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Abstract. The performance of scheduled business processes is of central impor-
tance for services and manufacturing systems. However, current techniques for
performance analysis do not take both queueing semantics and the process per-
spective into account. In this work, we address this gap by developing a novel
method for utilizing rich process logs to analyze performance of scheduled pro-
cesses. The proposed method combines simulation, queueing analytics, and sta-
tistical methods. At the heart of our approach is the discovery of an individual-
case model from data, based on an extension of the Colored Petri Nets formal-
ism. The resulting model can be simulated to answer performance queries, yet
it is computational inefficient. To reduce the computational cost, the discovered
model is projected into Queueing Networks, a formalism that enables efficient
performance analytics. The projection is facilitated by a sequence of folding op-
erations that alter the structure and dynamics of the Petri Net model. We evaluate
the approach with a real-world dataset from Dana-Farber Cancer Institute, a large
outpatient cancer hospital in the United States.

1 Introduction

Scheduled processes are pervasive in our lives. In services, manufacturing systems and
transportation, one encounters corresponding schedules, such as appointment books,
production plans and bus timetables. Typically, it is of central importance for compa-
nies to analyze the performance of their processes. Data stemming from event logs of
these processes play an increasingly important role in this context [1] and first contribu-
tions have been made to investigate scheduled process from a conformance perspective,
which is grounded in process mining concepts [2].

While there are powerful methods for performance analysis in prior research, these
are bound to different types of limitations. First, analytical work in the area of opera-
tions research often does not provide direct techniques to make use of available exe-
cution data [3]. Second, process mining methods for performance analysis carry their
own limitations. In particular, Petri Net-based techniques discover fine-grained models
to capture the process perspective at the individual-case level [4, 5], but these analyses
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are restricted to simulation. Third, queue mining [6] focuses on the resource perspec-
tive to efficiently answer performance questions (e.g., delay prediction), while ignoring
other aspects of the underlying process, such as the control-flow perspective.

The main purpose of this paper is to provide a flexible, efficient and accurate method
for data-driven performance analysis of scheduled processes. We achieve this goal by
bridging the gap between the discovery of Petri Net simulation models and queue min-
ing. Our approach consists of three steps: discovery, folding, and projection. At the
foundation of the approach lies a discovery procedure that utilizes the schedules and
execution logs of the underlying process to construct and enrich a novel type of Colored
Petri Nets, the Queue-Enabling Colored Stochastic Petri Nets (QCSPN). The proposed
formalism is highly expressive and includes stochastic times, scheduling mechanisms
and queues.

To reduce the computational effort required to simulate the resulting model, we
project the QCSPN into a performance-oriented formalism, Queueing Networks. Sev-
eral types of Queueing Networks and their approximations are well-known for their
complexity-reducing characteristics [7]. However, there is an expressiveness gap be-
tween Petri Nets and Queueing Networks, which does not allow for an immediate
transformation of one formalism into the other [8]. To close the gap between the two
formalisms, we introduce the concept of folding that alters the structure and dynam-
ics of the originating Petri Net, thus making the Petri Net projection-ready. We test
our approach by conducting a predictive evaluation against a real-world dataset of the
Dana-Farber Cancer Institute, a large outpatient cancer hospital in the United States.
Our experiments demonstrate the influence of abstraction on prediction accuracy, de-
pending on the correctness of folding assumptions. Moreover we show that projection
of Petri Net models into Queueing Networks improves accuracy, while benefiting from
run-time efficiency.

This paper is structured as follows. Section 2 presents an overview of our approach
and a running example. Section 3 presents our data model and the Queue-Enabling
Colored Stochastic Petri Nets. Section 4 defines the discovery algorithm for Queue-
Enabling CSPNs (QCSPN). Section 5 formalizes the techniques for folding and pro-
jecting QCSPNs. Section 6 describes an empirical evaluation of our approach. Section 7
discusses related work before Section 8 concludes.

2 Approach Overview

This section describes the need for our approach. To this end, we refer to a use-case
that is inspired by data from the Dana-Farber Cancer Institute. The outpatient hospital
is equipped with a Real-Time Location System (RTLS) that tracks, via 905 sensors, ap-
proximately 900 patients per day. These patients are served by 300 healthcare providers
(e.g., physicians, nurse practitioners, registered nurses) supported by 70 administrative
staff, and occupying 7 floors.

