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M/M/N + M System

e Poisson arrivals-rate \
e Service times —exp(u)
e N statistically identical agents attending to single queue

e Service policy FCFS
e Customers’ patience: exp(6)
Q = {Q(t),t > 0} - number of customers in the system

Birth & Death: transition diagram
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M/M/N + M Characteristics

Notation:
e P{Ab} - abandonment probability (fraction)
e P{Wait > O} - waiting probability (fraction)
e P{Block} - blocking probability in an M/M/N/N system

1. Stationary distribution always exists
(Sandwiched between infinite-server models)

2. P{Ab} = 0 - E[Wait]
Proof: AP{Ab} = 6 - E[Number in queue] , now use Little.

3. P{Ab} increases monotonically in 6, A
P{Ab} decreases monotonically in N, u
(Bhattacharya and Ephremides (1991) )

4. P{Ab} < P{Block}
(Boxma and de Waal (1994) )
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Exact Calculations

e V -virtual waiting time = waiting time of a customer

with infinite patience (test customer).
e X - customer’s patience (X ~ exp(60) , independent of V).
e Wait =V A X - actual waiting time.

Performance measures of the form E[f(V, X)]:
Calculable, in numerically stable procedures (4CallCenters ).

f(v, ) E[f(V, X)]
1{v>x} P{V > X} = P{Ab}
1 (t,00) (vAx) P{Wait > t}
1(t,oo) (v A w)l{v>x} P{Wait > t; Ab}
(vAZ)Llsm E[W ait; Ab]
(vAZ)1 o) (VA Z)11ysgy | E[Wait, Wait > t; Ab]
g(v A x) Elg(Wait)]

From these obtain more “natural’ measures, for example

P{Wait > t; Ab}
P{Wait > t}

P{Ab|Wait > t} =



QED M/M/IN+M (On = 0)
Following Halfin-Whitt (1981) and Flemming-Simon-Stolyar (1996)

Theorem: Let

a = limy_c Pv{Wait > 0}

B = limy—o VN (1=px) = N~245/2

v = limy_s VNPy{Ab} = P{Ab} ~ L
Then

1>a>0 iff co>03>-—
iff co>~>0
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Designing a QED Call Center (zeltyn)

(Approximate) Performance Measures
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Here
S(z) = 1-d(a),

h(zx) ¢(x)/P(x), hazard rate of N(O,1).



New Operational Regimes (M/M/N + N)

N o P{Wait > 0} | P{Ab}
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Compare with Previous (M/M/N, Halfin-Whitt)
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Sequence of MIM/IN+ M, N=1, 2, ...

Motivation:  Insight, Numerical stability

Focus: Large Call Centers — A\, N large.

Framework: Sequence of M /M /N + M systems,
indexed by N

o Qn = {Qn(t), t > 0}: total number in system;

o Vv = {Vn(t), t > 0}: virtual wait of an infinite-patience
customer

e Parameters Ay, u, On
On T oo impatient
Oy | O  patient
Oy =60  “rational”

A
Offered load Ry = 2N (pn = Rny/N)
i

Approximations of Process and Stationary Distribution

On(t) = %N [Qn(D) — N], 0<t<oo
Un(t) = VN Vy(t)



Approximating Queueing and Waiting

v =A{Qn(t), t >0} : Qn(t) =numberinsystematt > O.

onv = {Qn(t),t > 0} : stochastic process obtained by

centering and rescaling:

Qv — N

QN = i

Qn(o0) : stationary distribution of Q n

-~

o Q={Q(t),t >0} : process defined by: Qn(t) L 0.

On () e O (c0)
N — oo\ | \N — 00
Q(t) PN Q(oc0)

Approximating (Virtual) Waiting Time

_|_
. . 1 .
VN =vVN Vy =V = [—Q
U

(Puhalskii, 1994)



Weak Convergence of

Stationary Distribution

Assume limy_oo VN (1 — py) = 3, —c0 < B < .

Allow 0 to vary with N T oo.

