Patient Flow Monitoring and Control within Emergency Department

Rambam/Technion/IBM open collaborative research

Boaz Carmeli
IBM Haifa Research Lab & the Technion
boazc@il.ibm.com

The Problem

- The rising cost of healthcare services has been a subject of mounting importance and much discussion worldwide
- Overcrowding in hospital Emergency Departments (ED) is perhaps the most urgent operational problem in the healthcare industry
- Overcrowding in hospital EDs leads to excessive waiting times and repellent environments, which in turn cause:
 - Poor service quality (clinical, operational)
 - Unnecessary pain and anxiety for patients
 - Negative emotions (in patients and escorts) that sometimes lead to violence against staff
 - Increased risk of clinical deterioration
 - Ambulance diversion
 - patients leaving without being seen (LWBS)
 - inflated staff workload

PROMISE Framework

Joint research project between Rambam, the Technion and IBM Haifa Research Lab

Leverage Technion's relationship with Rambam hospital

Goal: Combined multi-dimensional improvement of patient care process

- Clinical
- Operational
- Financial

Multi-disciplinary approach:

- Medical (Rambam)
- Statistics (IBM, Technion)
- Operations Research (IBM, Technion)
- Healthcare informatics (IBM, Rambam)
- Process improvement (IBM, Technion)
- Human factors engineering (Technion)
- Financial (Rambam)
- Domain specific knowledge in above areas IBM & Technion

Participation

- Rambam hospital: Top management including hospital general manager, Prof. Rafi Bayar, ER managers, Dr. Dagan Schwartz & Dr. Shlomi Israelit and IT managers, Sara Tzafrir, Orit Gur
- Technion: Prof. Avishai Mandelbaum, Prof. Danny Gopher, Prof. Avi Shtub, Prof. Eitan Naveh, Dr. Yariv Marmor
- IBM: Pnina Vortman, Segev Wasserkrug, Boaz Carmeli, Edward Vitkin Ohad Greenshpan and Sergey Zeltyn

PROMISE Vision

- End to End Medical Process Monitoring and Optimization Services
- Based on three main patient care related aspects:
 - Clinical
 - Operational
 - Financial (planned)
- Uses analytical processing for gaining business and clinical understanding
- Provides real time monitoring through RFID and operational dashboards for problem identification, quality assurance and risk management
- Provides optimization, forecasting and what/if type of analysis based on analytical models
- Allows for modifying/improving operational and clinical processes for better performance and results

Understand

Measure

Anticipate

Influence

ED Conceptual Model

Input

Emergency Care

- Seriously ill and injured patients from the community
- Referral of patients with emergency conditions from other providers

Unscheduled urgent care

- Desire for immediate care
- Lack of capacity for unscheduled care in the ambulatory care system

Safety net care

- Vulnerable populations (eg, Medicaid beneficiaries, the uninsured) care
- Access barriers (eg, financial, transportation, insurance, lack of usual source of care)

Throughput

Ambulance Diversion

Demand for ED Care

Patient Arrive at ED

Triage and room placement

Diagnostic evaluation and ED treatment

ED boarding of inpatients

<u>Output</u>

Leaves without treatment complete

Patient disposition

Transfer to other

facility

Ambulatory

care

system

Admit to hospital

IBM Haifa Research Laboratory

Real Time ED Monitoring and Control System

Data Collection

- Collect real-time relevant information from hospital IT systems such as PACS, EHR, ADT, LAB etc
- Adding RFID based location tracking system for Physicians, Nurses, Patients and other relevant personnel
- Better utilize historical EHR and operational data from existing IT systems within the hospital

Data Visualization

- Operational dashboard
 - Displays complex behaviors in a simple way
- Mobile devices

Analysis Techniques

- Mathematical models service engineering
- Simulations for planning and control
- Machine learning neural networks, based on historical data
 - Published paper –
 Neural Networks Application on Emergency Department Load Measurement

System Architecture

Data Collection

Hospital IT systems

- Admit, Discharge, Transfer
- Electronic Health Records
- Lab request/results
- Picture Archive and Communication System (PACS)