The schedule of an ambulatory patient typically includes a blood draw, an exam-
ination by a physician or nurse practitioner, and a chemotherapy infusion (Figure 1).
The process may vary among cases, with some patients skipping activities, while others
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Fig. 1: The main process in Dana-Farber Cancer Institute.

having additional activities (e.g., acupuncture therapy, speech therapy, radiology scans).

Example 1 Consider two specific patients, pat1 and pat2, and their scheduled routes
for the same day. Both patients are to go through a blood-draw activity that is sched-
uled to be performed by Registered Nurse Tanya (we write RNTanya, as an abbrevia-
tion). Then, pat1 is to go through an examination activity, performed by two physicians
(medical doctors): MDVictor and MDElaine. Pat2 is also scheduled to go through an
examination, which includes a speech therapy appointment as a parallel activity; the
examination is planned to be carried out by MDElaine, while the speech therapy will
be performed by Speech Therapist Brooke (STBrooke).

Performance questions arise from several perspectives. From the patient’s perspec-
tive, it is important to predict their length-of-stay to reduce uncertainty about the re-
mainder of their day. From the hospital’s perspective, assessing the utilization profiles
of resources is a key issue. These questions can be answered either off-line (e.g., the
day before) or in real-time. For the off-line scenario, a data-driven simulation model
that captures every phase of the process can be invaluable (because run-time is not an
issue). This detailed case-level view is not covered by the queueing perspective. For
real-time analysis, an efficient and relatively accurate model with a fast response time
is required. This cannot be achieved by simulation, since its run-time may be slower
than the required response time. Our approach offers methods to move freely in the
spectrum between detailed-complex models and abstract-efficient models.

Figure 2 presents the outline of our approach with section numbers being on the
arcs. The phases of our approach are depicted by rectangles, modeling formalisms (QC-
SPN, Queueing Networks) are shown by circles, while the resulting models (after each
phase) are shown above the relevant phases. The approach starts with a data log, which
contains details on both the scheduled tasks and the corresponding actual execution
times. As our formalism, we adjust Colored Petri Nets [9] to form Queue-Enabling
Colored Stochastic Petri Nets (QCSPN) with time distributions, scheduling transitions
and queueing stations. In the first phase, the data is used to discover a simulation-ready
QCSPN model that represents schedule in detail. The main drawback of the resulting
model is that one ‘cannot see the forest for the trees,’ meaning that the amount of details
cause the QCSPN model to be less effective in terms of run-time complexity.

To resolve this inefficiency, we propose the second and third phases, folding and
projection. An abstracted version of the original QCSPN model is produced by applying
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a sequence of foldings, which alter the model at the net-level. This phase bridges the
expressiveness gap between Petri Nets and Queueing Networks (QNets), thus allowing
for the last phase of our approach, which is projection of the QCSPN into Queueing
Networks.

3 Models

We introduce two models. A schedule log, which serves as the data model, and Col-
ored Stochastic Petri Nets, which is a modeling formalism that is based on Coloured
Petri Nets with stochastic delays and scheduling transitions. For the latter, we define
Queue-Enabling CSPNs, to be used to construct projection functions from Petri Nets
into Queueing Networks.

Data Model. A schedule log contains a set of tasks and the actual execution times of
these tasks. A task is defined as a relation between cases, activities, resources, and times.
Let Θ be the universe of tasks, A be the domain of activities, R the set of resources,
TS be the set of timestamps (Unix time) and I the set of case identifiers. Then, the task
information is defined as follows.

Definition 1 (Task Information) Task information I = 〈ξ, α, ρ, τ, δ, τstart, τend〉 is a
tuple satisfying the following requirements:

– ξ : Θ → I assigns a case identifier to a task.
– α : Θ → A assigns an activity to a task.
– ρ : Θ → 2R assigns a set of resources to a task.
– τ : Θ → TS assigns a timestamp representing the planned start time to a task.
– δ : Θ → N+ assigns a scheduled duration to a task.
– τstart : Θ → TS assigns the observed start time to a scheduled task.
– τend : Θ → TS assigns the observed end time to a scheduled task.

Given task information we define schedule logs as follows.

