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Our Network Model

A Fork-Join Network (FJN) is a natural model for a queuing
system in which customers are processed both sequentially and
in parallel.
Our generalized fork-join structure allows probabilistic feedback.
The identity of the job being processed at time t by station j , is
regarded as the scheduling control.
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Main Idea and Motivation

Parallel processing systems are commonly encountered in many
human ventures.

Main idea: A simple close-loop scheduling control is used to increase
throughput and reduce synchronization delays.

Motivation: Parallel Processing Application

Parallel communication networks.
Data storage allocation.
Large scale parallel computing.
Multi-Project scheduling.
Health-care systems (service networks).
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Synchronization Constraints? (FJN)
In our model, tasks are associated uniquely with customers. They are
hence non-exchangeable in the sense that one can not join tasks
associated with different customers.

The markovian feedback reshuffles the order of the departing tasks,
causing delays in the synchronization queues.
Conclusion- Customers’ disorder increase server Idle-times in the join
nodes and decrease throughput.
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Synchronization Constraints? (Assembly Network)
This is in contrast to Assembly network in which customers are
exchangeable , thus join and depart the system regardless of order.

An (exchangeable) assembly network can thus be characterized by
the following Complementarity Condition

Q1(t) ∧Q2(t) = 0, ∀t ≥ 0
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Methodology: Asymptotic Analysis
We shall work in the conventional Heavy-Traffic regime.
The precise formulation of Heavy-Traffic limits requires the
construction of a "sequence of systems", indexed by n = 1,2, . . .
Assume that the following relations hold

Average arrival rate: λn = λ · n + λ̂ ·
√

n + o(
√

n).
Average service rates: µn

j = µj · n + µ̂j ·
√

n + o(
√

n).
Heavy Traffic Condition - Define the traffic intensity at station j to
be ρn

j , it is assumed that there exists a deterministic number
−∞ < θj <∞, such that

√
n · (ρn

j − 1) −→n θj , as n −→∞, for
each station j.

Notation - Throughout the presentation we shall use the scaling

Q̂n
i (t) =

Qn
i (t)√

n
.
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Definition of Optimality

Throughput Optimality is defined in terms of maximal achievable
number of departures over a finite time-horizon, or more precisely,

Definition

Exact Optimality: Control γ ∈ A is optimal if, for all T > 0, γ
attains esssupα∈A(Dα

out(T )).

Asymptotic Optimality: Control γ ∈ A is asymptotically optimal if
for any other control α ∈ A and for all T > 0,

D̂n,γ
out (T ) ≥ D̂n,α

out (T )− εn(T ), with εn(T )→ 0,

where the convergence of εn(·) is u.o.c, in probability.
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Optimality Criteria

Heuristically, the optimal performance (maximal throughput) is that of
a corresponding assembly network, with exchangeable tasks. Indeed,
the following Complementarity Conditions are sufficient for optimality,

Proposition

Each of the following conditions implies its corresponding definition:

Exact Optimality: Q1(T ) ∧Q2(T ) = 0, ∀T > 0;

Asymptotic Optimality: Q̂n
1(·) ∧ Q̂n

2(·)
p→n 0, where

p→n denotes
convergence u.o.c., in probability.

Note: Our network model is the simplest settings, in which
First-Come-First-Serve (FCFS) control is neither optimal nor
asymptotically optimal.
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Main Result:

Cronyism- or γ-control
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Control Policy

Proposed Control (referred to as Cronyism- or γ-control)

Within each route, assign preemptive priority to tasks of customers
whose service was completed in the other route.

LP (Low Priority): customers whose service is still incomplete in both routes;
e.g., gray customers.
HP (High Priority): customers whose service were completed in one of the
routes but is still incomplete in the other; e.g., black customers.

Assume FCFS within each class, which now fully characterizes the control.
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Asymptotic Optimality

Theorem (Asymptotic Optimality Theorem)

The scaled process Ẑ n,H
1,2 (t) ∧ Ẑ n,H

3,4 (t) converges u.o.c to 0, in
probability

where

Ẑ n,H
1,2 correspond with upper route HP scaled queue length process, and

Ẑ n,H
3,4 correspond with lower route HP scaled queue length process.

