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      Service Engineering – a Subjective View 

• Contrast with the traditional and prevalent 

Service Management         (Business Schools; U.S.A.)  

Industrial Engineering   (Engineering Schools; Europe)  

• Goal: Develop scientifically-based design principles 

(rules-of-thumb) and tools (software), that support the  

balance of service quality and efficiency, from the (often 

conflicting) views of customers, servers and managers.  

 
• Theoretical Framework:  Queueing Networks 

• Applications focus:   Call (Contact) Centers 
 
 
Example: Staffing  

How many agents required for balancing service-quality 

and operational-efficiency.  

Example: Skills-Based Routing (SBR)  

VIP and Regulars, seeking Support or Purchasing, via 

Telephone or IVR or e.mail or Chat. 
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     Staffing (+SBR): How Many Agents? 

 
 

• Fundamental problem in service operations / call centers: 

-  People = 70% costs of running call centers, employing  

   3% U.S. workforce; 1000’s agents in a “single” Call Center. 
 

Reality  

- Workforce Management (WFM) is M/M/N-based 

- Reality is complex and becoming even more so 

- Solutions are urgently needed  

- Technology enables smart systems 

- Theory lags significantly behind needs 

»  Ad-hoc methods: heuristics, simulation-based 

 

Progress is based on  

- Small yet significant models for theoretical insight 

  the research of which gives rise to  

- Principles, Guidelines, Tools: Service Engineering   
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 “First National City Bank Operating Group” 
 

“By tradition, the method of meeting increased work load in 

banking is to increase staff.  If an operation could be done at a 

rate of 80 transactions per day, and daily load increased by 80, 

then the manager in charge of that operation would hire another 

person; it was taken for granted…” (Harvard Case) 

 

1:1 Staffing  -  Classical IE   (Erlang-C) 

8 transactions per hour    ⇒   E(S) = 7:30 minutes (=M) 

λ/hr N Agents ρ = OCC Lq = Que Wq = ASA 

8 2 50% 0.3 2:30 

16 3 67% 0.9 3:20 

24 4 75% 1.5 3:49 

32 5 80% 2.2 4:09 
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λ/hr N ρ = OCC Lq = Que Wq = ASA

72 10 90% 60 5:01 

120 16 93.8% 11 5:29 

400 51 98% 42 6:18 

640 81 98.8% 70 6:32 

1,280 161 99.4% 145 6:48 

2,560 321 99.7% 299 7:00 

3,600 451 99.8% 423 7:04 

  

 ∞   ∞       1      ∞  7:30 ! 

⇒ Efficiency-Driven Operation   (Heavy-Traffic) 
 
Intuition:  at 100% utilization,  N servers = 1 fast server 
 

Indeed )()(
1

10| SESE
N

WWW
N

N
qqq →⋅

−
⋅=>≈

ρ
ρ  = 7:30 ! 

since    
NN

N
N

N
N

SEN
N

11160/5.7)1(8)(
−=

−
=

×−
=

×
=
λρ  

1,1)1( →=− NNN ρρ  . 



 10

 

 



 11

 
          Rough Performance Analysis 
 

Peak 10:00 – 10:30 a.m., with 100 agents 

  400 calls 

  3:45 minutes average service time 

  2 seconds ASA, 1 abandonment (after 1 second) 

 

Offered load  R =   λ   ×  M 

         = 400 × 3:45 = 1500 min./30 min. 

         = 50 Erlangs 

 

Occupancy  ρ = R/N 

        = 50/100 = 50% 

 

⇒  Quality-Driven Operation   (Light-Traffic) 

⇒  Classical Queueing Theory (M/G/N approximations) 

Above:  R = 50,     N  =    R  +  50,      ≈ all served immediately.  

Rule of Thumb:  N  =  ⎡ ⎤R  R δ+  ,  0>δ   service-grade. 
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Quality-driven: 100 agents, 50% utilization 

⇒ Can increase offered load - but by how much? 

   Erlang-C        N=100   E(S) = 3:45 min. 

 
λ/hr ρ  E(Wq) = ASA % Wait = 0  

800 50% 0 100% 

1000 62.5% 0 100% 

1200 75% 0 99.7% 

1400 87.5% 0:02 min. 88% 

1500 93.8% 0:15 min. 60% 

1550 96.9% 0:48 min. 35% 

1580 98.8% 2:34 min. 15% 

1585 99.1% 3:34 min. 12% 

 

⇒   Efficiency-driven Operation   (Heavy Traffic) 

Above:  R = 99,     N  =    R + 1,          ≈ all delayed.     
 