Definition 2 (Schedule Log) LetΘP ⊆ Θ be a set of scheduled tasks. The schedule log
is defined as a tuple 〈ΘP , I〉, which contains all scheduled tasks and task information.
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Table 1: Schedule log for the running example.
Case Activity Resources Scheduled Start Scheduled Duration Actual Start Actual End

pat1 Blood-Draw [RNTanya] 9:00AM 10 (MIN) 9:05AM 9:10AM
pat1 Exam [MDVictor, MDElaine] 10:00AM 30 (MIN) 9:55AM 10:20AM
pat2 Blood-Draw [RNTanya] 9:10AM 15 (MIN) 9:15AM 9:27AM
pat2 Exam [MDElaine] 9:40AM 20 (MIN) 9:30AM 9:45AM
pat2 Speech-Therapy [STBrooke] 9:40AM 50 (MIN) 9:35AM 10:32AM

Table 1 shows a schedule log for the running example. Notice that the scheduled times
and actual times do not necessarily match.

Formalism. As our formalism, we build upon the Colored Petri Nets (CPN) by
Jensen [9] to discover, enrich and simulate the scheduled process. To this end, we ex-
tend the CPN model with scheduling transitions and distribution functions of firing
delays. Below, we define the structure of the CSPN formalism and specify its state and
dynamics (marking and firing semantics, respectively).

Definition 3 (CSPN Structure) The structure of a CSPN is a tupleN = 〈C, P, T, F,N,
G, E ,D,S〉 where:

– C = Σ × TS is the finite set of types Σ , called color sets, and the associated
timestamps.

– P is a finite set of places.
– T = TR ∪ TS is a finite set of transitions, such that TR is the ‘regular’ timed

transitions, and TS are referred to as ‘scheduling’ transitions.
– F is a finite set of arcs representing flow such that: P ∩ T = P ∩F = T ∩F = ∅.
– N : F → P × T ∪ T × P is a node function.
– G : T → Expr is a guard function that evaluates to boolean predicates.
– E : F → Expr is an arc expression function that evaluates to a set of types.
– D : TR → (N+ → [0, 1]) are distribution functions of firing delays in seconds that

are associated with timed transitions,
– S : TS → TS are timestamps assigned to scheduling transitions,

In the remainder of the paper, we adopt the common Petri net bullet notation for in-
places and out-places of transitions. That is, the in-places •t of a transition t are {p ∈
P | (p, t) ∈ F}, and the out-places t• are {p ∈ P | (t, p) ∈ F}.

Figure 3 demonstrates parts of the formalism by showing the CSPN that corresponds
to the blood draw task for the first patient pat1 in our running example. We closely
follow the semantics as introduced by Jensen for CPNs [9]. The arc expressions contain
variables that can be bound to typed tokens. For example, the variable pat can be bound
to patient pat1. A transition t is color enabled in a binding, if the input places •t contain
tokens that satisfy the arc expressions and the guard function G(t) evaluates to true
given the binding. The binding by the arc expressions takes care of proper routing of
the tokens to their respective output places. In our example, we require the token of
RNTanya to return to its place so that she can draw blood from the next patient. This is
taken care of by the variable res in the corresponding arc expressions.

Besides the colors, a token carries an associated time that specifies at which point
in time the token becomes ready for the next firing. This depends on the global clock
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Fig. 3: An illustration of the blood-draw task for pat1; the elements of the queueing
station are highlighted with the dashed box.

g, i.e., the token time must be smaller or equal to g. Transitions are eager to fire, that
is, whenever a transition is color enabled and the tokens are ready, it immediately fires.
The timestamp ts of each of the produced tokens is set to g +∆(t, g), where ∆(t, g) is
the firing delay of t at time g:

∆(t, g) =

{
d if t ∈ TR,
max(g,S(t))− g if t ∈ TS ,

(1)

Here, d is a realization of the random duration Dt that comes from distribution D(t).
We call a transition ti with all the probability mass ofD(ti) on 0 an immediate transition
an depict it with a bar in the model, as known from the GSPN formalism [10].

Queue-Enabling CSPN. In this part we define the Queue-Enabling CSPN (QC-
SPN), which is a CSPN with scheduling transitions, queueing stations, and fork/join
constructs.

Definition 4 (Queueing Station) A queueing station is a CSPN, where
– P = {pq, pa, pe, pr1 , ..., prK}, with pq being a queueing place, pa being the on-

going activity place, pe being the end place andK ∈ N being the number of service
providing resources per station,

– T = {ts, te} being the start and end transitions,
– F = {fini , fserve , fserved , fouti , fleave} are the flow arcs with i = 1, ...,K and,
– N(fenter ) = (pq, ts), N(fini ) = (pri , ts), N(fserve) = (ts, pa), N(fserved) =
(pa, te), N(fouti) = (te, pri), N(fleave) = (te, pe).

