# Patient Flow in Hospitals: A Data-Based Queueing Perspective

#### Mor Armony

Joint work with: Avi Mandelbaum, Yariv Marmor, Yulia Tseytlin and Galit Yom-Tov

NYU, Technion, Mayo, IBM, Columbia

July 2011

## Patient Flow in Hospitals as a Queueing Network

#### Network features:

- Customers: Patients
- Servers: Beds, equipments, medical staff
- Stations: Medical units

#### Research Questions:

- Special features of this network
- Implications on queueing modeling and theory

#### Methodology:

Exploratory Data Analysis (EDA)

## Our data

#### Data description:

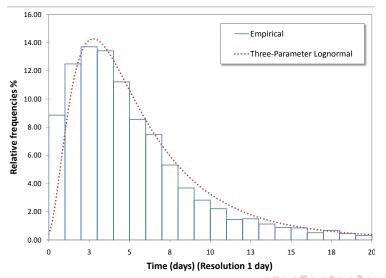
- Anonymous Israeli hospital with 1000 beds and 45 medical units
- 75,000 patients are admitted annually
- Years data collected: 2004 2008
- Individual patient level data, time stamps (admission, transfers and discharge)
- Acknowledgement: Anonymous Hospital and



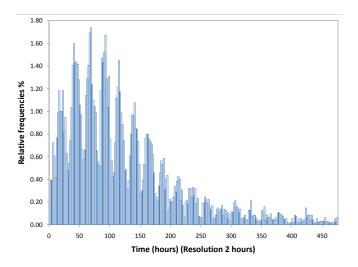
## Our focus

#### Subnetwork including: ED, IW and ED → IW

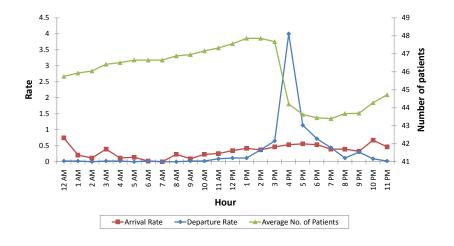
- Substantial size:
  - 53% patients entering the hospital stay within this subnetwork.
  - 21% of those, are hospitalized in an IW
- Nearly isolated:
  - ED Arrival are all external
  - 93% of IW arrivals are either external or from within the subnetwork.
- Relatively simple:
  - One ED
  - Five IWs (A-E)
  - IW A-D identical in scope capabilities




## Talk Outline

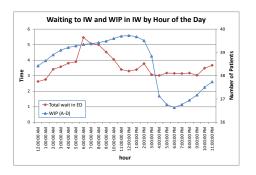

- IW
  - LOS distribution
  - Routing design
  - Role of returns
- Transfer from ED to IW
  - Transfer process
  - Fork-join networks
  - Delays in transfer
  - Fairness
- Conclusions



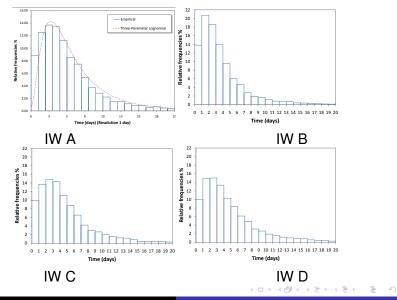

# IW: LOS Distribution in days



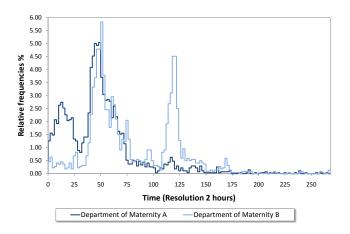
## IW: LOS Distribution in hours



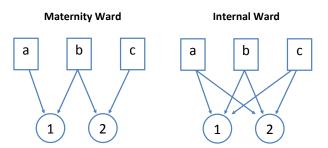

## IW: Arrivals, Departures and Number of Patients




# **Queueing Implications**


- Two relevant time scales.
- Daily time scale relevant for capacity planning and staffing.
- Hourly time scale relevant for work scheduling.