Rule of Thumb:  N  =  ⎡ ⎤γ+ R  ,     0>γ   service grade. 
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Changing N  (Staffing) in M/M/N  

                       E(S) = 3:45 

λ/hr N OCC ASA % Wait = 0  

1585 100 99.1% 3:34 12% 

1599 100 99.9% 59:33 0% 

1599 100+1 98.9% 3:06 13% 

1599 102 98.0% 1:24 24% 

1599 105 95.2% 0:23 50% 

 
 
⇒   New Rationalized Operation  

 
Heavy traffic, in the sense that  OCC > 95%;  

Light traffic,       50% answered immediately 
 
 

QED Regime = Quality- and Efficiency-Driven Regime 
Economies of Scale in a Frictionless Environment 
 
Above:   R = 100,             N =  R +  5,            50% delayed. 

⋅ Safety-Staffing     N = ⎡R + β R ⎤ ,   β > 0  . 
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Rules of Thumb: Operational Regimes     

 
R = ×λ  E(S)  units of work per unit of time (load) 

 
Efficiency-driven    (%{Wait > 0} 1→ 00%) 

 

  N = ⎡ ⎤γ+ R  ,   0>γ   service grade 
 
 
Quality-driven            (%{Wait > 0} 0→ ) 

 
  N = ⎡ ⎤R  R δ+  ,   0>δ  
 
 
QED Regime    (%{Wait > 0} )10, <<→ αα  

 
  N = ⎡R + β R ⎤ ,  β > 0  ⋅ Safety-Staffing 
 
 
Determine Regimes (Strategy), Parameters (Economics) 

 Strategy: Managers, Agents (Unions), Customers  

 Economics: Minimize agent salaries + waiting cost 
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QED Theorem (Halfin-Whitt, 1981) 

Consider a sequence of  M/M/N  models,  N=1,2,3,… 

Then the following 3 points of view are equivalent: 
 

• Customer N
N

Plim
∞→

{Wait > 0} = α ,       0 < α  < 1; 

• Server  βρ =−
∞→

)1(lim N
N

N  ,     0 < β  < ∞ ; 

• Manager RRN β+≈   ,      ×= λR  E(S)   large; 

Here   
1

)(
)(

1
−

⎥
⎦

⎤
⎢
⎣

⎡
+=

βϕ
ββφ

α   , 

 

where   )(/)( ⋅⋅ φϕ   is the standard normal density/distribution. 

 

Extremes: 

Everyone waits: 01 =⇔= βα  Efficiency-driven 

No one waits: ∞=⇔= βα 0  Quality-driven
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          ⋅ Safety-Staffing: Performance 

 

R =  ×λ  E(S)  Offered load   (Erlangs) 
 

N = R + 
321
Rβ   β  = “service-grade”  > 0   

     = R +   ∆   ⋅   safety-staffing 

 

Expected Performance: 

% Delayed 0,
)(
)(

1)P(
1

>⎥
⎦

⎤
⎢
⎣

⎡
+=≈

−

β
βϕ
ββφ

β    Erlang-C 

 

Congestion index   = E
∆

=⎥
⎦

⎤
⎢
⎣

⎡
>

10Wait
E(S)

 Wait   ASA 

 

% 
⎭
⎬
⎫

⎩
⎨
⎧

>> 0WaitT
(S)E

Wait ∆= T-e      TSF 

Servers’ Utilization = 
N

1
N
R β

−≈     Occupancy 
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   The Halfin-Whitt Delay Function P(β ) 
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Strategy: Sustain Regime under Pooling 
 

 

 

See: Whitt’s “How multi-server queues scale with …demand”
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  Economics: Quality vs. Efficiency 

 
(Dimensioning: with S. Borst and M. Reiman) 

 
Quality  D(t)  delay cost (t = delay time) 

Efficiency C(N) staffing cost (N = # agents) 
 
Optimization: N*  minimizes Total Costs 
 

• C >> D :  Efficiency-driven 
• C << D :  Quality-driven 
• C  ≈  D :  Rationalized - QED 

 
 
Satisfization:  N*  minimal s.t. Service Constraint 
 
                Eg.   %Delayed <  α  . 
 

• α  ≈ 1   :  Efficiency-driven 
• α  ≈ 0   :  Quality-driven 
• 0 < α  < 1 :  Rationalized - QED 

 
 

Framework:  Asymptotic theory of M/M/N,  N ∞↑  
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     Asymptotic-Optimality: Framework 
 

Problem: Minimize N = Number of Servers  
 

1. Change of Variables: 

Translate the discrete optimization problem "how many 

agents?" into a continuous optimization problem. 

 

2. Approximation (Asymptotically):  

In each of the 3 regimes, approximate (asymptotically) 

the continuous optimization problem from Step 1 by an 

"approximating" continuous optimization problem that is 

easier to solve. 