For example, in Figure 3, the subnet that starts with the queueing place ‘BD Queue’
and ends at the ’BD End’ place, is a queueing station. We are now ready to define the
Queue-Enabling CSPN (QCSPN).

Definition 5 (Queue-Enabling CSPN (QCSPN)) A Colored Stochastic Petri Net 〈C, P,
T, F,N,G, E ,D,S〉 is called Queue-Enabling, if the CSPN contains a single source pα,
a single sink pω , and every other node (n ∈ P ∪ T \ {pα, pω}) of the CSPN belongs to
either,

– A queueing station, or
– An immediate split or join transition ti (with | • ti| > 1 ∧ |ti • | = 1 or | • ti| =
1 ∧ |ti • | > 1), or

– There exist a scheduling transition tΣ ∈ TS , such that n is the predecessor place
of the scheduling transition or tΣ itself.
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4 Discovery of Queue-Enabling CSPN Models

This section is devoted to the discovery and enrichment of Queue-Enabling Colored
Stochastic Petri Nets (QCSPN) from the schedule log. To discover the QCSPN, we ex-
tend the approach of van der Aalst’s work on scheduling with Petri Nets [11] to include
scheduling transitions and stochastic times. First, we provide an overview of prepro-
cessing and assumptions required for discovering and enriching the QCSPN model.
Then, we demonstrate a three-step discovery algorithm that constructs the QCSPN. Fi-
nally, an enrichment procedure of the model from data is described.

Preprocessing and Assumptions. Precedence constraints (synchronization points)
are a key feature of scheduled processes, ensuring that cases are not allowed to continue
to a new task before a subset of other tasks is performed. To handle parallelism, we ap-
ply a preprocessing phase in which we detect parallel tasks using interval calculus [12].
Thereby, we assume tasks to be parallel if the intersection of their planned times is not
empty. Henceforth, we shall assume the existence of a parallelism set, Π ⊆ 2Θ, which
contains sets of tasks that are scheduled to be performed in parallel. The set Π is a par-
tition ofΘP , since we assume transitivity of the parallelism property, thus avoiding new
splits prior to joining previous splits. Three more assumptions are used in the discovery
process, as follows:

– Work conserving: Resources become available immediately after the completion
of a task.

– Temporal deviations: The scheduled tasks may deviate in time only (no activities,
resources or routing deviation).

– Duration dependencies: Activity durations depend only on the activity and its
planned duration (independent of marking components, i.e. case identifier, resources,
and scheduled time).

Discovery. The discovery algorithm comprises three steps, construction of queueing
stations, synchronization of parallel tasks, and initialization of the state (marking and
global clock). Next, we go over the steps and relate them to the proposed models (Sec-
tion 3).

Step 1: Construct Queueing Stations. We start by inserting all resource places,
{pr | r ∈ R}. Then, for each task θ ∈ ΘP of the schedule log, a corresponding queue-
ing station is created as follows. The activity place is defined as pθa, a = α(θ). The
resource places that are connected to the starting transitions are {pr | r ∈ ρ(θ)}; the
durations of timed transitions tθs are set to be deterministic (i.e., according to plan) with
Dtθs

= δ(θ). Arcs that connect places and transitions receive arc-expressions, which
verify that resource tokens and case tokens are separated and routed appropriately. Sub-
sequently, scheduling transitions are inserted to precede queueing places, pθq , to prevent
an ahead-of-time arrival into the queueing station. Every scheduling transition tθΣ ∈ TS
is assigned with a timestamp S(tθΣ) = τ(θ) according to the earliest start time of the
activity. Finally, we add a source and sink place, pα and pω , respectively.

Step 2: Synchronize Parallel Constructs. In this step, we add split and join transi-
tions for every parallelism class in Π . Let π ∈ Π be a set of parallel tasks, with |π| > 1
(parallelism classes may be singletons for sequential tasks). We add a split transition
tπsp to the set of transitions and connect it to each scheduling transition tθΣ , θ ∈ π via
a new scheduling place. Then, we add join transitions tπj after each parallel construct
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to express the synchronization of the concurrent tasks. Each of the join transitions is
assigned with a guard that verifies that joining is performed only for tokens with the
same static component, i.e., case identifier. Figure 4 demonstrates a parallel construct
for pat2 from our running example. According to schedule, the patient is to undergo
examination and speech therapy in an overlapping period of time.