Qn(oc0) converges iff at least one of the following prevails:
1.0y =6 or Oy T o

2.3>0

in which case Qx(o0) % O(c0), where

Density function f(z) of Q(o0):

;

A1p(B+=z) =<0

On 1 0, B3>0 f(x)=<\ Apexp(—Bz) = >0

~

B1¢(8 + =) r<0

qub(ﬁ\/m —l-a:\/0/7) x>0

Cop(B+=z) <0
0 x>0

Oy =6 f(x) = <

N\

On Too  f(x) =
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Weak Convergence of Processes

(PN ~1-— /ﬁ—
Theorem: Oy %0 if Qn(0) =
e d 5 d 1oy
Theorem: Vy -V =-—-Q7.
U

Patient

{ dQ(t) = f(Q)dt + v/2p dB(t)
610

| —u@B+=z) <0
f(:v)—{ 8 >0

07 oo
Impatient

+V2p dB(t) — dY ()

{ dQ(t) = —p(B+ Q(t))dt
Y(0)=0,Y 10, QdY =0

Rational

| dQ(t) = F(Q)dt + /21 dB(1)

0 fixed (34 2) <0
| ) x<

fo= { ~(uB+0z) >0

(B - standard Brownian Motion)

(B - as before)

il

% Q(0).

(

oU Q<0
BM Q>0

(ROU Q <0)

(

OoU Q<0
oU Q>0

)

)

M/M/N
Erlang C

M/M/N/N
Erlang B
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Designing a Call Center - Selecting a Model

e \ery impatient customers - M /M /N/N model
e \ery patient customers - M /M /N model

e “Balanced” abandoning - M /M /N + M, 0 fixed

What if General Patience with distribution function G?
Steady-state formulae prevail with

0 — G'(0).
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M/M/N+G System

Customers’ patience: general distribution G, with go = G’(0).

Steady-State Results

e Baccelli & Hebuterne (1981) - virtual wait, abandon probability.
e Brandt & Brandt (1999, 2002) - stationary-queue distribution.
QED Regime
Main Case: G(0) = 0, go > 0 (no balking).
Use M/M/N + M formulae: 6 — go, r =\/9EO.
Hence, P{Ab} =~ go - E[W].
Special Cases:
e Balking (G(0) > 0, go > 0);

e ¢go = O: k-th derivative of G at zero positive, k > 2
(Erlang, Phase-type);

e ¢go = 0O: Delayed patience distributions (const, ctexp(6)).
Asymptotic analysis possible for all special cases, which yields vary-

ing convergence rates.
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Appendix
M/M/N + M . Strong Approximations

Parameters: A, u, 6, N
Building Blocks: A;, independent Poisson (1) processes

Model: @ = {Q(t), t > 0} total number in system
Q(t) = Q(0) +A1(\t) arrivals
—As (/Otu' [Q(u) A N]du) services
—As (/Ote [Q(uw) — N]+du) abandons
Strong Approximations:  on the same probability space with
A;’s, there are SBM B;’s such that
Ai(t) =t+ Bi(t) + O(logt), t7Too.

= Approximate Q by substituting above

A;(t) < t+ Bi(t).
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Approximation:  Q(t) = Q(t) + o (VN ) , u.o.c.,
via  A;(t) < t+ B;(t)

Q) =Q(0)+ Xt + Bi(\t)

- [ w 1@ AN~ B (/u-[Q(U)/\N]dU>
0] 0]

- [0-100) - N*du — B (/e-[©<u>—N1+du)
0] 0]

Insight?

Limit theorems (FSLLN, FCLT) as N T oo,

for Qn, hence for Qx:

For example, % Qn(t) = % Qn(t) + o(1).
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QED M/M/N + N : Approximations, Limits

For simplicity Qn(0) = N : all servers busy, no queue.

Recall AN = uN — uBvVN, u,0

Theorem: Strong Approximation .

