On Fair Routing from Emergency Departments to Hospital Wards: QED Queues with Heterogeneous Servers

Yulia Tseytlin

IBM. Technion

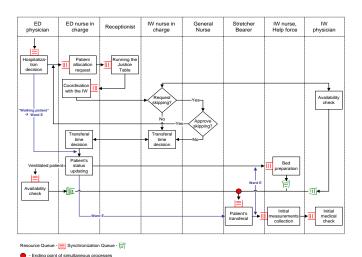
Applied Probability Society Conference, July 2011

Joint work with Avi Mandelbaum, Technion and Petar Momčilović, University of Florida

Hospital

- Anonymous Hospital large Israeli hospital
 - 1000 beds
 - 45 medical units
 - $\bullet \sim 75,000$ patients hospitalized yearly
- Variety of medical units
 - Emergency Department (ED):
 - average arrival rate = 240 patients/day
 - 50 beds
 - Internal Wards (IW):
 - A D: the same medical capabilities
- ED-IW routing policy
 - current policy: cyclical

Flow Chart



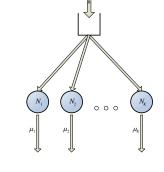
Fairness

	Ward A	Ward B	Ward C	Ward D
Capacity (# beds)	45 (52)	30 (35)	44 (46)	42 (44)
Average Length of Stay (days)	6.5	4.5	5.4	5.7
Return rate (within 3 months)	16.4%	17.4%	19.2%	17.6%
Mean occupancy level	97.8%	94.4%	86.8%	91.1%
Mean # patients per bed per month	4.58	6.38	4.89	4.86

- Nurses: Fixed nurse-to-bed ratio (1:5) + Salaried + Fixed assignment
- Load on Ward B staff is the highest
- Similar story in other hospitals
- Heterogeneity

Inverted-V Model

- Customer = Patient, Pool = Ward, Server = Bed
- Poisson arrivals with rate λ
- K server pools
- Pool *j*:
 - N_j exponential servers
 - server rate μ_j
 - service capacity $c_j = \mu_j N_j$
 - Ii idle servers



- Queue length Q
- $I = \sum_{j=1}^{K} I_j Q$ ((I)⁺ total number of idle servers)
- Waiting line
 - infinite capacity
 - FCFS

Quality and Efficiency Driven Regime

- Informally...
 - A system with a large volume of arrivals and many servers
 - Waiting times are order of magnitude shorter than service times
 - Total service capacity equals the demand plus a safety capacity
- In Anonymous Hospital:
 - 30-50 servers (beds) in each pool (ward)
 - Waiting times vs. service times: hours vs. days
 - Servers utilization (beds occupancy) is above 85%
- Focus on:
 - Idleness ratios

$$\frac{1-\rho_i}{1-\rho_j} = \frac{\mathbb{E}I_i/N_i}{\mathbb{E}I_j/N_j}$$

Flux ratios

$$\frac{\gamma_i}{\gamma_i} = \frac{\mu_i \rho_i}{\mu_i \rho_i}$$

QED Regime

Rule 1: Pool capacities

$$rac{c_i^{\lambda}}{\sum c_j^{\lambda}}
ightarrow a_i > 0$$

- Traffic intensity: $\rho^{\lambda} = \lambda / \sum c_i$
- Arithmetic-mean service rate: $\hat{\mu} = \sum a_i \mu_i$
- System "size": $\nu^{\lambda} = \lambda/\hat{\mu}$
- Rule 2: Square-root safety rule

$$\sqrt{
u^{\lambda}}(1-
ho^{\lambda}) o \delta > 0$$

Randomized Most-Idle (RMI) Routing

- At time t assign a customer to pool j with probability $I_i^{\lambda}(t)/(I^{\lambda}(t))^+$
 - "Blind", adaptive to changing capacity
 - Equivalent to LISF in QED: $I_j^\lambda pprox a_j(I^\lambda)^+$, or $I_i^\lambda/I_j^\lambda pprox a_i/a_j$
 - $\bullet \ \frac{1-\rho_i}{1-\rho_j} \approx \frac{\gamma_i}{\gamma_j} \approx \frac{\mu_i}{\mu_j}$
- Diffusion scale: $\hat{I}^{\lambda} = I^{\lambda}/\sqrt{\nu^{\lambda}}$
- Dimensionality Reduction: $I_i^{\lambda} \approx a_j (I^{\lambda})^+$
- $I_j^{\lambda} a_j(I^{\lambda})^+ \approx ? \Rightarrow$ Sub-diffusion scale:

$$\hat{I}_j^{\lambda} = rac{1}{\sqrt{I^{\lambda}}} \left(I_j^{\lambda} - rac{c_j^{\lambda}}{\sum c_i^{\lambda}} I^{\lambda}
ight)$$

• $\sqrt[4]{\nu^{\lambda}} \ll \sqrt{\nu^{\lambda}}$ (wards' size = 30-50 beds)

Main Result

Theorem: Consider the inverted-V model in steady-state, under the RMI routing algorithm in the QED regime. Then, as $\lambda \to \infty$,

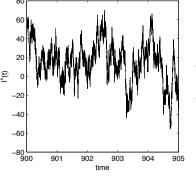
$$\left(\hat{\mathit{I}}^{\lambda},(\hat{\mathit{I}}^{\lambda}_{1},\ldots,\hat{\mathit{I}}^{\lambda}_{K})\mathbf{1}_{\{\hat{\mathit{I}}^{\lambda}>0\}}\right)\Rightarrow\left(\hat{\mathit{I}},(\hat{\mathit{I}}_{1},\ldots,\hat{\mathit{I}}_{K})\mathbf{1}_{\{\hat{\mathit{I}}>0\}}\right),$$

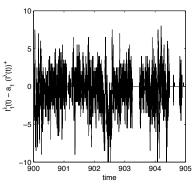
where

- ullet \hat{l} and $(\hat{l}_1,\ldots,\hat{l}_K)$ are independent
- $\mathbb{P}[\hat{I} \leq 0] = \left(1 + \delta \frac{\Phi(\delta)}{\varphi(\delta)}\right)^{-1}$
- $\mathbb{P}[\hat{I} > x | \hat{I} > 0] = \Phi(\delta x)/\Phi(\delta), x \ge 0$
- $\mathbb{P}[\hat{I} \leq x \mid \hat{I} \leq 0] = e^{\delta x}, x \leq 0$
- $(\hat{l}_1, \dots, \hat{l}_K)$ is zero-mean multi-variate normal, with $\mathbb{E}\hat{l}_i\hat{l}_j = a_i 1_{\{i=j\}} a_i a_j$

Dimensionality Reduction

- Example: K = 2, $N_1 = 138$, $N_2 = 276$...
- $\sqrt{\nu} \approx 18.7$ and $\sqrt[4]{\nu} \approx 4.3$





Time scale

Three Scales

- ullet Hospital data: $\lambda pprox 189.7$ patients/week, $\hat{\mu} pprox 1.18$ patients/week
- Thus $\nu^{\lambda} \approx 160.8$, $\sqrt{\nu^{\lambda}} \approx 12.7$ and $\sqrt[4]{\nu^{\lambda}} \approx 3.6$
- Finest scale: patient/hour
 - $1/\lambda \approx 0.86$ hours
- Coarsest scale: sub-ward/week
 - sub-ward $\approx 1/3$ or 1/4 of a ward
 - $1/\hat{\mu} \approx 0.85$ weeks
- Intermediate scale: room/day
 - room = 4 beds
 - $1/\sqrt{\lambda\hat{\mu}}\approx 0.87$ days
 - idleness ratios the same as under LISF
 - number of patients that need to be moved between wards

Remarks

- Idleness Ratio (IR) policy: $\arg\max_{j}\left\{I_{j}^{\lambda}(t-)-w_{j}(I^{\lambda}(t-))^{+}\right\}$
- ullet Diffusion scale: Equivalence of LISF, IR $(w_j=a_j)$ and RMI
- Different information utilized
- Sub-diffusion scale:

