

QED Q's

Telephone Call/Contact Centers

Service Engineering

Queueing Science

Eurandom

September 8, 2003

e.mail : avim@tx.technion.ac.il

Website: <http://ie.technion.ac.il/serveng>

1. Supporting Material (Downloadable)

M. "Call Centers: Research [Bibliography](#) with Abstracts." Version 5, July, 2003.

Gans, Koole, and M.: "Telephone Call Centers: Tutorial, Review and Research Prospects." *MSOM, 2003.* (Sec. 3-4, possibly 2.)

Brown, Gans, M., Sakov, Shen, Zeltyn, Zhao: "[Statistical Analysis](#) of a Telephone Call Center: A Queueing-Science Perspective." Submitted, 2003.

Erlang: "On the [rational](#) determination of the number of circuits." In "*The life and works of A.K. Erlang,*" 1948.

Jagerman,, "Some properties of the Erlang loss function." *The Bell System Technical Journal*, 1974.

Halfin and Whitt: "Heavy Traffic Limits for Queues with Many Exponential Servers." *OR*, 1981.

Jelelnkovic, M. and Momcilovic: "Heavy Traffic Limits for Queues with Many [Deterministic](#) Servers." Accepted to QUESTA, 2003.

Whitt: "Heavy-Traffic Limits for the $G/H2^*/n/m$ Queue." working paper, 2003.

Borst, M. and Reiman: "Dimensioning Large Telephone Call Centers." Accepted to *OR*, 2003.

Whitt: "How Multiserver Queues Scale with Growing Congestion-Dependent Demand." Accepted to OR.

Stone: "Limit theorems for random walks, birth and death processes, and diffusion processes." 1963.

Haji and Newell: "A Relation Between Stationary Queue and Waiting Time Distributions", *J. Appl. Prob.* 1971.

Puhalskii: "On the invariance principle for the first passage time." *MOR*, 1994.

Browne and Whitt: "Piecewise-linear diffusion processes." In *Advances in Queueing. Theory, Methods, and Open Problems*, Ed. Dshalalow, 1995.

Whitt: "A Diffusion Approximation for the G/GI/n/m Queue." working paper, 2003.

Contents

1. Service Engineering – Research, Teaching, Practice.
2. The World of Call Centers
3. Workforce Management (Staffing): Hierarchical View
4. Operational Regime: Quality-Driven, Efficiency-Driven

The QED (Halfin-Whitt) Regime

5. Markovian (Birth & Death) Queues
6. Diffusion Limits/Approximations
7. M/M/N (Erlang-C); GI/D/N.

Leading to models with

7. Impatient (Abandoning) Customers
8. Predictably (Time) Varying Queues
9. Heterogeneous Customer Types and

Partially Overlapping Server Skills

Service Engineering – a Subjective View

- Contrast with the traditional and prevalent
 - Service Management (Business Schools; U.S.A.)
 - Industrial Engineering (Engineering Schools; Europe)
- Goal: Develop scientifically-based design principles (rules-of-thumb) and tools (software), that support the balance of service quality and efficiency, from the (often conflicting) views of customers, servers and managers.
- Theoretical Framework: Queueing Networks
- Applications focus: Call (Contact) Centers

Example: Staffing

How many agents required for balancing service-quality and operational-efficiency.

Example: Skills-Based Routing (SBR)

VIP and Regulars, seeking Support or Purchasing, via Telephone or IVR or e.mail or Chat.

Staffing (+SBR): How Many Agents?

- **Fundamental** problem in service operations / call centers:
 - People = 70% costs of running call centers, employing 3% U.S. workforce; 1000's agents in a “single” Call Center.