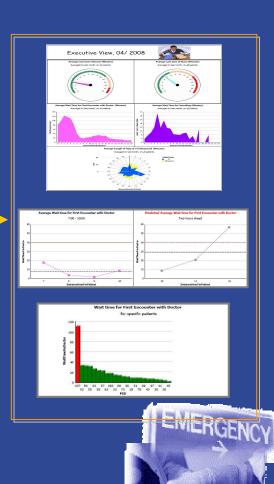
RFID based Location Tracking

- Low level location tracking for patients and care personnel
- Technology dependent capabilities

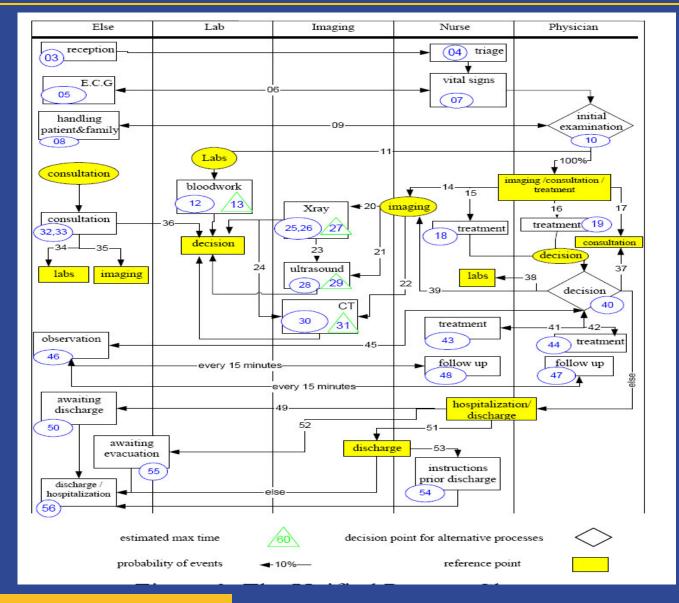
ED Simulator

- Based on observation
- Will be used, mainly, for design phase e.g. to mimic the RFID system

Analysis


Real Time
Event Processing
Network
Rule Based Analysis

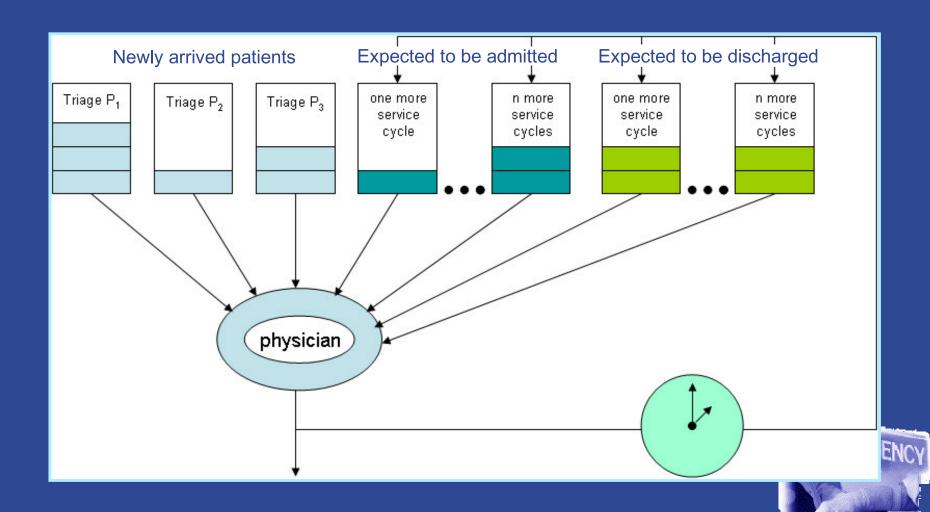
Machine Learning
Algorithms
Analysis of Historical


