
Markovian N-Server Queues

(Birth & Death Models)
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Arrivals Poisson (λ) ;

Services exp(µ) (E(S) = 1/µ)

Servers N statistically identical , serving FCFS.

Offered load R = λ× E(S) = λ/µ Erlangs

Q(t) = number in system (served + queued) at time t.

W (k) = queueing time of k-th arrival.

Steady State: Q(∞), W (∞), when exists.

non-idling ⇒ [Q(t)−N ]+ = queue-length, and

[Q(t)−N ]− = number of idle servers
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Examples: M/M/N/K, Abandonment, Balking

M/M/∞: λk ≡ λ, µk = k · µ, k ≥ 1.

Steady state πk = e−RRk/k! Poisson (R)

M/M/N/N: λk ≡ λ, µk = k · µ, 0 ≤ k ≤ N .

Steady state πk =
Rk

k!

/
N∑

n=0

Rn

n!

Erlang-B P{Blocked} .
= E1,N = πN , by PASTA

M/M/N: λk ≡ λ, µk = (k ∧N) · µ , k ≥ 1.

Steady state ⇔ ρ =
λ

Nµ
< 1 , servers’ utilization.

Erlang-C P{Wait > 0} .
= E2,N =

∑

k≥N

πk

W (∞) | W (∞) > 0
d
= exp

(
mean =

1

Nµ(1− ρ)

)
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Restriction to a Set via Time-Change

X Markov , X(∞) ∼ π

τA(t) =

∫ t

0
1{X(u)∈A}du time in A
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XA(t) = X
(
τ−1
A (t)

)
X restricted to A: Markov

XA(∞) ∼ X(∞)|X(∞) ∈ A

Example : M/M/N/N
d
= M/M/∞ restricted to {0,1, . . . , N}.

E1,N = Pr{XR = N}/Pr{XR ≤ N},
XR ∼ Poisson (R)
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Example: M/M/N (Erlang-C)
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Q(t) = number in system at time t ≥ 0

Q− = Q restricted to {0,1, . . . , N − 1} : M/M/N-1/N-1 ; λ, µ.

Q+ = Q restricted to {N, N + 1, . . .} : M/M/1 ; λ, Nµ.

Evolution of Q: Alternates between M/M/1 (Q+) and

M/M/N-1/N-1 (Q−).

P (Wait > 0) = E2,N =
TN,N−1

TN,N−1 + TN−1,N
, by PASTA,

where ( after conditioning on the first step ):

TN,N−1 =
1

µNπ+(0)
=

1

Nµ(1− ρ)
; ρ =

λ

Nµ

TN−1,N =
1

λN−1π−(N − 1)
=

1

λ E1,N−1
.

Hence,

E2,N =

[
1 +

TN−1,N

TN,N−1

]−1

=

[
1 +

1− ρ

ρ E1,N−1

]−1

,

in which

E1,N =
RN

N !

/
N∑

k=0

Rk

k!
; R = Nρ = λ

µ

4



M/M/N/N (Erlang-B) with Many Servers: N ↑ ∞

Assume: µ fixed, while λN ↑ ∞ as N ↑ ∞.

Recall: R = RN = λN/µ, ρ = ρN = RN/N .

Erlang-B: E1,N = Pr{XR = N}/Pr{XR ≤ N},

where XR
d
= Poisson (R).

R large XR
d≈ R + Z

√
R , where Z

d
= N(0,1),

suggesting N ∼ R + β
√

R, −∞ < β < ∞.

Then E1,N = Pr{N − 1 < XR ≤ N}/Pr{XR ≤ N}

∼ Pr
{

β − 1√
R

< Z ≤ β
}

/Pr{Z ≤ β}

∼ 1√
R

ϕ(β)/φ(β) ≈ 1√
N

ϕ(β)
φ(β)

=

= 1√
N

ϕ(−β)
1−φ(−β)

= 1√
N

h(−β), h = hazard rate.

Algebra: µ fixed, N ↑ ∞.

QED: N ∼ R + β
√

R, for some β, −∞ < β < ∞
⇔ λN ∼ µN − βµ

√
N

⇔ ρN ∼ 1− β√
N

, namely lim
N→∞

√
N (1− ρN) = β.

Theorem: (Jagerman, 1974) QED ⇔ lim
N→∞

√
N E1,N = h(−β).
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M/M/N (Erlang-C) with Many Servers: N ↑ ∞
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Q(0) = N : all servers busy, no queue.