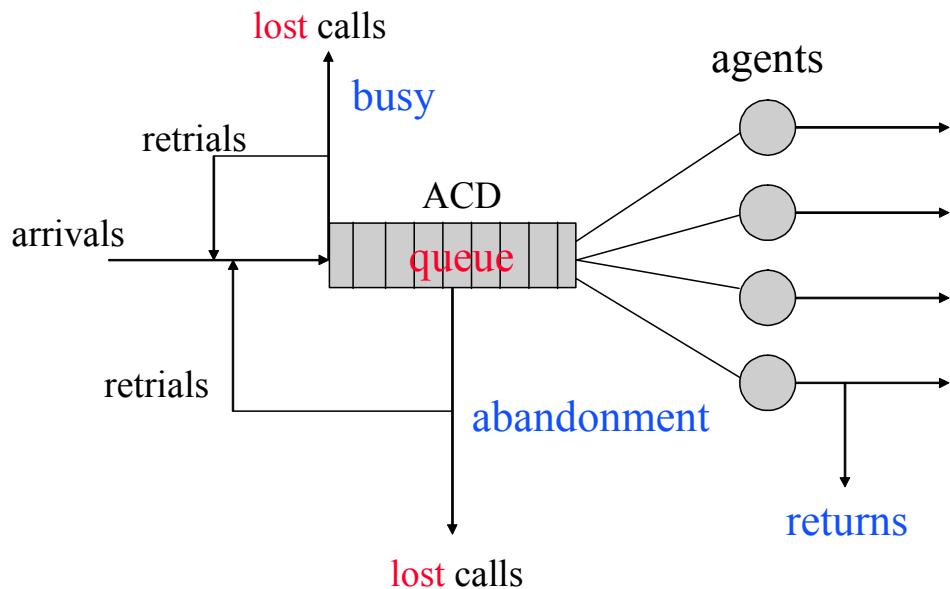
Reality

- Workforce Management (WFM) is M/M/N-based
- Reality is complex and becoming even more so
- Solutions are urgently needed
- Technology enables smart systems
- Theory lags significantly behind needs
 - » Ad-hoc methods: heuristics, simulation-based

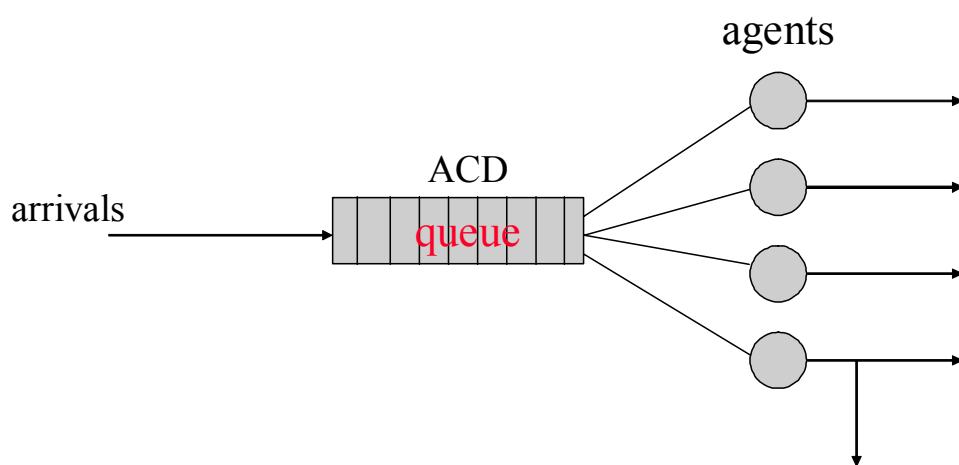
Progress is based on

- **Small yet significant models for theoretical insight**
the research of which gives rise to
- Principles, Guidelines, Tools: Service Engineering

The Basic Call Center



$$\text{Erlang-}C = M/M/N$$



“First National City Bank Operating Group”

“By tradition, the method of meeting increased work load in banking is to increase staff. If an operation could be done at a rate of 80 transactions per day, and daily load increased by 80, then the manager in charge of that operation would hire another person; it was taken for granted...” (Harvard Case)

1:1 Staffing - Classical IE (Erlang-C)

8 transactions per hour \Rightarrow $E(S) = \underline{\underline{7:30 \text{ minutes}}} (=M)$

<u>λ/hr</u>	<u>N Agents</u>	<u>$\rho = OCC$</u>	<u>$L_q = Que$</u>	<u>$W_q = ASA$</u>
8	2	50%	0.3	2:30
16	3	67%	0.9	3:20
24	4	75%	1.5	3:49
32	5	80%	2.2	4:09

<u>λ/hr</u>	<u>N</u>	<u>$\rho = \text{OCC}$</u>	<u>$L_q = \text{Que}$</u>	<u>$W_q = \text{ASA}$</u>
72	10	90%	60	5:01
120	16	93.8%	11	5:29
400	51	98%	42	6:18
640	81	98.8%	70	6:32
1,280	161	99.4%	145	6:48
2,560	321	99.7%	299	7:00
3,600	451	99.8%	423	7:04
\downarrow	\downarrow	\downarrow	\downarrow	\downarrow
∞	∞	1	∞	7:30 !