Step 3: Initialize State. This step sets the initial marking and the global clock. The
global clock, which is the dynamic part of the state, is set to zero. For the initial marking,
all case tokens start at pα, while resource tokens reside in their corresponding places.
The number of resource tokens in each resource place corresponds to the offered ca-
pacity of that resource, which is the maximum number of tasks that a single resource is
scheduled to perform at the same time. For our running example, this allows for a nurse
to attend multiple infusion patients in parallel. The static marking component of case
and resource tokens is their unique identifiers. The timestamp component for case to-
kens is initialized to be zero. The timestamp component of resource tokens is initialized
to the timestamp of the first scheduled task for the corresponding resource.

Enrichment. Once the QCSPN model is discovered from the schedule, we en-
rich it based on actual execution times per task by replacing deterministic durations
with stochastic ones. To this end, we apply the techniques for enhancement of non-
Markovian Stochastic Petri Nets with non-parametric kernel density regression [5].
Other model components that are often stochastic, e.g., exception-handling mechanisms
and routing, are assumed to be driven by case-information and therefore determinis-
tic. The outcome of the discovery and enrichment steps is a simulation-ready QCSPN
model, which we refer to as N0.

5 Folding and Projection of QCSPN into Queueing Networks

In this section we introduce the concepts of folding and projection of QCSPNs. First,
we define the folding function and provide with several examples of foldings. Then, we
define athe projection function and demonstrate a single projection with the help of a
sequence of foldings.

5.1 Folding of QCSPN.

LetMQCSPN be the universe of all QCSPN models and let A be the universe of possible
model assumptions, (e.g., activity times are exponentially distributed).

Definition 6 (Folding Function) A folding function ψA : MQCSPN → MQCSPN ,
creates a new QCSPN model, under a set of assumptions A ⊆ A.

Below, we provide several examples of folding functions. For each function, we explain
the net-level changes that it requires, and demonstrate it with our running example.
We omit the formal proofs that show that the resulting nets are QCSPN, due to space
restrictions.
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Folding 1: Remove Parallelism (RP) Parallelism is well-known for its negative influ-
ence on the analytical tractability of Queueing Networks [13]. This motivates us to
consider a folding operation ψRP that transforms N0 into a concurrency-free model,
ψRP (N0). Specifically, ψRP adds the assumption: “all parallel tasks must start and end
at the same time occupying all resources that were scheduled to perform the (originally)
parallel tasks.”

Without loss of generality, we show the net-level changes that the RP function im-
plies on a single parallel class of tasks, π ∈ Π . Note that the marking-related elements
remain unchanged. For every θ ∈ π, |π| > 1, the folding function removes the corre-
sponding queueing station (non-resource places, transitions, flow relation). Moreover,
the corresponding split and join transitions (tπsplit, t

π
join) are also removed from the net.

Subsequently, a single queueing station that corresponds to a new task θ′ is created
and is connected to all resources places that were connected to the original tasks θ ∈ π.
The activity name for the new station is defined as a concatenation (denoted

⊎
) of all

previously parallel activities, i.e., α(θ′) =
⊎
θ∈π

α(θ). The random duration of the timed

transition t′ that corresponds to the new activity is written as Dt′ = max
θ∈π

[Dtθs
], with
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Dtθs
being the random duration of task θ. The scheduling transitions per parallel branch

are folded into a single scheduling transition tθ
′

Σ with S(tθ′Σ) = min
θ∈π

[S(tθΣ)], i.e. the

scheduled start time of the new task is the earliest among all start times of the original
parallel tasks. Figure 5 shows ψRP (N0) for the running example. We observe that for
pat2, a new task ‘Exam SpeechTherapy’ that requires both resources is created. The
synchronization constructs for the previous two queueing stations no longer exist.

Folding 2: Remove Shared Resources (RSR) Shared resource possession imposes math-
ematical difficulties when analyzing queueing systems [14]. Therefore, as a next step
toward projection of N0 into Queueing Networks we apply folding function ψRSR,
which removes shared resources. The underlying assumption for the RSR function is
the following: “resources R′ ⊆ R that share task θ can be combined into a single re-
source with ρ(θ) = {

⊎
r∈R′

r}”. In other words, the set of resources R′ becomes a new

resource that is added to R. Figure 6 demonstrates the result of ψRSR(ψRP (N0)): a
new resource MDElaine STBrooke is created for the second task of patient pat2.

