Markovian N-Server Queues
(Birth & Death Models)

Arrivals Poisson ()

A A
N N

| Busy Period

Services exp(p) (E(S)=1/un)

Servers N statistically identical , serving FCFS.

Offeredload R =\ x E(S) = \/u Erlangs

Q(t) = number in system (served + queued) at time ¢.

W (k) = queueing time of k-th arrival.

Steady State: Q(oc0), W (o),

non-idling = [Q(t) — N]T
[Q(t) — N]~

when exists.

gueue-length, and
number of idle servers

Y



Examples: M/M/N/K, Abandonment, Balking

M/M/oo: A=A, ur=k-pu, k> 1.

Steady state m, = e *RF/k! Poisson (R)

M/M/N/N: Mg = A, upr=%k-u, 0<k<N.

RF R"
Steady state  m = - Z —
Erlang-B P{Blocked} = E; ny = mn , by PASTA
M/M/N: e = A, pr=(GkAN)-u , k>1.

A e
Steady state & p = N <1 , servers’ utilization.
v

Erlang-C P{Wait > 0} = E y = Z T
k>N

W(oo) | W(c0) >0 L exp (mean = Nu(ll— p))



Restriction to a Set via Time-Change

X Markov , X(oo)~m
t
TA(t) = / Lix(uyeardu time in A
0
1 A
Ta
t
TA A
T .
A A A t a
Xa(t) =X (7,7(D) X restricted to A: Markov

Xa(o0) ~ X(00)|X(c0) € A
Example: M/M/N/N < MIM/co restricted to {0,1,...,N}.
Ein = Pr{Xrp=N}/Pr{Xgr <N},
Xgr ~ Poisson (R)



Example: M/M/N (Erlang-C)

A A 7L
01010
21 Y Nu NM
Q_ . | ,Q.

Q(t) = number in system attime ¢t > 0

Q- = @ restrictedto {0,1,...,N — 1} : M/IM/N-1/N-1; X\, .
Q4+ = Q restrictedto {N,N+4+1,...} :M/M/1 A, N L.

Evolution of Q: Alternates between M/M/1 (Q ) and
M/M/N-1/N-1 (Q_).

Tn N
P(Wait > 0) = E, y = N1 . by PASTA,

InN-1+TNn-1N
where ( after conditioning on the first step ):

N 1 1 | A
NN-1 = = P =
pnm4+(0)  Np(l —p) Nu
T 1 1
N-1,N = =
AN-1m-(N —1) AXEin-1
Hence,
Tn_1n] " 1-p |7
EQ,N:[]-"‘ _’] =[1+—] )
TN N-1 p E1 N1
in which
RY /L R R
E, N = N Z g : R= Np= o
k=0



M/M/N/N (Erlang-B) with Many Servers: N T oo

Assume: u fixed, while An Too as N T oc.

Recall. R = Ry = Anx/u, p = pnv = Ry/N.

ErIang-B: El,N = P’I“{XR = N}/P?“{XR < N},
where Xr < Ppoisson (R).

d
R large Xp ~ R+ 2ZVR, where Z=< N(0,1),

suggesting N ~ R4+pBVR, —0 < < .

Then Ei1 N

Pr{N —1 < Xp < N}/Pr{Xg < N}
~ Pr{s-L<z<p}/Pr{z<p)

~ £ 0(B)/6(8) ~ A 2D =

— 1 (=B _ 1
VN 1-¢(=5) VN

\—

h(—8), h = hazard rate.

Algebra: p fixed, N T oc.

QED: N ~ R4+ BVR, forsome 3, —co < 3 < oo
& Ay ~ uN —ﬁﬁu\/ﬁ
& py o~ 1_\/—N , namely ]\I[@OO\/N(l—pN)zﬁ
Theorem: (Jagerman, 1974) QED < Jim VN E1 n = h(-5).
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M/M/N (Erlang-C) with Many Servers: N T oo

A A A A A A
oNoNoICONORCOI
= 2u 3 Nu  Nu Nu

Q_ . | Q.

