Arrivals

Services

Servers

Markovian N-Server Queues
(Birth & Death Models)

| Busy Period

Poisson (\) ;

exp(p) (E(S) =1/p)

N statistically identical, serving FCFS.

Offeredload R = XA x E(S) = \/u Erlangs

Q1)

W (k)

number in system (served + queued) at time t.

gueueing time of k-th arrival.

Steady State: QQ(oc0), W (o0), when exists.

non-idling = [Q(t) — N]T = queue-length, and

[Q(t) — N]— = number of idle servers
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Examples: M/M/N/K, Abandonment, Balking

M/M/oc: A=A, up=k-pu, k> 1.

Steady state m, = e *RF/E! Poisson (R)

MIMININ:  Ae =), mp=4k-u, O0<k<N.

R¥ R"
Steady state Ty = T z_% )
Erlang-B P{Blocked} = Ey ny = mn , by PASTA
M/M/N: AL = A, pr=(kAN)-un , k>1.
A L
Steady state < p = N <1 , servers’ utilization.
7’

Erlang-C P{Wait > 0} = E, y = Z T
k>N

W) | W(x) >0 < exp (mean = Nu(ll— p)>



Restriction to a Set via Time-Change

X Markov , X(oco)~m
t
TA(t) = / 1{X(u)eA}du timein A
0
1 A
Ta
t
Taa
e ,
A A A t a
Xa(t) =X (m;'(®)) X restricted to A: Markov

Xa(00) ~ X (00)| X (00) € A
Example: M/M/N/N = M/M/co restricted to {0, 1, ..., N}.
Eyny = Pr{Xgp=N}/Pr{Xr < N},
Xgr ~ Poisson (R)



Example: M/M/N (Erlang-C)

AL A A A A
oJoNoIE=GCNoNCH
1) 21 3u Nu Nu Nu

— < | 0.

Q(t) = number in system at time ¢t > O

Q- = Q restrictedto {0,1,...,N — 1} : M/IM/N-1/N-1; A\, .
Q4+ = Q restrictedto {N,N+1,...} :M/M/1 A, N .

Evolution of Q: Alternates between M/M/1 (Q+) and
M/M/N-1/N-1 (Q-).

. TNN-1
P(Wait > 0) = By y = ’ . by PASTA,
InNN-1+TN-1N
where ( after conditioning on the first step ):
. 1 1 | A
NN-1 = - . P=
pnm4+(0)  Np(l—p) Nu
T 1 1
N-1N = =
AN-1m-(N —1)  AXEijn-1
Hence,
Ty 1n] " 1-p 1°°
EQ,N:[]-‘I' ] =[1+ ] :
TN N-1 pE1N_1
in which
N
RN R )
PINZNT ) ==



M/M/N/N (Erlang-B) with Many Servers: N T oo

Assume: pu fixed, while Ay Too as N T co.

Recall R = Ry = An/u, p = pnv = Ryn/N.

ErIang-B: El,N = P?“{XR = N}/P’I“{XR < N},
where XRr < Ppoisson (R).
R large Xp ~ R4+ ZVR, where Z < N(0,1),

suggesting N ~ R4+BVR, —0 < < .

Then El,N

Pr{N —1< Xp < N}/Pr{Xp < N}

-~ pr{g—iR<Z§B}/PT{Z§B}

N

~ FeB)/6(B) & 7 55 =

2
-

1 _o(=F _— 1 pr_ =
T T = ~ h(=pB), h = hazard rate.

Algebra: u fixed, N T oc.

QED: N ~ R+ BVR, forsome 3, —oco < 3 < oo
& Av ~ N —BuvVN

& pN o~ 1—\/% , namely ]\I[iinoo\/ﬁ(l—p]\;):ﬁ.

Theorem: (Jagerman, 1974) QED < Jim V'N E1 y = h(—p).
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M/M/N (Erlang-C) with Many Servers: N T oo

A A A A A A
oNONOoICHRONCE
H 2n L Nu Nu Np

O _ | 0.

Q(0) = N: all servers busy, no queue.