\Rightarrow **Efficiency-Driven Operation (Heavy-Traffic)**

Intuition: at 100% utilization, N servers = 1 fast server

Indeed $\overline{W}_q \approx \overline{W}_q \mid W_q > 0 = \frac{1}{N} \cdot \frac{\rho_N}{1 - \rho_N} \cdot E(S) \rightarrow E(S) = 7:30 !$

since $\rho_N = \frac{\lambda_N \times E(S)}{N} = \frac{8(N-1) \times 7.5 / 60}{N} = \frac{N-1}{N} = 1 - \frac{1}{N}$

$$N(1 - \rho_N) = 1 \quad , \quad \rho_N \rightarrow 1 .$$

Rough Performance Analysis

Peak 10:00 – 10:30 a.m., with 100 agents
400 calls
3:45 minutes average service time
2 seconds ASA, 1 abandonment (after 1 second)

Offered load $R = \lambda \times M$
= $400 \times 3:45 = 1500 \text{ min.}/30 \text{ min.}$
= 50 Erlangs

Occupancy $\rho = R/N$
= $50/100 = 50\%$

⇒ **Quality-Driven Operation** (Light-Traffic)
⇒ Classical Queueing Theory (M/G/N approximations)

Above: $R = 50$, $N = R + 50$, \approx all served immediately.

Rule of Thumb: $N = \lceil R + \delta R \rceil$, $\delta > 0$ service-grade.

Quality-driven: 100 agents, 50% utilization

⇒ **Can** increase offered load - but **by how much?**

Erlang-C **N=100** **E(S) = 3:45 min.**

<u>λ</u> /hr	ρ	$E(W_q) = ASA$	% Wait = 0
800	50%	0	100%
1000	62.5%	0	100%
1200	75%	0	99.7%
1400	87.5%	0:02 min.	88%
1500	93.8%	0:15 min.	60%
1550	96.9%	0:48 min.	35%
1580	98.8%	2:34 min.	15%
1585	99.1%	3:34 min.	12%

⇒ **Efficiency-driven Operation (Heavy Traffic)**

Above: $R = 99$, $N = R + 1$, ≈ all delayed.

Rule of Thumb: $N = \lceil R + \gamma \rceil$, $\gamma > 0$ service grade.

Changing N (Staffing) in M/M/N

$$E(S) = 3:45$$

<u>λ/hr</u>	<u>N</u>	OCC	ASA	% Wait = 0
1585	100	99.1%	3:34	12%
1599	100	99.9%	59:33	0%
1599	100+1	98.9%	3:06	13%
1599	102	98.0%	1:24	24%
1599	105	95.2%	0:23	50%

⇒ New Rationalized Operation

Heavy traffic, in the sense that $OCC > 95\%$;

Light traffic, 50% answered **immediately**

QED Regime = Quality- and Efficiency-Driven Regime

Economies of Scale in a Frictionless Environment

Above: $R = 100$, $N = R + 5$, 50% delayed.

√. Safety-Staffing $N = \lceil R + \beta \sqrt{R} \rceil$, $\beta > 0$.

Rules of Thumb: Operational Regimes

$$R = \lambda \times E(S) \quad \text{units of work per unit of time (load)}$$

Efficiency-driven $(\% \{ \text{Wait} > 0 \} \rightarrow 100\%)$

$$N = \lceil R + \gamma \rceil, \quad \gamma > 0 \quad \text{service grade}$$

Quality-driven $(\% \{ \text{Wait} > 0 \} \rightarrow 0)$

$$N = \lceil R + \delta R \rceil, \quad \delta > 0$$

QED Regime $(\% \{ \text{Wait} > 0 \} \rightarrow \alpha, \ 0 < \alpha < 1)$

$$N = \lceil R + \beta \sqrt{R} \rceil, \quad \beta > 0 \quad \sqrt{\cdot} \text{ Safety-Staffing}$$