## LOS Distribution of IW A-D



## Maternity Wards: LOS distribution

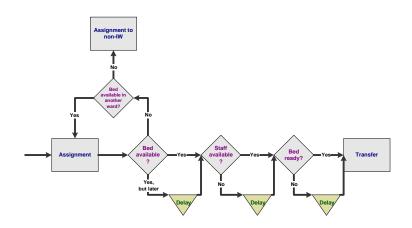


## Routing Schemes in Different Wards

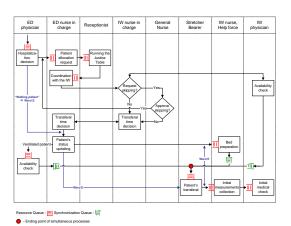


#### Queueing Implications:

- Practical: What considerations determine the PSS network design?
- Research: How does the design affect LOS distribution, workload, quality of care, morale, etc,


# Returns to Hospitalization

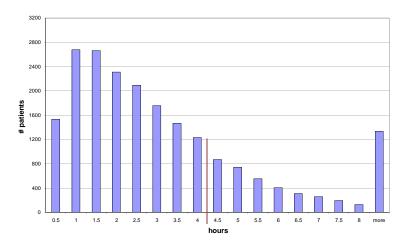
| Ward     | No. of returns per   | Time between   | Probability of return |  |
|----------|----------------------|----------------|-----------------------|--|
|          | patient (in 4 years) | returns (days) | within 3 month        |  |
| Internal | 1.76                 | 208            | 22%                   |  |
| Oncology | 5.76                 | 29             | 76%                   |  |


#### Questions:

- How does rate of return correlate with quality of care?
- Endogenous versus exogenous rate of return.
- Staffing with returns: Erlang-R: Yom-Tov & Mandelbaum (2011)

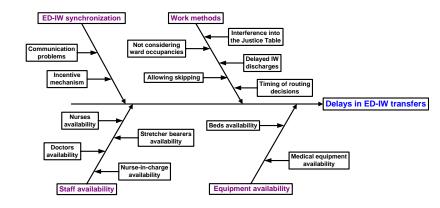
## **Transfer Process**



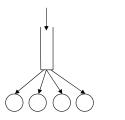

# Fork-Join networks revisited

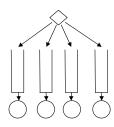


- Zviran (2008): Diffusion limits and control
- Zaied (2010): Offered load




# Transfer waiting times





- Question: What are the implications on ED load?
- Special feature: Customers served while waiting in queue.

# Delays in transfer: Cause and effect diagram



## Routing: Input versus output queues





- Single line system is more efficient
- Reality requires multiple lines
- Patients require care even when in queue
- Push versus Pull



Introduction IW Transfer Conclusions

## Internal Wards operational measures

|                   | Ward A | Ward B | Ward C | Ward D |
|-------------------|--------|--------|--------|--------|
| ALOS (days)       | 6.5    | 4.5    | 5.4    | 5.7    |
| Mean occupancy    | 97.8%  | 94.4%  | 86.8%  | 91.1%  |
| Mean # patients   |        |        |        |        |
| per month         | 205.5  | 187.6  | 210.0  | 209.6  |
| Standard          |        |        |        |        |
| capacity (# beds) | 45     | 30     | 44     | 42     |
| Mean # patients   |        |        |        |        |
| per bed per month | 4.58   | 6.38   | 4.89   | 4.86   |
| Return rate       |        |        |        |        |
| (within 3 months) | 16.4%  | 17.4%  | 19.2%  | 17.6%  |

- How does one explain these differences in performance?
- Is this work allocation fair?
- How is fairness defined?
- See Mandelbaum, Momcilovic, & Tseytlin (2010) and Tseytlin & Zviran (2008)

# Operations regimes

Question: What is the appropriate operational regime for the IW?

- Beds: QED regime.
  - Prediction: Erlang-B in QED:

$$N \simeq R + \beta \sqrt{R} \Rightarrow P(block) \simeq \frac{1}{\sqrt{N}} \frac{\phi(\beta)}{\Phi(\beta)}$$
 and  $\rho \simeq 1 - \frac{\beta + \phi(\beta)/\Phi(\beta)}{\sqrt{N}}$ .

- For our data, the QED regime predicts:  $P(block) \simeq 2.9\%$ and  $\rho \simeq 91.7\%$ .
- Actual numbers: P(block) = 3.54% and  $\rho = 93.1\%$ .
- Doctors: ED regime.
  - Average handling time for patient admission: 30 minutes.
  - Average wait for admission (once a bed is ready): 2.5 hours.



## Conclusions

- Patient flow in hospitals as a queueing network
- Multiple relevant time scales
- Routing design
- Role of returns
- Fork-Join networks
- Input versus Output queues
- Push versus Pull in routing
- Customers served while in queue
- Fairness: Occupancy + Flux
- QED and ED regime co-exist in a single system.
- Operational measures should be in line with quality of care measures