T -1 1— -1
Recall E> N = [1 + N_l’N] = [1 - PN ] .
TN,N—l ,ONEl,N—l
1 1 1
Here TN—l,N = /,LL

ANE1 N1 - Np x h(=B8) /N - h(—B)VN
which appliesas VN (1 — py) — 3, —o0 < 3 < 0.

L e
Nu(l—pn)  BYN

which applies as above, butfor 0 < 8 < oc.

Also TN,N—l =

p
h(—B)

~1
Hence, Eyn ~ [1 - ] , assuming 3 > 0.
QED: N ~ R+ pBVR forsome B, 0<f8< o
& Av ~ pN —BuvVN

5 .
& ~ 1———, namel lim VN (1 — = 0.
PN TN y Jlim (1—-pn)=20

1
Theorem (Halfin-Whitt, 1981) QED < lim 5 x = [1 4+ B } |

h(=p)



QED M/M/N:. Steady-State

Theorem (Halfin-Whitt, 1981)

Consider a sequence M/M/N, N = 1,2,.... Then the following are
equivalent

° Nlim P{Wx(©) >0} =q«, forsome O0<a<1;

e lim VN (1—py) =3, forsome 0 < B < oo ;

N—oo

e \v =uN —ppBvVN+o(VN), ie, N~ Ry—+BVERN,

In which case

oaza(ﬁ)=[1—|— b

h(—B)

—1
] Halfin-Whitt function

o VN Wy(o0) % W(oo), W(so)| W(so)>0 = exp(uf).
Moreover (Queue must be order VN )

(%N Qn(o0) — NJ* VN WN<oo>) 9 (O (o0), W (o))

where Ot (0) = uW (o) = exp(B).

Proof: Let Ax(-) be Poisson(\y). Then divide by v N and take
N T oolin

AN[Wa(00)] = [Qn(o0) — NI (Haji+Newell, 1971).



QED M/M/N : Process View

Framework : Sequence of M/M/N systems,

indexed by N =1,2,...
o Qv ={Qn(t), t > 0} number in system

o Vy ={Vn(t), t >0} virtual waiting time, under FCFS

Parameters AN, UN = [
Offered load Ry = Ay X % = \n/ 1
Traffic intensity pn = Ry/N

Each M/M/N is a Birth & Death process, which is ergodic iff py < 1,
in which case py = servers’ utilization.

QED Scaling: Ay = Nu — Suv/N, namely

—1_ B

Approximations of Process and Stationary Distribution, as N T oo:
e Qn(t) zﬁ[QN(t) —N], 0<t<oo

o Un(t) =V NVy(t).



Number in System, Centered and Rescaled: Qn(t)

(w=1,8=0.5)
iy
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Vv

N=10000

\\\\\\\\\\\\\\\\\\\\\

\\\\\\\\\\\\\\\\\\\\\\\\
00000000000000000000000000




Approximating Queueing and Waiting

Qn ={Qn(t), t > 0} : Qn(t) = numberinsystematt¢ > O.

Qn = {Qn(t),t > 0} : stochastic process obtained by

centering and rescaling:

Qv =7

VN

Qn(o0) : stationary distribution of Q n

e O =1{Q(),t>0}: process defined by: On(t) % Q).

On () o O (c0)
N — oo\ | \N — 00
Q1) P Q(c0)

Approximating (Virtual) Waiting Time
_|_

_ _ 1 .
Vv =VN Vy =V = [_ Q (Puhalskii, 1994)
W

10



DITTUSION Frocesses In Ik~

X = {X;, t > 0} Markov process with continuous sample paths

Kolmogorov/Feller/Dynkin: characterized (Strong Markov,
Continuous) by

e Drift function u;(x)  (infinitesimal mean)

E[Xiye — Xi | Xo = 2] = m(x)e +o(e), €| 0;

e Diffusion function o:(z) (infinitesimal variance)

Var [ X4 — Xt | Xt = 2] = o(x)e +0(e), €| O;

e Boundary behavior: inaccessible; absorbing, sticky, reflecting

Time-homogeneous: u:(z) = p(x), o(x) = o(x).