Determine Regimes (Strategy), Parameters (Economics)

Strategy: Managers, Agents (Unions), Customers

Economics: Minimize agent salaries + waiting cost

QED Theorem (Halfin-Whitt, 1981)

Consider a sequence of M/M/N models, $N=1,2,3,\dots$

Then the following **3 points of view** are equivalent:

- **Customer** $\lim_{N \rightarrow \infty} P_N \{ \text{Wait} > 0 \} = \alpha, \quad 0 < \alpha < 1;$
- **Server** $\lim_{N \rightarrow \infty} \sqrt{N} (1 - \rho_N) = \beta, \quad 0 < \beta < \infty;$
- **Manager** $N \approx R + \beta \sqrt{R}, \quad R = \lambda \times E(S) \text{ large};$

Here
$$\alpha = \left[1 + \frac{\beta \phi(\beta)}{\varphi(\beta)} \right]^{-1},$$

where $\varphi(\cdot) / \phi(\cdot)$ is the standard normal density/distribution.

Extremes:

Everyone waits: $\alpha = 1 \Leftrightarrow \beta = 0$ **Efficiency-driven**

No one waits: $\alpha = 0 \Leftrightarrow \beta = \infty$ **Quality-driven**

√. Safety-Staffing: Performance

$$R = \lambda \times E(S) \quad \text{Offered load (Erlangs)}$$

$$N = R + \underbrace{\beta \sqrt{R}}_{\beta = \text{“service-grade”} > 0}$$

$$= R + \Delta \quad \sqrt{\quad \text{safety-staffing}}$$

Expected Performance:

$$\% \text{ Delayed} \approx P(\beta) = \left[1 + \frac{\beta \phi(\beta)}{\varphi(\beta)} \right]^{-1}, \quad \beta > 0$$

Erlang-C

$$\text{Congestion index} = E \left[\frac{\text{Wait}}{E(S)} \middle| \text{Wait} > 0 \right] = \frac{1}{\Delta}$$

ASA

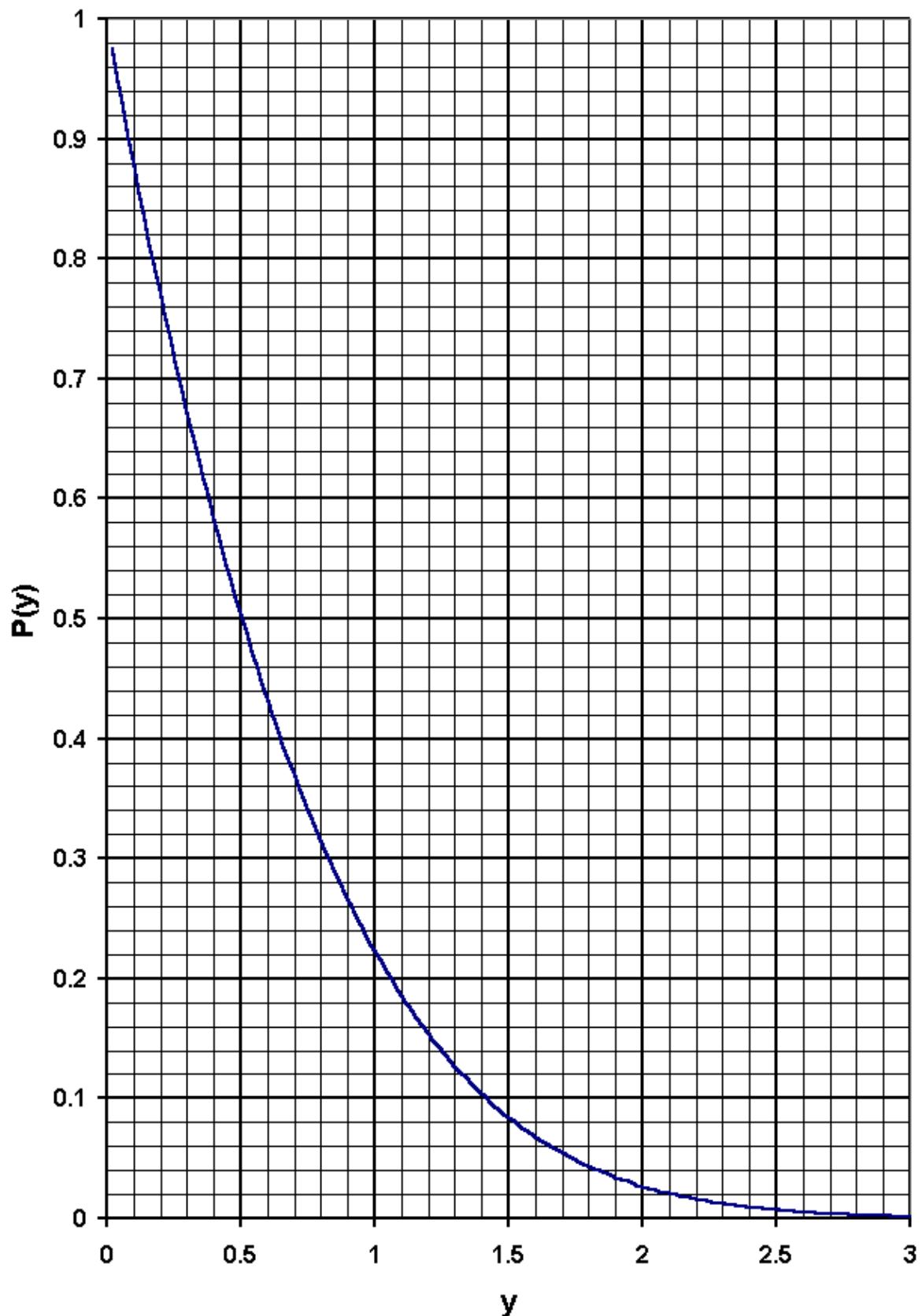
$$\% \left\{ \frac{\text{Wait}}{E(S)} > T \middle| \text{Wait} > 0 \right\} = e^{-T\Delta}$$