 

3. Optimality (Asymptotically): 

Prove that the optimal solution to the approximating 

continuous problem from Step 2 provides an 

approximately (asymptotically) optimal solution to the 

original discrete optimization problem.      
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      Economics: ⋅  Safety-Staffing  

Optimal  N* ≈ R + y*
⎟
⎠
⎞

⎜
⎝
⎛

c
d  R  

   where   d  =  delay/waiting costs 

    c  =  staffing costs 
 

   Here    y*(r)  ≈  ( )
21
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/
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    , 0 < r < 10 

 

         ≈  
21

2
ln  2

/r
⎟
⎠
⎞

⎜
⎝
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π
        , r  large. 

Performance measures:   ∆ = y* R      safety staffing 
 

P{Wait > 0} ≈ P(y*) = 
1

1
−

⎥
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+
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⎩
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⎧
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⎢
⎣

⎡
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∆
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∆
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   Square-Root Safety Staffing: RryRN )(*+=  
         r = cost of delay / cost of staffing 
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⋅  Safety-Staffing: Overview  

Simple Rule-of-thumb:  N*  ≈  R + y*
⎟
⎠
⎞

⎜
⎝
⎛

c
d R  

Robust:  covers also efficiency- and quality-driven 
 
Accurate:  to within 1 agent (from few to many 100’s) typically 

Relevant:  Medium to Large CC do perform as above.  

Instructive:  In large call centers, high resource utilization and 

service levels could coexist, which is enabled by economies of scale 

that dominate stochastic variability. 

 

Example: 100 calls per minute, at 4 min. per call 

⇒   R = 400, least number of agents 

20RR

** y)r(y
=≈

∆  ,  with  y*: 0.5–1.5  ; 

Safety staffing: 2.5%–7.5%  of  R=Min ! ⇒  “Real” Problem? 
 

Performance:    N*  % wait > 20 sec.  Utilization 

     400 + 11      20%    97%  

     400 + 29        1%    93% 
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Scenario Analysis:  “Satisfization” (vs. Optimization) 
 
Theory:    The least  N  that guarantees %{Wait > 0} < ε   is 
close to      R)(P  R N 1-* ε+=     (again ⋅  safety-staffing). 
 
(Folklore:  φφεφ −=+= − 1,R)(RN 1*  ; based on  

“classical” normal approximations to infinite-servers models. 

The two essentially coincide for small ε .) 
 
 
Example: λ  = 1,800 calls at peak hour  (avg) 

   M = 4 min. service time  (avg) 

        R = 1800 120
60
4
=×    Erlangs offered-load 

Service level constraint: less than 15% delayed, equivalently 

         at least 85% answered immediately. 

 
13312022.1120R)15.0(P  R 1-* =+=+=⇒ N  agents 

⇒  %{Wait > 20 sec.}   = 5%  delayed over 20 sec.  

 ASA = E[Wait]     = 2.7 sec. average wait 

 ASA | Wait > 0     = 18 sec. average wait of delayed 
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Scenario Analysis: “Reasonable” Service Level ? 

Theory:    The least  N  that guarantees %{Wait > 0} < ε   is 
close to      R)(P  R N 1-* ε+=     (again ⋅  safety-staffing). 
 
Example: λ  = 1,800 calls at peak hour  (avg) 

   M = 4 min. service time  (avg) 

        R = 1800 120
60
4
=×    Erlangs offered-load 

Service level constraint: 1 out of 100 delayed (avg), namely 

    99% answered immediately. 

14612038.2120R(0.01) P  RN 1-* =+=+=⇒  agents 

75)38.2()(
c

1* ==⇒ −yd :  very high service index 

Valuation of customers’ time as being worth 75-fold of agents’ 

time seems reasonable only in extreme circumstances: 

• Cheap servers  (IVR) 

• Costly delays  (Emergency) 
 

Note: Satisfization easier to model but Costs easier to grasp. 
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        QED Staffing: State of Art  (8/2003) 
 

1.  GI/M/N  N ≈ R + Rβ ,   β  > 0 

- Conceptual:      Erlang; Halfin-Whitt  

-  Dimensioning:  Borst, Reiman 

2.   Abandonment   (Erlang-A, with   ∞<<∞− β ) 

- Conceptual:   Garnett, Reiman; Zeltyn; Whitt 

- Dimensioning:  (Borst, Reiman, Zeltyn) in progress  

3.   Time-Varying     (Non-homogenous Poisson arrivals) 

- Infinite-server heuristics: Jennings, Massey, Whitt 

- Conceptual: (Massey, Rider) in progress 

- Dimensioning: ? 

4.    Skills-Based Routing:  

         -  Conceptual: Atar, Reiman; Gurvich (V-Model) 

-  Dimensioning: Borst, Seri (General); Gurvich (V); 

           Armony (Reversed-V); 

5. Service Time Duration: 

   - Conceptual: Whitt H2*/G; Jelenkovic, Momcilovic D 
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QED M/G/N: ??? 