Analysis of Historica
And Real-time Data

Mathematical Models e.g. Queuing Theory

Data Visualization

The ED Patient Flow



Managing the ED Patient Flow

- Modeling the ED patient flow as a queueing network
 - Patients tasks
 - Care personal servers (stations)
- Knowing in real-time the next 'station(s)' in the patient's route
 - Set of alternatives are usually provided by the care personnel
 - No a priory full path knowledge
 - System may provide decision support
- Deciding upon the 'best' next station (e.g. next physician)
 - Assuming there are multiple options
 - Sends patient to the (clinically and operationally) 'best' station
 - ▶ Always make sure there is at least one 'next' station
- Within each 'station' queue deciding upon the next patient to treat
 - Based on operational, clinical and patient fairness
 - service level agreement
- Predicting capabilities
 - System is about to get out of the allowed range
 - E.g., capacity is about to be exceeded
- Decision support and what-if analysis
 - What are the best actions to take e.g. asking for additional physician

Improving the (Naive) First Come First Serve Policy

Searching for the 'Best' Service Algorithm

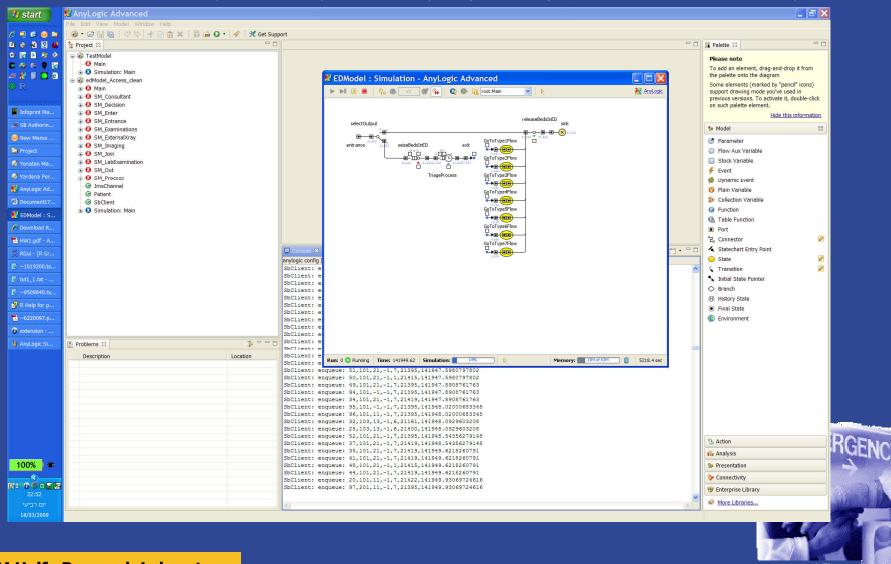
- Meeting the triage deadlines
 - Time till first encounter based on clinical severity as being reflected by the triage score
- Reducing the total number of patients at the ED
 - Serving patients with the least remaining service time
- Give priority for patients that are about to be discharged
 - Without scurrying appropriate clinical care
 - Against conventional physician thinking
- Methodology
 - Adapting Generalized Cµ algorithm
 - Searching for appropriate cost function to reflect the above-mentioned competing conditions
 - Uses analytic approaches as well as simulation based methods

