity takes place at a given time (in the

limit activity durations tend to 0). Results in [25] cover the case when all activities operate a

single-server mode. In the mixed-regime case, for all sub-resources corresponding to resources

not operating in the many server regime, we let the corresponding amounts (bi’s) decrease

to 0; durations of all activities these sub-resources are involved in also decrease to 0 at the

same rate.

For example, consider the setup described in Example 3. Now suppose that the second pool

of servers (sub-resource 4) is replaced with a single server. In order to model this system,

we let γb4 be the amount of sub-resource 4; with γ → 0. Durations of all activities that

involve sub-resource 4 are also scaled by γ, leading to a = [1 2γ γ 1 0.5 1]⊤. Here,

b4 should be interpreted as the amount of sub-resource 4 capacity that is available per time

unit; a2/γ = 2 and a3/γ = 1 stand for rates at which activities 2 and 3 consume the capacity

of sub-resource 4. After letting γ → 0, (1) implies x1 = x4 ≥ 0, x2 = x5 ≥ 0, x3 = x6 ≥ 0

and 2x1 + x2/2 ≤ b1, x3 ≤ b2, x1 ≤ b3, 2x2 + x3 ≤ b4. �

A given unit of sub-resource can either be engaged in an activity or awaiting to be engaged

in an activity. Recall that (RCAx)i units of resource i (out of bi units) are engaged in

activities in the network. Given a plan x that satisfies (1), we say that resource i is a

bottleneck resource if the ith inequality in RCAx ≤ b is binding, i.e., (RCAx)i = bi (recall

the bottleneck resources for the Closed Jackson Network example above). In addition, all

sub-resources that correspond to resource i (that is, a sub-resource j such that Ri,j = 1)

are termed bottleneck sub-resources. Moreover, all activities that require bottleneck sub-

resources are labeled as bottleneck activities. Let z be a k-vector describing the amount
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of sub-resources in the network. then Rz = b. Since CAx sub-resources are engaged in

activities, z ≥ CAx and (z − CAx) resources are awaiting to be to engaged in activities.

Note that components of z are uniquely defined only for bottleneck sub-resources.

In the preceding, we considered only activities that preserve a one-to-one correspondence

between resources and sub-resources. Next, we examine activity networks that include activ-

ities that do not preserve such a correspondence. In such networks, multiple units of different

sub-resources can correspond to a single unit of multiple resource. To illustrate consider the

following fork-join example.

Example 4 (Fork-join). Consider a variation of the earlier discussed machine-repair model.

Recall that there are b1 repairmen (resource 1, sub-resource 1) and b2 machines (resource 2).

A broken machine (sub-resource 2) is disassembled (activity 5) into two parts (sub-resources 3

and 4) that both need to be repaired separately (activities 1 and 2; these activities require two

and a single repairman, respectively) – see Figure 3. Repaired parts (sub-resources 5 and 6)

are assembled (activity 6) into working machines (sub-resource 7). Repaired machines work

in one of two modes of operation (activities 3 and 4). The mean durations of the activities is

given by a = [1 2 1 2 0 0]⊤; input-output relations for each activity are captured by

C =



























2 1 0 0 0 0

0 0 0 0 1 0

1 0 0 0 0 0

0 1 0 0 0 0

0 0 0 0 0 1

0 0 0 0 0 1

0 0 1 1 0 0



























and P =



























2 1 0 0 0 0

0 0 1 1 0 0

0 0 0 0 1 0

0 0 0 0 1 0

1 0 0 0 0 0

0 1 0 0 0 0

0 0 0 0 0 1



























.

Then, (C − P )x = 0 is equivalent to x1 = x2 = x3 + x4 = x5 = x6. At the same time,

describing relations between (sub)-resources and resources with a binary matrix R is not

sufficient.

In order to capture relationships between sub-resources within individual activities, we

introduce a set of nonnegative k×k parametric matrices {T (i)}, where for each i this matrix

describes how activity i transforms input sub-resources into output sub-resources. For an

activity i and one of its input sub-resources j, let O(i, j) be the sets of activity i output

sub-resources that correspond to the sub-resource j; let I(i) be the set of input sub-resources

for activity i. For l 6∈ ∪j∈I(i)O(i, j), we set Tl,r(i) = 1{l=r}; for l ∈ ∪j∈I(i)O(i, j), we let

Tl,r(i) = βi
l,r ∈ [0, 1] if l ∈ O(i, r), and Tl,r(i) = 0 otherwise. The parameters {βi

l,r} satisfy,

for all i, the following flow-conservation identity:

(4) C:,i = P⊤
:,i T (i);
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If there exists a one-to-one correspondence between input and output sub-resources, then the

corresponding β is set to 1. For example, for our fork-join example, one has

T (5) =



























1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 β5
3,2 0 0 0 0 0

0 β5
4,2 0 0 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1



























and T (6) =



























1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0

0 0 0 0 1 1 0



























,

where β5
3,2 + β5

4,2 = 1 due to (4).