Recall E2,N =

[
1 +

TN−1,N

TN,N−1

]−1

=

[
1 +

1− ρN

ρNE1,N−1

]−1

.

Here TN−1,N =
1

λNE1,N−1
∼ 1

Nµ× h(−β)/
√

N
∼ 1/µ

h(−β)
√

N

which applies as
√

N (1− ρN) → β, −∞ < β < ∞.

Also TN,N−1 =
1

Nµ(1− ρN)
∼ 1/µ

β
√

N

which applies as above, but for 0 < β < ∞.

Hence, E2,N ∼
[
1 +

β

h(−β)

]−1

, assuming β > 0.

QED: N ∼ R + β
√

R for some β, 0 < β < ∞
⇔ λN ∼ µN − βµ

√
N

⇔ ρN ∼ 1− β√
N

, namely lim
N→∞

√
N (1− ρN) = β.

Theorem (Halfin-Whitt, 1981) QED ⇔ lim
N→∞

E2,N =
[
1 + β

h(−β)

]−1
.
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QED M/M/N: Steady-State

Theorem (Halfin-Whitt, 1981)

Consider a sequence M/M/N, N = 1,2,. . .. Then the following are

equivalent

• lim
N→∞

P{WN(∞) > 0} = α, for some 0 < α < 1 ;

• lim
N→∞

√
N (1− ρN) = β, for some 0 < β < ∞ ;

• λN = µN − µβ
√

N + o
(√

N
)
, i.e., N ∼ RN + β

√
RN ,

in which case

• α = α(β) =

[
1 +

β

h(−β)

]−1

Halfin-Whitt function

• √N WN(∞)
d→ Ŵ (∞) , Ŵ (∞) | Ŵ (∞) > 0

d
= exp(µβ).

Moreover (Queue must be order
√

N )
(

1√
N

[QN(∞)−N ]+ ,
√

N WN(∞)

)
d→ (

Q̂+(∞), Ŵ (∞)
)

where Q̂+(∞) = µŴ (∞)
d
= exp(β).

Proof: Let ∧N(·) be Poisson(λN). Then divide by
√

N and take

N ↑ ∞ in

∧N [WN(∞)]
d
= [QN(∞)−N ]+ (Haji+Newell, 1971).
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QED M/M/N : Process View

Framework : Sequence of M/M/N systems,

indexed by N = 1,2, . . .

• QN = {QN(t), t ≥ 0} number in system

• VN = {VN(t), t ≥ 0} virtual waiting time, under FCFS

Parameters λN , µN ≡ µ

Offered load RN = λN × 1
µ
= λN/µ

Traffic intensity ρN = RN/N

Each M/M/N is a Birth & Death process, which is ergodic iff ρN < 1,

in which case ρN = servers’ utilization.

QED Scaling : λN = Nµ− βµ
√

N , namely

ρN = 1− β√
N

Approximations of Process and Stationary Distribution, as N ↑ ∞:

• Q̂N(t) = 1√
N
[QN(t)−N ] , 0 ≤ t ≤ ∞

• V̂N(t) =
√

NVN(t).
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Number in System, Centered and Rescaled: Q̂N(t)

(µ = 1, β = 0.5)
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Thanks to G. Shaikhet for the simulations and insight.
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Approximating Queueing and Waiting

• QN = {QN(t), t ≥ 0} : QN(t) = number in system at t ≥ 0.

• Q̂N = {Q̂N(t), t ≥ 0} : stochastic process obtained by

centering and rescaling:

Q̂N =
QN −N√

N

• Q̂N(∞) : stationary distribution of Q̂N

• Q̂ = {Q̂(t), t ≥ 0} : process defined by: Q̂N(t)
d→ Q̂(t).

?
-

-

-

? ?

Q̂N(t) Q̂N(∞)

Q̂(t) Q̂(∞)

t →∞

t →∞

N →∞ N →∞

Approximating (Virtual) Waiting Time

V̂N =
√

N VN ⇒ V̂ =

[
1

µ
Q̂

]+

(Puhalskii, 1994)
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Diffusion Processes in IR1

X = {Xt, t ≥ 0} Markov process with continuous sample paths

Kolmogorov/Feller/Dynkin : characterized (Strong Markov,

Continuous) by

• Drift function µt(x) (infinitesimal mean)

E [Xt+ε −Xt | Xt = x] = µt(x)ε + o(ε), ε ↓ 0;

• Diffusion function σt(x) (infinitesimal variance)

Var [Xt+ε −Xt | Xt = x] = σt(x)ε + o(ε), ε ↓ 0;

• Boundary behavior: inaccessible ; absorbing, sticky, reflecting

Time-homogeneous: µt(x) ≡ µ(x), σt(x) ≡ σ(x).