Function 3: Fuse Queues (FQ) In this step, we further reduce model complexity by
fusing queueing stations that perform the same activities and share the same resources.
For example, consider two queueing stations that correspond to two tasks, θ1 and θ2,
such that α(θ1) = α(θ2) and ρ(θ1) = ρ(θ2). The fusion merges the queuing, service,
and end places, as well as the start and end transitions for the two tasks. Duplicate arcs
are removed, as the arc-expressions are equal. Scheduling transitions are not fused and
govern the routing of the corresponding patients through the fused queueing stations.

Figure 7 presents ψFQ(N0) for RNTanya’s two blood draw tasks of our running
example. We observe that in the new net, two case tokens can reside in the queueing
place and wait for RNTanya. Here, if we assume that both patient tokens are ready,
the conflict between them needs to be resolved. We assume that cases are served ac-
cording to the earliest-due-data first (EDD) policy, i.e. the case token with the smaller
timestamp will get served first. The fuse queues folding does not change the perfor-
mance characteristics of the QCSPN model. Nevertheless, it is a required step that en-
ables projection into Queueing Networks, since it joins the otherwise scattered queues
of activity-resource pairs.

Function 4: Remove Scheduling Constraints (RSched) The last folding function builds
on the assumption that “scheduling constraints are not enforced”. In other words, cases
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that finish service in a certain queueing station are immediately routed to the succeeding
station according to schedule. The RSched folding implies a very simple change at
the net level: every scheduling transition is turned into an immediate transition with
corresponding guards that verify the identity of cases for routing purposes.

5.2 Projection of QCSPN into Queueing Networks.

The intuition behind the idea of projecting QCSPN into Queueing Networks is straight-
forward. Queueing networks are directed graphs, with vertices being single-station
queues and edges being the routing mechanism that communicate customers between
these queues4. Therefore, as a first step of projection queueing stations of the originat-
ing QCSPN are transformed into vertices of the target Queueing Network. Every vertex
of the Queueing Network can be characterized by the number of resources that reside in
that vertex, which serve customers according to some service time distribution. These
times correspond to the random durations of the timed transitions in the QCSPN. The
matching between cases and resources are governed by service policies, e.g. first-come-
first-served (FCFS) or earliest-due-date first (EDD). At service completion, customers
are routed to the next queueing vertex (either deterministically or according to assigned
probabilities). The described behavior corresponds in a one-to-one manner to our defi-
nition of a QCSPN, and provides the basis for the construction of a projection function.
Formally, the projection function is defined as follows.

Definition 7 (Projection Function) Let MQN be the universe of all Queueing Net-
works. A projection function φ : MQCSPN →MQN creates a Queueing Network from
the originating QCSPN.

Figure 8 presents a projection function, operated on the folded version of our running
example. The folding includes the four foldings that we provided in Section 5.1, i.e. Re-
move Parallelism, Remove Shared Resources and Fuse Queues, and Remove Schedul-
ing Constraints, in the order of their presentation. The resulting Queueing Network has
distinguishable customers, single resource per-station and does not allow for exogenous
arrivals (customers start in the system at the time of their arrival).

4 Due to Queueing Network conventions we write the terms customers and cases interchange-
ably
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6 Evaluation

In this section we describe the results of an empirical evaluation of the proposed ap-
proach. Here, we aim at demonstrating the usefulness of the method spectrum: from
detailed Petri Net-based simulators, through folded versions of the originating model,
to predictors that are based on the projected Queueing Network. We start with the main
aspects that involve the implementation of our techniques. Then, we describe the dataset
and the design of our experiment. We conclude the section with our main results and a
discussion of the evaluation.

Implementation. We implemented the model construction, its enrichment with his-
torical data, the simulation semantics, the folding operations and a projection into the
Queueing Theory based snapshot predictor. The implementation uses the Python pro-
gramming language and builds on the open-source SNAKES framework [15]. The im-
plementation is available as a free open-source project5.

Data Description. The data that we consider comes from the Dana-Farber Can-
cer Institute. We combine two datasets into one: the scheduled visits and their corre-
sponding execution times. The former contains a detailed schedule for each day, while
the latter is based on Real-Time Location System measurements of that day. Specif-
ically, every patient’s path is measured by the RTLS and matched to the originating
appointments that reside in the patient’s schedule. We utilize a year’s worth of data,
for year 2014 (222 regular workdays, nearly 140000 scheduled visits), for training the
enrichment algorithms and testing our techniques. The training set includes 212 regular
workdays, while the test set consists of 10 workdays, selected at random. We excluded
special days (e.g., Christmas) with irregularly high or low workloads from the random
selection of the test days.