In the non one-to-one setting, the matrix R that relates resources and sub-resources satis-

fies, for all i,

(5) T (i)R⊤ = R⊤.

In general, both {T (i)} and R in parametric form – this allows one to distinguish among

different sub-resources that constitute sub-parts of a resource. In our fork-join example the

matrix R has the following form:

R =

[

1 0 0 0 0 0 0

0 1 β5
3,2 β5

4,2 β5
3,2 β5

4,2 1

]

;

the second row indicates that a “union” of units of sub-resources 3 and 4 (or 5 and 6)

corresponds to a unit of resource 2.

Let R be the set of all possible values of R (under (4) and (5)), and let {Rl} be the set of

extreme points of R. Then, RCAx ≤ b in (1) should be replaced with

(6)
∨

l

RlCAx ≤ b, (C − P )x = 0 and x ≥ 0,

where ∨ indicates that the inequality holds for all l. The first inequality ensures that a plan x

does not require more resources than that are available, regardless of whether resources

are decomposed into parts; this inequality can be rewritten as R̃CAx ≤ b̃ by eliminating

redundant inequalities. In our fork-join example, R has two extreme points, and

R̃CAx =







1 0 0 0 0 0 0

0 1 1 0 1 0 1

0 1 0 1 0 1 1






CAx ≤ b̃ =







b1

b2

b2







reduces to 4x3 + 4x4 ≤ b1, 3x3 + 4x4 ≤ b2. Finally, by setting b2 = ∞ or b1 = ∞ yields the

offered rates

X ({1}) =
b1
4
Conv〈





















1

1

0

1

1

1





















,





















1

1

1

0

1

1





















〉 and X ({2}) = b2Conv〈
1

4





















1

1

0

1

1

1





















,
1

3





















1

1

1

0

1

1





















〉,
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respectively.

In the absence of one-to-one correspondence between sub-resources and resources, there

exist additional constraints on the amount of sub-resources z ≥ CAx in the activity network.

Informally, the number of parts that form a whole must match. Recall that the components

of z that correspond to bottleneck sub-resources are uniquely defined: zi = (CAx)i. For β
i
l,r

and βi
q,r that are not identically equal to 0 or 1, vector z satisfies

I(βi
l,r)z = I(βi

q,r)z,

where I(β) is a n× k binary matrix such that I(β)i,j = 1 if the value of Ri,j depends on the

value of β, and 0 otherwise. In Example 4, this amounts to z3 + z5 = z4 + z6. �

Aggregation. We note that the activity networks described in Examples 1 and 4 can serve

as models for the same physical process – repairmen repairing machines that break down. It is

appropriate to think of activity 1 (respectively 2) in Example 1 as an activity that aggregates

activities 1, 2, 5 and 6 (respectively 3 and 4) in Example 4. That is, activity 1 in Example 1

models the repair activity without going into details of the process. This implies that the

repair process is fixed and cannot be altered. In the case when the repair process is found

to be inadequate, its detailed structure is required (e.g. Example 4) in order to understand

its limitations. For example, combining activities 3 and 4 in Example 4 into an activity 2 in

Example 1 assumes that the routing of repaired machines to activities 3 and 4 is fixed. In

a data-driven approach, the choice of a model is determined by the granularity of available

data. However, one can also aggregate data if having a coarser model is desirable. Such

models can be used to identify bottlenecks and understand interactions between functionally

independent parts of activity networks. Our goal is to develop an algorithm for automatically

generating system models from transaction-level data with a desired level of granularity.

3.2. Fluid Activity Network: The Dynamic Model. Our framework thus far was fo-

cused on a static fixed-point description, but did not explore how the system dynamics

evolve over time. We now extend our framework to include an explicit time dimension. This

extended framework is essential for modeling and analyzing systems that evolve in a time

varying fashion, which is indeed very common. Let G(t) and X(t) be m-vectors: Gi(t) is the

distribution function of the ith activity (non-negative) duration (set Ḡi := 1−Gi), and Xi(t)

represents the amount (number) of activity i that starts in the time interval [0, t]; define

X(t) = 0 for t < 0. Then, ai is the first moment of Gi, and Xi(·) is non-decreasing. We

focus on the total number of activities started rather than the instantaneous rate at which

activities start, because X(·) can be discontinuous. Let E(t) be a non-negative k-vector that

represents the amount of sub-resources not engaged in activities at time t = 0. In addition,

one needs to describe the state of the system at time t = 0. To this end, let V (t) be an

m-vector such that Vi(t) represents the amount of i activity that is in progress at time 0

and are completed by time t. This implies that V (∞) describes the amount of activities in

progress at time t = 0; set V̄ (t) := V (∞) − V (t) and, without loss of generality V (0) = 0.

In addition, let e be a non-negative k-vector that represents the amount of sub-resources not

engaged in activities just before time t = 0. The initial conditions obey R̃(CV (∞) + e) = b̃.
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Given that X(t) activities are started in the time interval [0, t], G ∗X(t) of those activities

end by time t; here

(7) (G ∗X)i(t) = Gi(0)Xi(t) +

∫ t

0

Xi(t− s) dGi(s) = Gi(t)Xi(0) +

∫ t

0

Gi(t− s) dXi(s).