Examples:

1. µ(x) ≡ µ ; σ(x) ≡ σ > 0 Brownian Motion: BM (µ, σ2)

µ = 0 σ = 1 Standard BM (SBM)
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Diffusions: Examples (Continued)

2. µ(x) = a− bx, σ(x) ≡ σ Orenstein-Uhlenbeck (OU)

Stationary distribution ⇔ b > 0 : N(a
b
, σ2

2b
)

3. Reflected BM (µ, σ2), reflected at 0. (Harrison’s book)

{
dXt = µdt + σdBt + dYt, X0 ≥ 0

X ≥ 0, dY ≥ 0, XdY = 0

Stationary distribution ⇔ µ < 0 : exp(2|µ|/σ2)

4. Reflected OU on [0,∞), (Glynn and Ward), or generally (Dupuis)

{
dXt = µt(Xt)dt + σt(Xt)dBt + dYt; X0 ≥ 0 given

X ≥ 0, dY ≥ 0, XdY = 0

Ito : Characterized by solutions to stochastic differential equations

dXt = µt(Xt)dt + σt(Xt)dBt, t ≥ 0; X0 given.

(Reference: Karlin and Taylor, “2nd Course”; Karatzas and Shreve.)

Formalizes the “infinitesimal description”:

Xt+ε −Xt | Xt = x
d≈ µt(x) · ε + σt(x) · (Bt+ε −Bt)

where Bt+ε −Bt ∼ N(0, ε), independent of {Bu, u ≤ t}.

(Equivalently, B = {Bt, t ≥ 0} is SBM.)
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QED M/M/N : Diffusion Approximation

QN = {QN(t), t ≥ 0} Birth and Death with

λN = µN − µβ
√

N birth rate, constant

µN(x) = µ · (x ∧N) death rate at state x

Q̂N(t) =
1√
N

[QN(t)−N ] Scaled queue length of

customers (+) or servers (−)

Diffusion: Var
[
Q̂N(t + ε)− Q̂N(t) | Q̂N(t) = x

]
= 2µ · ε + o(ε)

Drift: E
[
Q̂N(t + ε) + Q̂N(t) | Q̂N(t) = x

]
=

1√
N

E
[
QN(t + ε)−QN(t) | QN(t) = N + x

√
N

]
=

1√
N

[
λN − µN

(
N + x

√
N

)]
· ε + o(ε) =

1√
N

{
µN − µβ

√
N − µ

[(
N + x

√
N

)
∧N

]}
· ε + o(ε) =

= −µβ · ε + o(ε) x ≥ 0 (BM)

= −µ(β + x) · ε + o(ε) x ≤ 0 (OU)

}
= −µ(β−x−)·ε+o(ε)

Expect Q̂N
d→ Q̂ diffusion: µ(x) = −µ(β − x−), σ(x) = 2µ

Proof: Apply Stone (1963), as in Halfin-Whitt (1981).
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QED M/M/N : Diffusion Approximation

Theorem (Halfin-Whitt).

Consider a sequence M/M/N, N = 1,2,. . .. Assume QED(β).

Define Q̂N(t) =
1√
N

[QN(t)−N ] , 0 ≤ t < ∞ ,

V̂N(t) =
√

N VN(t) , 0 ≤ t < ∞.

If
(
Q̂N(0), V̂N(0)

) d→ (
Q̂(0), V̂ (0)

)
, then

(
Q̂N , V̂N

) d→
(

Q̂,
1

µ
Q̂+

)
(Functional CLT),

where Q̂ is a diffusion process starting at Q̂(0), with infinitesimal

parameters

µ(x) =

{ −µβ x ≥ 0

−µ(x + β) x < 0
, σ2(x) = 2µ ;

and steady-state distribution Q̂(∞) given by

P{Q̂(∞) ≥ 0} = α(β) ,

P{Q̂(∞) > x | Q̂(∞) ≥ 0} = e−xβ (exp ↔ RBM)

P{Q̂(∞) ≤ x | Q̂(∞) ≤ 0} = φ(x + β)/φ(β) (normal ↔ OU)
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E-Driven M/M/N : Approximations

Recall: 1:1 staffing gave rise to λN ∼ µN − µγ

lim
N→∞

N(1− ρN) = γ, 0 < γ < ∞.