But since
Ẑ n,H

1,2 (t) = Q̂n
2(t) and Ẑ n,H

3,4 (t) = Q̂n
1(t),

we now conclude that

The scaled process Q̂n
1(·) ∧ Q̂n

2(·) converges u.o.c to 0, in probability.
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The Technical Challenge In The Proof (1)

A central part of the proof is to establish tight estimates on HP
and LP processes.
However, our asymptotically optimal γ-control creates a volatile
environment of priority switches (LP to HP).
This renders challenging the characterization of the HP “Birth"
processes, indeed their precise analysis would entail tracking the
precise station where each task is located.
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The Technical Challenge In The Proof (2)

Instead, rather than making an attempt to characterize these HP
“Birth" processes, our approach is to develop estimates that are
uniform over all birth processes.
A central ingredient in the proof includes the deduction of
tightness for the number and length of HP queue
down-crossings.
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System Dynamics in Heavy Traffic (1)
Recall that Ẑ n,H

1,2 (t) = Q̂n
2(t) and Ẑ n,H

3,4 (t) = Q̂n
1(t). We showed that

Q̂n
1(t) ∧ Q̂n

2(t) converges u.o.c to 0, in probability.

Corollary (State-space Collapse of Synchronization Queues.)

The relation Q̂n
1 ∧ Q̂n

2
p
≈ 0 implies that the 2-dimensional stochastic

process Q̂n
1 , Q̂

n
2 collapses to 1-dimension.
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System Dynamics in Heavy Traffic (2)
Note that under the γ-control the following holds true:

Dn,γ
out (·) converges u.o.c to Ln

1(·) ∧ Ln
2(·), in probability.

Corollary (Asymptotic Exchangeability.)

In heavy-traffic, applying γ-control to our FJN yields a throughput
process Dout that has approximately the same distribution as that of
an assembly network under FCFS control.

Note: Our network model can be regarded as a special case of a
model with several parallel Jackson networks.
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Conclusions

We introduced a natural concept of optimality for fork-join
networks with non-exchangeable customers.

We proposed a simple closed-loop control, named the γ-control,
and proves asymptotic throughput optimality.

Asymptotic equivalence appears, in heavy-traffic, between our
fork-join network under γ-control and a corresponding assembly
network under FCFS.

The distribution of Dout = L1 ∧ L2 is thus tractable, in principle,
following from the joint distribution of exogenous output
processes from a Generalized Jackson Network.
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Generalization (1)

Note that both the exact and asymptotic conditions may be
generalized to any number of parallel processing routes. For M
processing routes:

Proposition

Equivalent conditions:

Exact Optimality:
∧

i∈{1,..,M}(Qi(T )) = 0, a.s., for any fixed T;

Asymptotic Optimality:
∧

i∈{1,..,M}(Q̂
n
i (·))

p→n 0.

According to the following relations

M · N(t) =
∑

j (Zj (t)) +
∑M

i=1(Qi (t));∑M
i=1 Qi (t) =

∑M
i=1 (Li (t)−

∧
i∈{1,..,M}(Li (t))) + M ·

∧
i∈{1,..,M}(Qi (t));
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Generalization (2)

γ-control for M processing routes

Within each route, assign preemptive priority to tasks of customers
whose service was completed in all other routes.

LP (Low Priority): customers whose service is still incomplete in
more than one route.
HP (High Priority): customers whose service were completed in
all other routes but is still incomplete in one route.

Assume FCFS within each class, which now fully characterizes the
control.
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Extension 1: Multi-Type Model

Consider an Heterogeneous customer population, such that different
customers may have different precedence constraints, interarrival
time distributions and service time distributions, e.g.

Within each route, assign preemptive priority to tasks of customers
whose service was completed in the other route. Define cµ priority
policy within each class.
Will this modified γ-control be asymptotically optimal for such model?
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Extension 2: Halfin-Whitt Regime (QED) Analysis

In the QED regime, one increases the number of servers with the
rate of N, where N −→∞.
In this setting, due to a high level of parallel processing, the
phenomena of customer overtaking becomes both uncontrollable
and non-negligible, in contrast to multi-servers in conventional
heavy-traffic.

This gives rise to the following questions:

is there a control under which Fork-Join and assembly networks
are asymptotic equivalent?
does extremely large number of servers per station presents a
disadvantage in parallel processing systems?
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Thanks . . .
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