Qn(t) =N+ VNQ{#)+o(VN) uoc,asN T oo
1
v N

or [Q(t)—N] & Q(t) 0<t<oo,

where

dQ(t) = [—pB + pQ (t) — Q1T ()] dt + /2 dB(t) ;

namely @ isa diffusion with

—upB — Ox x>0
p(z) = { , o*(z) =2pu.
—uf—px <0

= FSLLN 1 Qn(t) — 1 u.oc,as.

= FCLT VN [Qv -1 =4 [Qv - N % Q
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QED M/M/N + N : FSLLN

QN(t) = N + Ayt + Bl()\Nt)
~ [ @) A NV - B ( JARCRS AN]du)
0] 0]

= [ 6 10x(u) = NI¥du - Ba: )

0

1 - 1 1 AN
FSLLN: — t) =1 — Ant — B | N -—t
NQN() —I-N N-I-N 1( )

N
/t 1@()A1d 1B N/t 1@()A1d
— = (! U — — | = Uu Uu
O,LL N N N 2 O,LL N N
Observe & Ayt — put since Ay = uN — puBv'N
and L Bi(Nt) —» 0 FSLLN for SBM.

N
If indeed L Qn(t) — Q(t), then

t t
Ot) = 1+ put — u/ [@(u) A 1]du — 9/ [Q(u) — 1] du
0 0
which has a unique solution Q(¢t) =1, t > 0.

Theorem (FSLN): As N T oo, + Qn(t) — 1 u.0.c. as.

Proof : Gronwall’s inequality
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QED M/M/N: FCLT

QN(t) = N + Ayt + B1(A\nt)

~ [ 1IN A Gl — B, ( [t @N<u>]du)
0] 0]
- [ 0-1@n(w) = NT*du = Ba(:-)

FOLT Q) = = [@x(®) ~ NI = VN [% On(t) - 1]

T

consists of the following ingredients:

1. —Mﬁt+\/iﬁ31 [Nu(1—\/%>t]

2. +m/ﬁt—m/ﬁf llA%QN(U)_ du—\/iﬁBz(-)
0 i

b 1 I R S
—,u/o Qy(u)du _\/—N B> (N,u/o _1/\NQN(U)] du>

3. —9/0 Qj{,(u)du—\/iﬁ B3 (N@\/iﬁ /O @X}(u)du)
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Basic Properties of Brownian Motion

Let B < Standard Brownian Motion. Then,

o 1 d
Self-similarity — B(Nt) = B(t)
v N

Additivity Y Bi(Cit) = B (Z C’ﬁ) = N ci - B,

if B; independent SBM

Time-Change \/LN B(N - 1n(t)) <, B(7(t)),

. d . . e
if v — 7 and, say, 7 is continuous deterministic.
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Recall

1. —Mﬁt—k\/%Bl [Nu<1—ﬂ)t]

1 ] 1
1A N QN(’U,)_ du — —,N BQ()
1

=,u/0 Q]:,(u)du—\/—NBQ (N,u/O 1/\%@N(u)] du)
o [ 6% ) — L 1 ot )
3. 9/0 O (u)d \/N33<N9\/N/()QN( )d)

t
2. —I—,u\/Nt—,u\/N/
0

If indeed Qn 4, Q, then
1. % Bt + Bi(ut)

t
2. 4y /O O (uw)du — Ba(ut)

t
3. 4 —9/ OF (u)du — B3(0)
0

Theorem (FCLT) As N 1 oo, Oxn - O, where

dQ(t) = [—pB + pQ (t) — QT (D]dt + /21 dB(t)
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Customer-Focused Queueing Theory

— 200 abandonment in Direct-Banking

— Not scientific

Reason to Abandon | Actual Abandon | Perceived Abandon | Perception
Time (sec) Time (sec) Ratio

Fed up waiting 70 164 2.34

(77%)

Not urgent 81 128 1.6

(10%)

Forced to 31 35 1.1

(4%)

Something came up 56 53 0.95

(6%)

Expected call-back 13 25 1.9

(3%)

= Rational Abandonment from Invisible Queues (with

Shimkin).
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