Examples:

1. wx)=p; o(x) =0 >0 Brownian Motion: BM (1, 0?)
u=20 oc=1 Standard BM (SBM)

BM, generated as N(t)-t, where N(t) — Poisson(1l) process
50 T T T T T T T

Brownian Motion
S 8 8
T

=
o
T

o

=
o

I I I I I I I I I
200 400 600 800 1000 1200 1400 1600 1800 2000

time
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Diffusions: Examples (Continued)

. u(x) =a—bx, o(x) = o Orenstein-Uhlenbeck (OU)

Stationary distribution < b > 0: N(%,Z

. Reflected BM (u, 0?), reflected at 0.  (Harrison’s book)
dX: = pdt + odB; +dY:, Xo >0
X >0,dy >0, XdY =0

Stationary distribution < u < 0: exp(2|u|/0?)

. Reflected OU on [0, c0), (Glynn and Ward), or generally (Dupuis)
{ dXi = p(Xe)dt + 0¢(Xy)dB: + dY;;  Xo > 0 given

X >0,dY >0, XdY =0

Ito: Characterized by solutions to stochastic differential equations

dX; = /,Lt(Xt)dt —+ O't(Xt)dBt, t >0, Xo given.
(Reference: Karlin and Taylor, “2nd Course”; Karatzas and Shreve.)

Formalizes the “infinitesimal description”:
d
Xt_|_€ — Xt | Xt = Tr = /,Lt(x) - € —I— at(az) . (Bt—l—e — Bt)
where By, — B~ N(0,¢), independent of {B,, u < t}.
(Equivalently, B = {By, t > 0} is SBM.)

12



QED M/M/N : Diffusion Approximation

Qny = {Qn(1), t >0} Birth and Death with
Av = uN — uBVvN birth rate, constant
pun(x) = p-(xAN) death rate at state x
~ 1
Qn(t) = — [Qn(t) — N] Scaled queue length of

VN

customers (+) or servers (—)

Diffusion:  Var [Qn(t+€) — Qn () | Qn(t) = x| = 2p - €+ o(e)
Drift: EQn(t+e)+Qn(t) | Qn(®) =] =

E[QN(t_I_e)_QN(t)‘QN(t):N-FaZ\/N} —
[AN_MN(N-F:C\/N)} e+ o(e) =

(v — usVN — (N 4+ aVW ) AN} o0 =

20 2l 2l

= —ufB- e+ o(e) x>0 (BM)
= —u(B—z")-eto(e)

= —u(B+x)-ed+ole) x<0 (OU)

Expect Qn LA Q diffusion: pu(z) = —p(B —z7), o(x) = 2u

Proof: Apply Stone (1963), as in Halfin-Whitt (1981).
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QED M/M/N : Diffusion Approximation

Theorem (Halfin-Whitt).
Consider a sequence M/M/N, N =1,2,.... Assume QED(3).

Define Oy (t) = iN [On(t) = N] , 0<t< oo,

N
VN(t) =V'N Vv (t) , 0 <t < .
It (Qn(0), U (0)) = (Q(0), V(0)), then
(Qn, Vn) N (Q, 1 Q+) (Functional CLT),
7

where Q@ is a diffusion process starting at Q(0), with infinitesimal
parameters

—up x>0 )
Tr) = R O \Xx =2 ,
p(x) {—u(az+6) o0 () v

and steady-state distribution Q(oco) given by

P{Q(c0) > 0} = a(B),

P{Q(o0) >z | Q(o0) > 0} = =" (exp < RBM)

P{Q(c0) <z | Q(0) <0} = ¢(z+ 8)/¢(8) (normal « OU)
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E-Driven M/M/N : Approximations

Recall: 1:1 staffing gaveriseto Ay ~ ulN — uy

im N(1 —py) =7, 0<~v <.

N—o00
Applying the usual QED scaling: Qn(t) = \/LN(QN(t) — N),

results in a Halfin-Whitt diffusion limit with 3 = 0: No stationary dis-
tribution for

1
VN

To identify a more informative scaling, recall:

QT (1) = lim (Qn() — N)T.