Therefore, the total number of completed activities in [0, t] is given by (G ∗X + V )(t), while

the amount of activities in progress is (Ḡ ∗X + V̄ )(t). A dynamic plan X(·) is feasible if

(8) R̃C(Ḡ ∗X + V̄ )(t) ≤ b̃, CX(t) ≤ P (G ∗X + V )(t) + e and X(·) is non-decreasing.

The second inequality states that the amount of consumed sub-resources cannot be higher

than the amount of available sub-resources. The amount of sub-resources in the network not

engaged in activities is given by E(t) = P (G ∗X + V )(t)−CX(t) + e, and hence the second

inequality in (8) is equivalent to E(t) ≥ 0.

Example 5 (Machine repair). We revisit Example 1. Suppose that repair and working times

are exponentially distributed: Ḡ1(t) = e−µt and Ḡ2(t) = e−λt, t ≥ 0. If Vi(t) = 0 (no activities

are in progress at time t = 0), then the initial conditions satisfy e1 = b1 and e2 + e3 = b2.

In view of (8), a non-decreasing X is a feasible dynamic plan provided that the following

inequalities hold:

E1(t) = µ

∫ t

0

X1(s)e
−µ(t−s) ds−X1(t) + b1 ≥ 0,

E2(t) = λ

∫ t

0

X2(s)e
−λ(t−s) ds−X1(t) + e2 ≥ 0,

E3(t) = µ

∫ t

0

X1(s)e
−µ(t−s) ds−X2(t) + e3 ≥ 0.

The first two inequalities restrict the amount of activity 1 due to lack of repairmen and

broken machines, respectively; the third inequality bounds the amount of activity 2 based on

lack of working machines. Note that, for t = 0, one has X1(0) ≤ b1 ∧ e2 and X2(0) ≤ e3 as

expected.

In this example, a dynamic plan that maximizes X2(T ), for a fixed T > 0, is such that

E1(t)E2(t) = 0 and E3(t) = 0, for t ∈ [0, T ]. This leads to (assuming λ 6= µ)

X2(t) = µ

∫ t

0

X1(s)e
−µ(t−s) ds+ e3,

X1(t) = min

{

µ

∫ t

0

X1(s)e
−µ(t−s) ds+ b1,

λµ

λ− µ

∫ t

0

X1(s)
(

e−µ(t−s) − e−λ(t−s)
)

ds + b2 − e3e
−λt

}

.

In Figure 4, we plot X1(t) and X2(t) (along with their derivatives) that solve the preceding

system of equations, under the following choice of parameters: λ = 1, µ = 2, b = [1 4.5]⊤,

e = [b1 0 b2]
⊤ (at time t = 0 all machines are working). Given these parameters, sub-resource 1

(repairmen) is a bottleneck, limiting the maximum rate at which the two activities occur to 2

(see Example 1). �

Time varying behavior. In open networks (systems), time-varying performance can

be induced by time-varying arrival rates. Since there are no external arrival streams of
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Figure 4. Performance functions for the system described in Example 5. Left:
X1(t) (blue) and X2(t) (red) are shown with solid lines; the corresponding
derivatives are shown with dashed lines. Right: E1(t) (blue) and E2(t) (red);
E2(∞) = 1.5.

(sub)-resources in closed activity networks, we consider a system where activity durations

are time-dependent. In particular, let Gτ be a vector of distribution functions of activity

durations that start at time t = τ ≥ 0. Then, (7) generalizes to

(Gτ ∗X)i(t) = Gt
i(0)Xi(t) +

∫ t

0

Xi(t− s) dGt−s
i (s) = G0

i (t)Xi(0) +

∫ t

0

Gs
i (t− s) dXi(s),

while (8) generalizes to

(9) R̃C(Ḡτ ∗X+ V̄ )(t) ≤ b̃, CX(t) ≤ P (Gτ ∗X+V )(t)+e and X(·) is non-decreasing,

where Ḡτ
i = 1 − Gτ

i ; as before, the initial conditions obey R̃(CV (∞) + e) = b̃. Similarly,

E(t) = P (Gτ ∗X + V )(t)− CX(t) + e ≥ 0.

Due to the space constraint, we omit further details. We just remark that the concepts

discussed earlier (offered load/rates, bottlenecks, fork-join) extend to cover this dynamic

setting.

4. An account of available U.S. and Israeli resources, including all

personnel and equipment relevant to the research

The research personnel includes the principal investigators, their graduate students, and

possibly other research associates at the respective institutions. Standard computing, word

processing and communication facilities are available to all investigators.

The Service Enterprise Engineering (SEE) Laboratory at the Technion will provide the

infrastructure for data collection and analysis required in the present research. The laboratory

personnel have an extensive background in transaction-level data analysis, as well as software

development.
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