<

Q(0) = N: all servers busy, no queue.

T -1 1— -1
Recall  Eoy = [1 + NW] — [1 + PN ] .
TN N-1 pnE1 N_1
1 1 1
Here ITnN_1N = /1

ANE1 N1 - Ny x h(=B) VN - h(—BWN
which appliesas VN (1 — py) — B, —o0 < 8 < oo.

T
Nu(l—pn)  BYN

which applies as above, butfor 0 < 3 < oc.

Also TN,N—l =

p
h(—B)

—1
Hence, Eon ~ [1 + ] , assuming G > 0.
QED: N ~ R+ BVR forsome B8, 0<f8< o0

& Ay ~ pN —BuV'N

& prl—ﬂ, namely ]\I[im\/ﬁ(l—pN):ﬁ.

VN

~1
Theorem (Halfin-Whitt, 1981) QED < Nlim Er Ny = [1 -+ ﬁ} .



QED M/M/N: Steady-State

Theorem (Halfin-Whitt, 1981)

Consider a sequence M/M/N, N = 1,2,.... Then the following are
equivalent

o ]\Ifim P{Wx(0) >0} =q«, forsome O0<a<1;

e Iim VN (1-pn) =245, for some 0 < 8 < oo ;

N—oo

e A\v =uN —pupvVN+o(VN), ie, N~ Ry+BvVERnN,

in which case

oa=a(ﬁ)=[1—|— g

h(—B)

1
] Halfin-Whitt function

o VN Wi(o0) % W(c0), W(oo) | W(c0) >0 = exp(uf).
Moreover (Queue must be order N )

(%N QOn(oc) — NI* VN WN(oo>) (@ (o0), W (o))

where Ot (0) = uW (o) = exp(B).

Proof: Let Ax(-) be Poisson(A\y). Then divide by v N and take
N T ocoin

AN[Wa(00)] = [Qn(c0) — NI (Haiji+Newell, 1977.



QED M/M/N : Process View

Framework : Sequence of M/M/N systems,

indexedby N =1,2,...
e Qn ={Qn(t), t > 0} number in system

o Vy ={Vn(t), t >0} virtual waiting time, under FCFS

Parameters AN, UN = b
Offered load Ry = Ay X % = An/p
Traffic intensity pn = Ry/N

Each M/M/N is a Birth & Death process, which is ergodic iff pn < 1,

in which case py = servers’ utilization.

QED Scaling: Ay = Ny — Suv' N, namely

—1_ 2
pN—]- VN

Approximations of Process and Stationary Distribution, as N T oc:
e On(t) =A[Qn(tH) - N], 0<t<oo

o Vn(t) =V NVn(t).



Number in System, Centered and Rescaled: QN(t)
(w=1,8=0.5)

N=10 N=100
T T T 3 T T T

OSHUH w UVW | W | w “

D

6 . 6
time time

N=1000 N=10000
T T T T T 25 T T T T T

5 5
time time

Thanks to G. Shaikhet for the simulations and insight.
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Approximating Queueing and Waiting

Qny = {Qn(t), t > 0} : Qn(t) = numberinsystematt¢ > O.

Qv = {Qn(t),t > 0} : stochastic process obtained by

centering and rescaling:

Q="

VN

Qn(o0) : stationary distribution of Q n

o O =1{0Q(),t>0}: process defined by: On(t) % O(¢).

On () b= O (c0)
N — oo\ | \N — 00
Q(t) PR Q(c0)

Approximating (Virtual) Waiting Time
_|_

_ . 1 .
v =VNVy=V = [— o) (Puhalskii, 1994)
U
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Diffusion Processes in IRY

X ={X;, t > 0} Markov process with continuous sample paths

Kolmogorov/Feller/Dynkin : characterized (Strong Markov,
Continuous) by

e Drift function u:(z)  (infinitesimal mean)

E[Xite — Xi | Xo = 2] = pu(@)e + o(e), €0

e Diffusion function o;(z) (infinitesimal variance)

Var [Xiye — Xt | X = x] = o1(x)e+o0(e), €| O;

e Boundary behavior: inaccessible ; absorbing, sticky, reflecting

Time-homogeneous: u:(z) = u(x), oi(x) = o(x).