Experimental Setup. The design of our experiment is as follows. We predict the
length-of-stay (i.e. the time in process from start to end) for every scheduled patient
over the 10 test days. The prediction is then compared against the actual length-of-stay.
Patients are assumed to arrive at their real arrival-time, as it is recorded in the data. The
uncontrolled variables in our experiments are the root of the mean-squared prediction
error (RMSE), and the mean error. The former measures the deviation between the pre-
dicted value and the actual value of the length-of-stay (LOS), while the latter shows the
‘bias’ of the predictors. The controlled variable is the model that we use for prediction
of the LOS. The QCSPN models are discovered from the test day’s schedules and are
then enriched by the training set.

For prediction, we consider the following five models: the original model (N0),
the no-concurrency model (ψRP (N0)), the removed shared resources model with-
out concurrency (ψRP,RSR(N0)), the scheduling transitions and fuse queues model
(ψRP,RSR,FQ,RSched(N0)), and the queueing predictor that corresponds to the pro-
jected model (φ(ψRP,RSR,FQ,RSched(N0))).

The first four models are based on simulation and therefore, their application to pre-
dicting lengths-of-stay is straightforward. Specifically, all test-day patients are placed
into the simulator at their corresponding actual arrival time, and their simulated depar-
ture times are recorded. The predictor that we use per patient is the average length-of-

5 See QueueingCPN project: https://github.com/AndreasRoggeSolti/QueueingCPN
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N0 RP RP&RSR RSched Queueing

Mean Error 0.92 0.91 0.88 0.46 -0.42
RMSE 1.97 1.95 1.95 1.82 1.38

Table 2: Mean Error and RMSE (hours) for length-of-stay predictors.

stay of that patient across 30 runs. On the other hand, the queueing predictor does not
require simulation, and can be calculated directly as the patient arrives. The justifica-
tion for using the former quantity is based on the heavy-traffic snapshot principle for
networks, a well-known result from Queueing Theory [16]. The predictor was found
to be empirically accurate in several recent works on queue mining [17]. The second
predictor is a first-order approximation that is based on average durations and station-
arity assumptions, in the spirit of the queue-length predictor in [6, 18], extended from
single-station queues to networks.

Let us examine the queueing predictor in further detail. Let 〈q1, ..., qk〉 be the sched-
uled path in terms of queueing stations for the patient whose length-of-stay we wish to
predict. Denote Si, i = 1, ..., k the sojourn time (delay and activity duration) of the
last patient that went through station qi (every Si can be calculated from histories of
different patients). Let Li be the number of patients that currently occupy the ith station
(queue and service), upon the patient’s arrival, and let µi be the service rate of the ith
station. The queueing predictor LOSq can be written as follows:

LOSq =

{∑k
i=1 Si if Si > 0,∀i∑k
i=1

(Li+2)
µi

otherwise.
(2)

As default, we use the well-established snapshot predictor, which uses the sum of re-
cent visits to stations q1, ..., qk. However, Si might not exist (Si = 0) for some of the
patients, since there is a positive probability that no other patient has visited station qi
before the arrival time of the current patient. For these cases, we resort to the second
predictor, which assumes that the queue-length will not change while the patient is in
the system. The second predictor assumes that for each station, the patient will wait for
the queue to clear up (Li + 1 service terminations), at rate µi. Then, the patient enters
service and gets served at rate µi, hence the total time per station is (Li+2)

µi
.

Results. Table 2 presents the results of the empirical evaluation, with time units be-
ing hours. The considered measures are Mean Error representing the bias of the model,
and the Root Mean Squared Error (RMSE) as an indicator for model accuracy. We
observe that the most accurate predictor in terms of RMSE is the queueing predictor.
However, it is characterized with systemic under-estimation of the length-of-stay. The
first 3 simulation-based models are less accurate and comparable among each other in
terms of their RMSE. These predictors present an over-estimation of the length-of-stay.
In contrast, the RSched folding demonstrates improvement in both RMSE and mean
error, with respect to other QCSPN models.

Discussion. The empirical evaluation demonstrates that, in terms of RMSE, the ef-
ficient queueing predictor is most accurate, when compared to the simulation models.
The weakness of the projected model however, is that it cannot be applied to answer
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performance questions, at a granular level. For instance, consider the estimation of
individual resource utilization, without relaxing the shared-resources and parallelism
assumptions. Classical Queueing Networks are not expressive enough to analyze such
questions, without the help of simulation. We also observe that folding of parallelism
and shared resources did not have an influence on the simulation model. This can be
explained by the fact that in our dataset comprises few parallel tasks, and that tasks are
executed by single resources.