Wy (<) | Wr(o0) >0 L exp (mean = Nu(ll— pN))'

Also,
]\Ifim P{Wnx(c0) > 0} = 1.

Hence,
Wy(oo) 5 W(o) = exp(pr).
And (by Haji & Newell)

L [Qn(o0) — N]* L O(c0)t < pW (0) 2 exp(y) .

Expect a non-degenerate behavior of

An(®) = Qv ~ N1 Q@) , 0 <t < oo

15



Process View: Simulations of Qn(t)

E driven (with Q,(0)=0) ,N=10000 E-Driven (with Q, (0)=N/2) , N=10000

09

0.8

o
o

0.6 b
05 WW/\WW

0.4

o
T

|
o
w”

0.3

0.2

1
Number in system, centered and rescaled

Number in system, centered and rescaled

0.1

I I I I I
10 12 14 16 18 20

H
o
o
oL
N
EN
©

Proposition: Let ]\I[im N1 —pny) =7 0<vy< 0.
—00

If %[QN(O) — N] LA Q(0) , then
L Q) . Qo) >0,
n(t) — Q) = { _ o

Q(0)e~#t, ifQ(0) <O.

Proof:
Diffusion:  Var [QN(t +¢e) — Qn(t) | Qn(t) = a:} = 0+ o(e)

Drift: E[Qn(t+e)+Qn(®) | Qn(t) = 2] =

= O-e+o(e) >0

}Z,u.cc_-e—l-o(e).
= —pur-e+ole) <0

Conclude Qy LA Q:plx) =px—, o(x) =0.
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Discovered that Qn(t),0 < t < oo degenerates, as N | co. But

Qn(o0) = %[QN(OO) ~ N]™ % exp(y).  What'sgoing on?

Two explanations (assuming @Q(0) > 0, non-random, for simplicity):

1. Fork > N (with A = Nu — vyu ),
Titeng = O(N) * Thp1, = 0(N) x0(1) — oo, asN T oco.

Hence, Qn(t) takes close to infinite time to move a one-unit dis-

tance, suggesting that, in the limit, Q(t) freezes.

2. Consider Q]\L[: the restriction of the Qn to {N, N 4+ 1, ..}.
Q]"\} < M/M/1with \™ = Ny — vy, pm = Np.

< M/M/1 with X = AL — u, i = — p, accelerated by N.
Formally, Q1 (t) = £QF(t) = Q(0)*is a fluid limit , since

~ 1 : 1 I
Q%) = LQEO(with \T,x) L QO with X, 7)

The limit is deterministic, hence a degenerate stationary distribution.

To get a diffusion limit, accelerate:

QH(®) = L@EVH(with AF, ) £ ZQE(V ) (with 171
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Simulations of Qn(t) = +[QN(Nt) — N]

Starting at 0, N=2000, p=1, y=0.5 Starting at 1, N=2000, u=1, y=0.5

number in system, centered and rescaled
number in system, centered and rescaled

L L L L L L _ | | | | | |
0 1000 2000 3000 4000 5000 6000 7000 0 1000 2000 3000 4000 5000 6000 7000

Nt-time (0<t<3.5) Nt-time (0<t<3.5)

Theorem: Let ]\I[im N1 —pny)=7v 0<~v< .
Define Q) (t) = ~[Qn(Nt) — N]. Then

Qn(t) 5 Q(t) = RBM(—yp, 2p0).
Proof:
Diffusion: ony(x) — o(x) = (2 -2 )p

—py 20

Drift: un(x) — p(x) = {
4o <0

Via random time-change: Q(t) < RBM (—yp, 21).
(RBM > 0: Since the infinitesimal drift “is +o00” atz < 0.)
Note: Q (o) < exp(y), establishing convergence over 0 <t < co.

Note: Vi (t) % V() 2 %@(t), 0 < t < oo : no scaling needed.

(Check at t = oo, using Haji & Newell).
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