Examples:

1. wx)=p; o(x) =0 >0 Brownian Motion: BM (1, 02)
u=20 oc=1 Standard BM (SBM)

BM, generated as N(t)-t, where N(t) — Poisson(1) process
50 T T T T T T T

Brownian Motion
S 8 3
T

=
o
T

o

|
i
o
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time
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Diffusions: Examples (Continued)

. u(x) = a —bx, o(x) = o Orenstein-Uhlenbeck (OU)

Stationary distribution < b > 0 : N(%,5;

. Reflected BM (u, 02), reflected at 0.  (Harrison’s book)
dX; = udt + odB; + dY;, Xo >0
X >0,dY >0, XdY =0

Stationary distribution < p < 0: exp(2|u|/0?)

. Reflected OU on [0, c0), (Glynn and Ward), or generally (Dupuis)
{ dX: = i (Xe)dt + 04(X¢)dB: + dY;;  Xo > 0 given

X >0,dY >0, Xdy =0

Ito: Characterized by solutions to stochastic differential equations
dX; = u(Xy)dt + oy(Xy)dBy, t>0; Xg given.
(Reference: Karlin and Taylor, “2nd Course”; Karatzas and Shreve.)
Formalizes the “infinitesimal description”:
Xipe = Xi | Xo =2 ~ m(z) - e+ 00(@) - (Bipe — Br)
where B;i.— B: ~ N(0,¢), independent of {B,, u < t}.
(Equivalently, B = {B;, t > 0} is SBM.)
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QED M/M/N : Approximation

Ny= {Qn(t), t>0} Birth and Death with
Av = uN — pBVN birth rate, constant
pun(x) = p-(xAN) death rate at state x
~ 1
Qn(@) = — [Qn() — N] Scaled queue length of

VN

customers (4 ) or servers (—)

Diffusion:  Var [QN(t +¢€) —Qn() | QOn(t) = x} = 2u-e+ o(e)
Drift: E[Qn{t+e) +Qn) | Qn(t) =] =

E [QN“WLE) —Qn@®) | Qn(t) =N+wﬂ _
[AN‘“N(NHW)} e+ o(e) =

{MN—uﬁ\/N —,LL[(N—I-:CW)/\N}}-e—I—o(e):

2= 2l 2l

= —uB- e+ o(e) r>0 (BM)

} = —u(B—z)-eto(e)
= —pu(B+=z)-etole) <0 (OU)

Expect Qpn LA Q diffusion: pu(z) = —u(B —z7), o(z) = 2u

Proof: Apply Stone (1963), as in Halfin-Whitt (1981).
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QED M/M/N : Approximation

Theorem (Halfin-Whitt).
Consider a sequence M/M/N, N =1,2,.... Assume QED(p3).

Define  On(t) = iN (On(t) = N] , 0<t< oo,

T
Vn(t) =V N Vy(t) , 0<t< oo.

it (Qn(0), Vn(0)) % (Q(0), 7(0)), then
(Qn, Vn) N (Q, %QJF) (Functional CLT),

where Q is a diffusion process starting at Q(0), with infinitesimal
parameters

—up x>0 .
r) = , o (x) =2u;
p(x) {—u(w+ﬁ) <0 () p

and steady-state distribution Q(co) given by

P{Q(c0) > 0} = a(p),
P{Q(c<) >z | Q(c0) > 0} = e~ (exp < RBM)

P{Q(0) <z | Q(c0) <0} = d(z+ B8)/#(B8) (normal « OU)
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E-Driven M/M/N : Approximations

Recall: 1:1 staffing gaveriseto Ay ~ uN —

im N(1 —py) =7, 0<~v <.