TSF

$$\text{Servers' Utilization} = \frac{R}{N} \approx 1 - \frac{\beta}{\sqrt{N}}$$

Occupancy

The Halfin-Whitt Delay Function $P(\beta)$



Strategy: Sustain Regime under Pooling

Economies of Scale

Base case: M/M/N with parameters λ, μ, N

Scenario: $\lambda \rightarrow m\lambda$ ($R \rightarrow mR$)

	Base Case	Efficiency-driven	Quality-driven	Rationalized
Offered load	$R = \frac{\lambda}{\mu}$	mR	mR	mR
Safety staffing	Δ	Δ	$m\Delta$	$\sqrt{m}\Delta$
Number of agents	$N = R + \Delta$	$mR + \Delta$	$mR + m\Delta$	$mR + \sqrt{m}\Delta$
Service grade	$\beta = \frac{\Delta}{\sqrt{R}}$	$\frac{\beta}{\sqrt{m}}$	$\beta\sqrt{m}$	$\boxed{\beta}$
Erlang-C = $P\{\text{Wait} > 0\}$	$P(\beta)$	$P\left(\frac{\beta}{\sqrt{m}}\right) \uparrow 1$	$P(\beta\sqrt{m}) \downarrow 0$	$\boxed{P(\beta)}$
Occupancy	$\rho = \frac{R}{R + \Delta}$	$\frac{R}{R + \frac{\Delta}{m}} \uparrow 1$	$\rho = \frac{R}{R + \Delta}$	$\frac{R}{R + \frac{\Delta}{\sqrt{m}}} \uparrow 1$
ASA = $E\left[\frac{\text{Wait}}{E(S)} \mid \text{Wait} > 0\right]$	$\frac{1}{\Delta}$	$\boxed{\frac{1}{\Delta} = \text{ASA}}$	$\frac{1}{m\Delta} = \frac{\text{ASA}}{m}$	$\frac{1}{\sqrt{m}\Delta} = \frac{\text{ASA}}{\sqrt{m}}$
TSF = $P\left\{\frac{\text{Wait}}{E(S)} > T \mid \text{Wait} > 0\right\}$	$e^{-T\Delta}$	$\boxed{e^{-T\Delta} = \text{TSF}}$	$e^{-mT\Delta} = (\text{TSF})^m$	$e^{-\sqrt{m}T\Delta} = (\text{TSF})^{\sqrt{m}}$