The mean error measure provides us with additional insights. Since the queueing
predictor builds upon the RSched folding, it neglects scheduling delays and thus has
a negative mean error. This causes it to under-estimate the length-of-stay. However,
this relaxation may also be the reason for its superior accuracy. The latter hypothesis
is supported by the fact that the error has decreased due to the removal of schedul-
ing transitions in the RSched model. One may then conclude that, for the process in
the Dana-Farber Cancer Institute, scheduling constraints are not strictly binding in the
process.

Finally, after an exploratory data analysis, we found that deviations in the order of
tasks are not rate. This phenomena explains the inaccuracy of the simulation models,
since they assume that the sequence of tasks is not violated. However, the queueing pre-
dictors consider only the set of tasks regardless of their execution order, which explains
their accuracy.

7 Related Work

We categorize related research to three classes, namely modeling formalisms, abstrac-
tion methods and process mining techniques for performance analysis.

Formalisms. Several modeling formalisms were proposed to extend Petri Net mod-
els, such that stochastic elements and queues are included [19]. For example, Queueing
Petri Nets (QPN) were developed to accommodate subprocesses that encompass queue-
ing stations [20]. However, their work does not clearly define the allowed structure
for the embedded queueing network. This can result in an arbitrary large and com-
plex Queueing Networks within the Petri Net. Our QCSPN formalism is also related
to Interval Timed Colored Petri Nets [21]. In this work, we extend this formalism with
stochastic durations and scheduling transitions.

Abstraction. Abstraction techniques, such as aggregation at the net level, were ap-
plied to conceal insignificant model details with respect to some analysis [23]. Further-
more, simplifying reduction rules that preserve certain properties of the original system
were applied to Petri Nets. For instance, Juan et al. considered reduction rules for de-
lay time Petri nets [24], such that timing and deadlock properties of the model were
unchanged. The idea of aggregation is also encountered in the performance analysis of
Stochastic Well-Formed Colored Nets [25]. The idea is to construct the symbolic reach-
ability graph and apply an aggregation method to condense the state space for efficient
analysis. These techniques are only applicable with exponential delay distributions. Our
methods allow for transitions with arbitrary firing distributions, while preserving queue-
ing related properties with scheduling transitions.
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Operational Process Mining. As previously mentioned, our work relates to discov-
ery of Petri Net models from execution logs. Rozinat et al. [4] extracted Colored Petri
Net models from data by mining control-flow, case, decision and time perspectives.
Rogge-Solti et al. [5] extended this framework by considering the Generalized Stochas-
tic Petri Net formalism, with non-Markovian durations of timed transitions. However
these two works did not consider the queueing perspective, but rather modeled resource
induced delays as stochastic components. On the other side of the abstraction scale,
research on queue mining focused on resources, without considering the process per-
spective [6]. In this paper, we combine the best of both worlds by integrating the queue-
ing perspective with other process mining perspectives. Furthermore, we generalize the
approach for discovering scheduled processes presented in [2]. In their work, only a
single type of Queueing Networks (Fork/Join network) was considered, while our ap-
proach allows for the discovery (through projection) of an arbitrary Queueing Network.

8 Conclusion

In this paper, we address the problem of data-driven performance analysis for sched-
uled processes. To this end, we develop an approach that combines techniques from
Queueing Theory with Colored Petri Nets and define the corresponding class of Queue-
Enabling Colored Stochastic Petri Nets (QCSPN). For computational efficiency, we
define folding operations that allow us to project the originating QCSPN model into
the Queueing Networks formalism. Our approach was implemented and evaluated us-
ing real-world data from an outpatient cancer hospital showing the impact of model
abstraction on accuracy in terms of root mean-squared error.

We consider the current work as a first step in bringing together process mining
techniques that often present a high computational cost (curse of dimensionality), and
efficient Queueing Theory-based techniques that ignore elements of the process per-
spective (curse of simplicity). In future work, we aim to extend our approach towards
conformance checking of schedules via discovery of QCSPN models. Understanding
where and why patients and resources deviate from schedules is of utmost importance
to hospitals and other businesses, and can have an impact on performance analysis. Fur-
thermore, we are interested in developing techniques for predicting case paths, as well
as real-time prediction methods as cases progress along these paths.
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