Applying the usual QED scaling: Q̂N(t) = 1√
N
(QN(t)−N),

results in a Halfin-Whitt diffusion limit with β = 0: No stationary dis-

tribution for

Q̂+(t) = lim
N→∞

1√
N

(QN(t)−N)+.

To identify a more informative scaling, recall:

WN(∞) | WN(∞) > 0
d
= exp

(
mean =

1

Nµ(1− ρN)

)
.

Also,

lim
N→∞

P{WN(∞) > 0} = 1.

Hence,

WN(∞)
d→ Ŵ (∞)

d
= exp(µγ).

And (by Haji & Newell)

1
N

[QN(∞)−N ]+
d→ Q̂(∞)+ d

= µŴ (∞)
d
= exp(γ) .

Expect a non-degenerate behavior of

Q̄N(t) =
1

N
[QN(t)−N ]

d→ Q̄(t) , 0 ≤ t ≤ ∞
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Process View: Simulations of Q̄N(t)
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Proposition: Let lim
N→∞

N(1− ρN) = γ, 0 < γ < ∞.

If 1
N
[QN(0)−N ]

d→ Q̄(0) , then

Q̄N(t)
d→ Q̄(t) =

{
Q̄(0) , if Q̄(0) ≥ 0,

Q̄(0)e−µt , if Q̄(0) ≤ 0.

Proof:

Diffusion: Var
[
Q̄N(t + ε)− Q̄N(t) | Q̄N(t) = x

]
= 0 + o(ε)

Drift: E
[
Q̄N(t + ε) + Q̄N(t) | Q̄N(t) = x

]
=

= 0 · ε + o(ε) x ≥ 0

= −µx · ε + o(ε) x ≤ 0

}
= µx− · ε + o(ε).

Conclude Q̄N
d→ Q̄ : µ(x) = µx−, σ(x) ≡ 0 .
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Discovered that Q̄N(t),0 ≤ t < ∞ degenerates, as N ↑ ∞. But

Q̄N(∞) =
1

N
[QN(∞)−N ]+

d→ exp(γ). What’s going on?

Two explanations (assuming Q̄(0) ≥ 0, non-random, for simplicity):

1. For k ≥ N (with λ = Nµ− γµ ),

Tk+cN,k = θ(N) ∗ Tk+1,k = θ(N) ∗ θ(1) →∞, asN ↑ ∞.

Hence, Q̄N(t) takes close to infinite time to move a one-unit dis-

tance, suggesting that, in the limit, Q̄(t) freezes.

2. Consider Q+
N : the restriction of the QN to {N, N + 1, ..}.

Q+
N

d
= M/M/1 with λ+ = Nµ− γµ , µ+ = Nµ.

d
= M/M/1 with λ̄ = λ+

N
→ µ , µ̄ = µ+

N
→ µ, accelerated by N.

Formally, Q̄+
N(t) = 1

N
Q+

N(t)
d→ Q̄(0)+ is a fluid limit , since

Q̄+
N(t) =

1

N
Q+

N(t)( with λ+, µ+)
d
=

1

N
Q+

N(Nt)( with λ̄, µ̄)

The limit is deterministic, hence a degenerate stationary distribution.

To get a diffusion limit , accelerate :

Q̂+
N(t) =

1

N
Q+

N(Nt)( with λ+, µ+)
d
=

1

N
Q+

N(N2t)( with λ̄, µ̄)
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Simulations of Q̂N(t) = 1
N [QN(Nt)−N]
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Theorem: Let lim
N→∞

N(1− ρN) = γ, 0 < γ < ∞.

Define Q̂N(t) = 1
N
[QN(Nt)−N ]. Then

Q̂N(t)
d→ Q̂(t)

d
= RBM(−γµ, 2µ).

Proof:

Diffusion: σN(x) → σ(x) = (2− x−)µ

Drift: µN(x) → µ(x) =

{ −µγ x ≥ 0

+∞ x ≤ 0

Via random time-change: Q̂(t)
d
= RBM (−γµ,2µ).

(RBM ≥ 0: Since the infinitesimal drift “is +∞” at x ≤ 0.)

Note: Q̂(∞)
d
= exp(γ), establishing convergence over 0 ≤ t ≤ ∞.

Note: VN(t)
d→ V̂ (t)

d
= 1

µ
Q̂(t), 0 ≤ t ≤ ∞ : no scaling needed.

(Check at t = ∞, using Haji & Newell).
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