See: Whitt's "How multi-server queues scale with ...demand"

Economics: Quality vs. Efficiency

(Dimensioning: with S. Borst and M. Reiman)

Quality $D(t)$ delay cost (t = delay time)

Efficiency $C(N)$ staffing cost (N = # agents)

Optimization: N^* minimizes Total Costs

- $C \gg D$: Efficiency-driven
- $C \ll D$: Quality-driven
- $C \approx D$: Rationalized - QED

Satisfization: N^* minimal s.t. Service Constraint

Eg. %Delayed < α .

- $\alpha \approx 1$: Efficiency-driven
- $\alpha \approx 0$: Quality-driven
- $0 < \alpha < 1$: Rationalized - QED

Framework: Asymptotic theory of M/M/N, $N \uparrow \infty$

Asymptotic-Optimality: Framework

Problem: Minimize N = Number of Servers

1. Change of Variables:

Translate the discrete optimization problem "how many agents?" into a continuous optimization problem.

2. Approximation (Asymptotically):

In each of the 3 regimes, approximate (asymptotically) the continuous optimization problem from Step 1 by an "approximating" continuous optimization problem that is easier to solve.

3. Optimality (Asymptotically):

Prove that the optimal solution to the approximating continuous problem from Step 2 provides an approximately (asymptotically) optimal solution to the original discrete optimization problem.

Economics: √. Safety-Staffing

Optimal

$$N^* \approx R + y^* \left(\frac{d}{c} \right) \sqrt{R}$$

where

d = delay/waiting costs

c = staffing costs

$$\text{Here } y^*(r) \approx \left(\frac{r}{1 + r(\sqrt{\pi/2} - 1)} \right)^{1/2}, \quad 0 < r < 10$$

$$\approx \left(2 \ln \frac{r}{\sqrt{2\pi}} \right)^{1/2}, \quad r \text{ large.}$$