N—o0
Applying the usual QED scaling:  Qn(¢) =\/LN(QN(1;) — N),

results in a Halfin-Whitt diffusion limit with 3 = O: No stationary dis-

tribution for
QHw = Jim  ——(@x() - N)*.

To identify a more informative scaling, recall:

W (o0) | Wi ( )>Odexp<mean 1 )
N OO N{OO = p— )

Nu(l — pn)
Also,

lim P{Wy(o0) > 0} = 1.
Hence,
Wy(oo) 5 W() = exp(uy).
And (by Haji & Newell)

LQn(o0) = NIT % Q(oo)t £ (o) £ exp(v).

Expect a non-degenerate behavior of

On(®) = Qv ~ N4 Q1) , 0 <t < oo
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Process View: Simulations of  Qn(t)

E driven (with Q,(0)=0) ,N=10000 E-Driven (with Q, (0)=N/2) , N=10000

0.9

0.8

o
o

0.7
0.6

05 W

0.4

=)
T

o
&

031

0.21-

1

o
:

Number in system, centered and rescaled

Number in system, centered and rescaled
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time time

Proposition: Let lim N(1 —py) =v, 0<~v < .

N—o0
If %[QN(O) — NJ A Q(0) , then
o Q) , ifQ()>o,
Qn(t) % Q@) ={ ) o
Q(0)e#, ifQ(0) <O0.

Proof:
Diffusion: ~ Var [Qn(t +€) — Qn(t) | On(t) = z] = 0+ o(e)

Drift: EQn(t+e) +Qn®) | Qn(t) = x| =

— O-e4+o(e) >0

= pux~ - e+ o(e).
= —pur-e+ole) <0 }

Conclude Qn LA Q:u(x) =pr, o(z)=0.
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Discovered that Qn(t),0 < t < oo degenerates, as N | co. But

Qn(x) = %[QN(oo) — N]T A exp (). What's going on?

Two explanations (assuming @Q(0) > 0, non-random, for simplicity):
1. Fork > N (with A = Nu — vyu ),

Tk:—l—cN,k: = Q(N) * Tk:—l—l,k: = H(N) * 9(1) — 00, asN 7 oo.

Hence, Qx(t) takes close to infinite time to move a one-unit dis-

tance, suggesting that, in the limit, Q(t) freezes.

2. Consider Q}: the restriction of the Qy to {N, N + 1, ..}.
Qt < M/M/1with A\t = Ny —yu, p+ = N

< M/M/1 with A = % — o, = % — 1, accelerated by N.
Formally, Q. (t) = %Qﬁ(t) 4 3(0)tis a fluid limit , since

~ 1 : 1 T —
Qi) = LQNM(with AT, pH) = ZQF (VD) (with X,7)

The limit is deterministic, hence a degenerate stationary distribution.

To geta , accelerate :

QH () = Q) (with xF ) £ QE () (with 1. 7)

17



Simulations of Qpn(t) = %[QN(Nt) — N]

Starting at 0, N=2000, p=1, y=0.5 Starting at 1, N=2000, p=1, y=0.5

o

o
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o

number in system, centered and rescaled
number in system, centered and rescaled

|
N

L L L L L L | | | | | |
0 1000 2000 3000 4000 5000 6000 7000 1000 2000 3000 4000 5000 5000 7000

Nt-time (0<t<3.5) Nt-time (0<t<3.5)

o

Theorem: Let Iim N(1 —py) =, 0<~v < co.

N—oo

Define O (t) = ~[Qn(Nt) — N]. Then

Proof:
Diffusion: ony(xz) - o(x) = (2 -2 )u
—py x>0

Drift:  pun(z) — p(z) = {
4o <0

Via random time-change: Q(t) < RBM (—yp,21).
(RBM > 0: Since the infinitesimal drift “is +o00” atxz < 0.)

Note: Q(oc0) £ exp(), establishing convergence over 0 <t < co.

Note: V(%) 4, V(t) < %Q(t), 0 <t < oo : no scaling needed.

(Check at t = oo, using Haji & Newell).
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