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Motivation

Standard assumption in service system modeling: arrival process is
Poisson with known parameters.

Emergency departments and call centers: known arrival rates for
each basic interval (say, one hour in EDs, 15 min in CCs).

Application of standard approach to basic interval (say, next
Tuesday, 9am-10am):
> Derive Poisson parameters from historical data and some forecasting
procedure.
» Plug parameters into a queueing model (Erlang-C, Erlang-A,
Queueing Network, Skills-Based Routing models, .. .).

» Set staffing levels according to model and service constraint (e.g.,
80% of CC customers answered within 30 sec).

Is standard Poisson assumption valid? As a rule it is not, one
observes larger variability of the arrival process than the one expected
from the Poisson hypothesis.



Research Outline

> Design model for overdispersed arrival rate.

v

Validate arrival model via data analysis.

v

Plug arrival model into relevant queueing models.

v

Derive asymptotic results relevant for real-life staffing problems and
provide practical guidelines.

v

Validate queueing model via numerical experiments.
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Queue with Overdispersed Arrival Rate: Model Definition

The M’|M|n+ G Queue:
> ) - Expected arrival rate of a Poisson arrival process.
> 1 - Exponential service rate.
> n service agents.
» G - Patience distribution: time that a customer is willing to wait in

queue.

Random Poisson Arrival Rate:

M = X\ + XX, c<1,

where X is a random variable with zero mean and finite variance.
» ¢ < 1/2: Conventional variability ~ QED staffing regime.
> 1/2 < ¢ < 1: Moderate variability ~ QED-c regime (new).

» ¢ = 1: Extreme variability ~ Efficiency-Driven regime.



Financial Call Center: Data Description

> |sraeli bank.

v

Arrival counts to the Retail queue are studied.

v

263 regular weekdays ranging between April 2007 and April 2008.

v

Holidays with different daily patterns are excluded.

v

Each day is divided into 48 half-hour intervals.



Financial Call Center: Arrival Rates
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Financial Call Center: Overdispersion Phenomenon

Coefficient of Variation
sampled CV- solid line, Poisson CV - dashed line
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Poisson CV = 1/v/mean arrival rate.

Sampled CV’s > Poisson CV’s =-0Over-Dispersion




Moderate and Extreme Variability: Relation between Mean
and Standard Deviation of Arrival Rate
Number of arrivals during a basic interval (say, Tue, 9-10am): Poisson Y

with random rate M = A+ A° - X, where E(X) = 0, standard deviation
o(X)>0and 1/2 < c <1. Then,

In(a(Y)) ~ c-In(A) + In(a(X)).

Proof:

Var(Y) = A% . Var(X) + A 4+ A°E(X)
and

Alem(In(U( Y)) — cIn(\)) = In(a(X)).

Therefore, for large A,

In(c(Y)) ~ c-In(A) + In(a(X)).



Financial Call Center: Fitting Regression Model
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Results:
» Two clusters exists: midnight-10:30am and 10:30am-midnight.
» Very good fit (R? > 0.97).

» Significant linear relations for different weekdays and time-resolution
(5-30 min):
In(e(Y)) = c-In(A) + In(a(X)).
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Financial Call Center: Outline of Additional Results

» Good fit of a well-known Gamma mixture model (Jongbloed and
Koole ['01]) to data of Financial Call Center.

» Relation between our main model and Gamma Poisson mixture
model is established.

» Distribution of X is derived under Gamma assumption: it is
asymptotically normal given a large arrival rate.
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Emergency Department: Data Description
» Rambam hospital Emergency Department.

> 194 weeks between from January 2004 till October 2007 (five war
weeks are excluded from data).

» The analysis is performed using two resolutions: hourly arrival rates
(168 intervals in a week) and three-hour arrival rates (56 intervals in
a week).
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Emergency Department: Arrival Rates
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Emergency Department: Over-Dispersion Phenomenon
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» Moderate over-dispersion.

» Conventional variability (¢ = 1/2) seems to be a reasonable
assumption for hourly resolution.
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QED-c Regime: Fixed Arrival Rate
QED-c staffing rule:
n = % + <2>C +0o(VX), BER, ce(1/2,1).

Assume an M|M|n + G queue with fixed arrival rate \.
Take X to oo:

» 3> 0: Over-staffing.

» (3 < 0: Under-staffing.

For both cases we provide asymptotically equivalent expressions (or

bounds) for P{W, > 0}, P{Ab} and E[W,], where W, - waiting time.

Proofs: based on M/M/n+G building blocks from Zeltyn and
Mandelbaum['05], carried out via the Laplace Method for asymptotic
calculation of integrals.
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QED-c Regime: Random Arrival Rate

Theorem

Assume random arrival rate M = A+ \pl= <X, c € (1/2,1), E[X] =0,
finite o(X) > 0, and staffing according to the QED-c staffing rule with
the corresponding c¢. Then, as A — oo,

a. Delay probability: Pu,n{Wg >0} ~ 1—F(B).
E[X —
b. Abandonment probability: Pu.n{Ab} ~ %
E[X —
c. Average waiting time: Em n[Wg] ~ ,Elcﬁg]Jr
- &0

Proofs: based on conditioning on values of X and results for QED-c
staffing rule.
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QED-c Regime: Practical Guidelines

> Determine “uncertainty coefficient” c via regression analysis.

» If 1/2 < ¢ < 1, assume that X is asymptotically normal, calculate
standard deviation from regression model.

> Apply our QED-c (or QED, Efficiency-Driven) asymptotic results in
order to determine appropriate staffing.
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Outline of Additional Results

» Queueing Theory. Asymptotic performance measures derived and
constraint satisfaction problems solved for:
> QED regime (c = 1/2).
> Efficiency-Driven regime (¢ = 1), discrete and continuous
distribution of X.

» Numerical Experiments. Very good fit between asymptotic results
and the exact ones (simulation).

» lterative Staffing Algorithm (ISA), a simulation code developed
by Feldman['04] with the features of random arrival rate in the
time-varying M/M/n 4+ G queue.

Goal: determine time-dependent staffing levels aiming to achieve a
time-stable delay probability.
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Future Research Challenges

» Incorporating forecasting errors into our model (in the spirit of
Steckley et al., 2007).

» Scaling problem: dependence of ¢ on the basic interval duration.

» Time-varying queueing models: achieving time-stable
performance measures (probability to abandon, average wait).

» Validation of M?/M/n+M (or M?/M/n+G) model in call center
environment (and probably other service systems).

10



Thank You




	Motivation
	Research Outline
	Related Work
	Model Definition
	Case Studies: Financial Call Center and Emergency Department
	Theoretical Results
	Practical Guidelines
	Future Research Challenges