Performance measures: $\Delta = y^* \sqrt{R}$ safety staffing

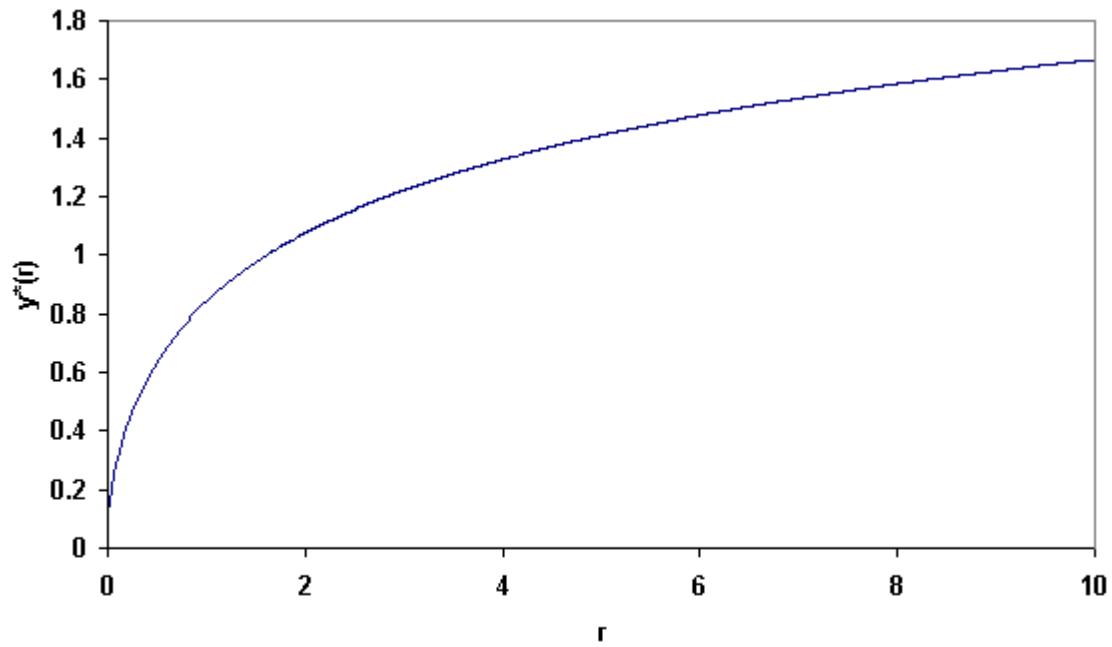
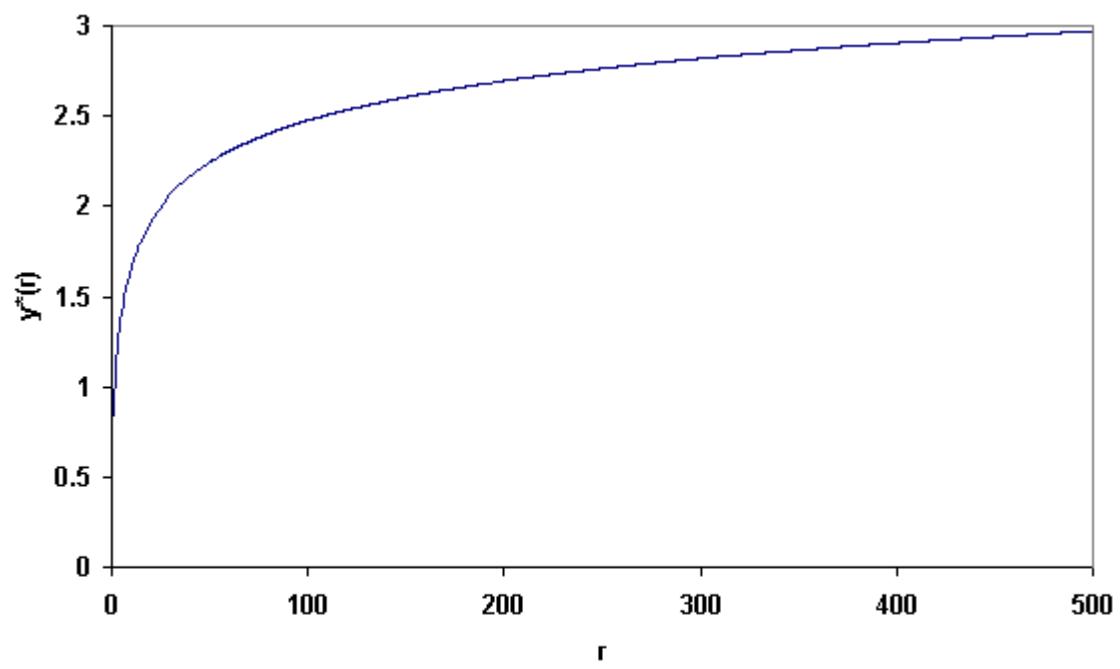
$$P\{\text{Wait} > 0\} \approx P(y^*) = \left[1 + \frac{y^* \phi(y^*)}{\varphi(y^*)} \right]^{-1} \quad \text{Erlang-C}$$

$$\text{TSF} = P\left\{ \frac{\text{Wait}}{E(S)} > T \mid \text{Wait} > 0 \right\} = e^{-T\Delta}$$

$$\text{ASA} = E\left[\frac{\text{Wait}}{E(S)} \mid \text{Wait} > 0 \right] = \frac{1}{\Delta}$$

$$\text{Occupancy} = 1 - \frac{\Delta}{N} \approx 1 - \frac{y^*}{\sqrt{N}}$$

Square-Root Safety Staffing: $N = R + y^*(r)\sqrt{R}$
 r = cost of delay / cost of staffing



✓. Safety-Staffing: Overview

Simple Rule-of-thumb: $N^* \approx R + y^* \left(\frac{d}{c} \right) \sqrt{R}$

Robust: covers **also** efficiency- and quality-driven

Accurate: to within **1 agent** (from few to many 100's) typically

Relevant: Medium to Large CC do perform as above.

Instructive: In large call centers, high resource utilization and service levels could **coexist**, which is enabled by **economies of scale** that dominate stochastic variability.

Example: 100 calls per minute, at 4 min. per call

⇒ $R = 400$, least number of agents

$$\frac{\Delta}{R} \approx \frac{y^*(r)}{\sqrt{R}} = \frac{y^*}{20}, \quad \text{with } y^*: 0.5-1.5 ;$$

Safety staffing: **2.5%–7.5%** of $R=\text{Min}$! ⇒ **“Real” Problem?**

<u>Performance:</u>	N^*	% wait > 20 sec.	Utilization
	400 + 11	20%	97%
	400 + 29	1%	93%

Scenario Analysis: “Satisfization” (vs. Optimization)

Theory: The least N that guarantees $\% \{ \text{Wait} > 0 \} < \varepsilon$ is close to $N^* = R + P^{-1}(\varepsilon)\sqrt{R}$ (again $\sqrt{\cdot}$ safety-staffing).

(Folklore: $N^* = R + \bar{\phi}^{-1}(\varepsilon)\sqrt{R}$, $\bar{\phi} = 1 - \phi$; based on “classical” normal approximations to infinite-servers models. The two essentially coincide for small ε .)

Example: $\lambda = 1,800$ calls at peak hour (avg)

$M = 4$ min. service time (avg)

$$R = 1800 \times \frac{4}{60} = 120 \text{ Erlangs offered-load}$$

Service level constraint: less than 15% delayed, equivalently at least 85% answered immediately.

$$\Rightarrow N^* = R + P^{-1}(0.15)\sqrt{R} = 120 + 1.22\sqrt{120} = 133 \text{ agents}$$

$$\Rightarrow \% \{ \text{Wait} > 20 \text{ sec.} \} = 5\% \quad \text{delayed over 20 sec.}$$

$$\text{ASA} = E[\text{Wait}] = 2.7 \text{ sec.} \quad \text{average wait}$$

$$\text{ASA} | \text{Wait} > 0 = 18 \text{ sec.} \quad \text{average wait of delayed}$$

Scenario Analysis: “Reasonable” Service Level ?

Theory: The least N that guarantees $\% \{ \text{Wait} > 0 \} < \varepsilon$ is close to $N^* = R + P^{-1}(\varepsilon) \sqrt{R}$ (again $\sqrt{\cdot}$ safety-staffing).

Example: $\lambda = 1,800$ calls at peak hour (avg)

$M = 4$ min. service time (avg)

$$R = 1800 \times \frac{4}{60} = 120 \text{ Erlangs offered-load}$$

Service level constraint: 1 out of 100 delayed (avg), namely
99% answered immediately.

$$\Rightarrow N^* = R + P^{-1}(0.01) \sqrt{R} = 120 + 2.38 \sqrt{120} = 146 \text{ agents}$$

$$\Rightarrow \frac{d}{c} = (y^*)^{-1}(2.38) = 75: \text{very high service index}$$

Valuation of customers' time as being worth **75-fold** of agents' time seems reasonable only in **extreme circumstances**:

- Cheap servers (IVR)
- Costly delays (Emergency)

Note: Satisfaction easier to model but Costs easier to **grasp**.

QED Staffing: State of Art (8/2003)

1. **GI/M/N** $N \approx R + \beta\sqrt{R}$, $\beta > 0$
 - Conceptual: Erlang; **Halfin-Whitt**
 - Dimensioning: Borst, Reiman
2. **Abandonment** (Erlang-A, with $-\infty < \beta < \infty$)
 - Conceptual: Garnett, Reiman; Zeltyn; **Whitt**
 - Dimensioning: (Borst, Reiman, Zeltyn) in progress
3. **Time-Varying** (Non-homogenous Poisson arrivals)
 - Infinite-server heuristics: Jennings, Massey, Whitt
 - Conceptual: (Massey, Rider) in progress
 - Dimensioning: ?
4. **Skills-Based Routing:**
 - Conceptual: Atar, Reiman; Gurvich (V-Model)
 - Dimensioning: **Borst, Seri** (General); Gurvich (V);
Armony (Reversed-V);
5. **Service Time Duration:**
 - Conceptual: Whitt **H2*/G**; Jelenkovic, Momcilovic **D**

QED M/G/N: ???

$E(Wq|Wq>0)$ VS. β

M/M/100, M/D/100 and M/LN/100 with CV=1