The Monitoring and Control Dashboard – Example

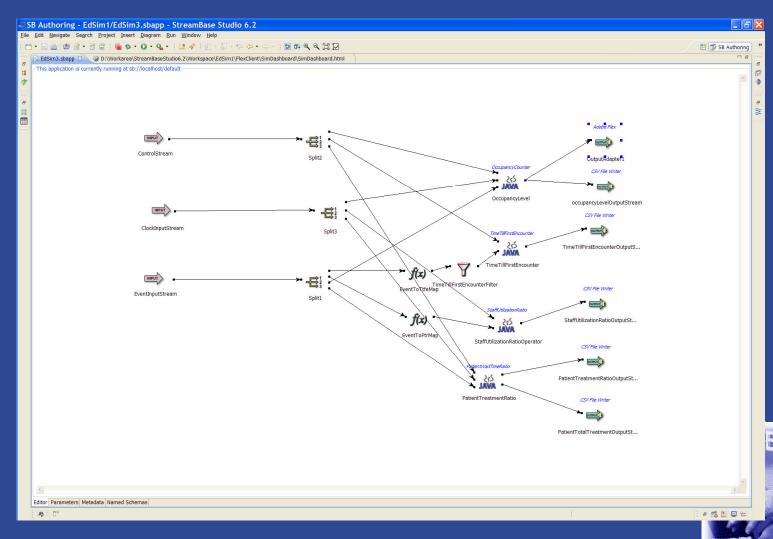
אשפוז	רופא	СТ	US	X	L	ייעוץ			הוראות		Е	V	С	Α	שהייה	גיל	#	עמדה
מעבר	הרשקו	+	+	+	×	Ne	De	Ру	9	0	×	×	_	+	04:55	55	4456826	01א
00:55	שפילו	?	/	+	?	PI	Sur	lm	3	P	_	×	+	-	08:55	82	8403759	02א
+01:05	מפיס	+	++		~	Ру	Ort	Nes	VIII	V	/	~	_	_	11:55	36	9467285	03א
+	דגן		?	×	×	Ort	On	PI	PW		/	_	_	_	00:35	56	5790468	04א
					+						/	~	_	_	01:08	76	4566768	05א
מעבר	הרשקו				_										04:55	55	4456826	א60
									:	:								07 א
00:55	שפילו	שפי ENT NES GY											08:55	82	8403759	א80		
	מפיס			×		ORT	Γ¦PL	GY							11:55	36	9467285	א90
									i									א01
	דגן		?			PL/	EYE /	PED		:					00:35	56	5790468	א11
						~	EYE	E/IM		:			$oxed{oxed}$		01:08	76	4566768	12א
									:	:								ב10
מעבר	הרשקו					GY	/PL/	SUR		:					04:55	55	4456826	ב20
00:55	שפילו						~	PED		:					08:55	82	8403759	ב30
	מפיס						8	SUR							11:55	36	9467285	04ב
	דגן					IM									00:35	56	5790468	ב50
						ציבורי	כבים י	לוח שו		:					01:08	76	4566768	ב60
מעבר	הרשקו								:						04:55	55	4456826	ב70
00:55	שפילו								:	:					08:55	82	8403759	ב80
	מפיס														11:55	36	9467285	190
	דגן														00:35	56		ב10

Summary

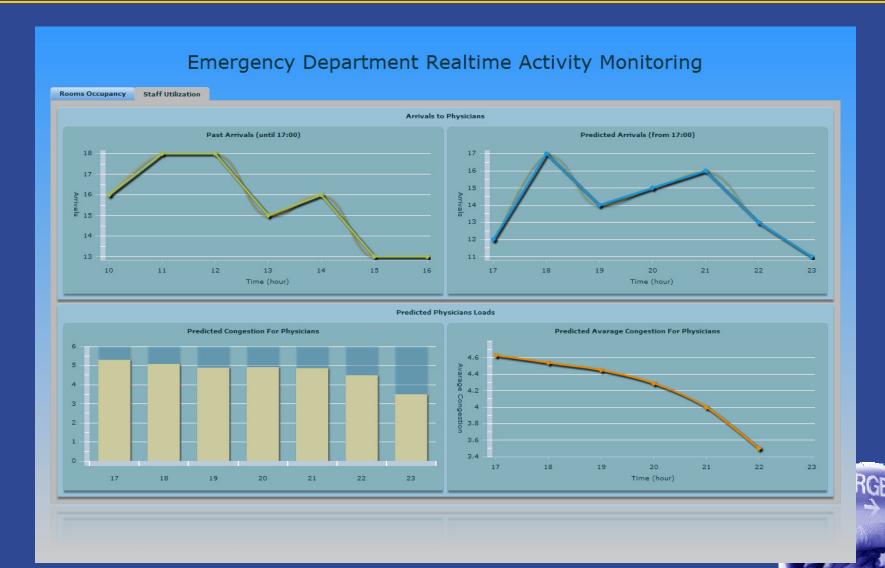
- Advances in IT technology and usability call for better utilization of computer based monitoring and control systems within hospitals and specifically within the ED
 - Rambam recently extended their EHR into the ED
- Digital data collection and monitoring open the door for utilizing traditional as well as newly developed operations research and service science and engineering methodologies and techniques within hospitals
- PROMISE is an end-to-end solution for improving ED operational and clinical efficiency by providing forecasting, optimization and operational decision support to care personal and ED managers
 - ▶ Initial capabilities currently under implementation at Rambam

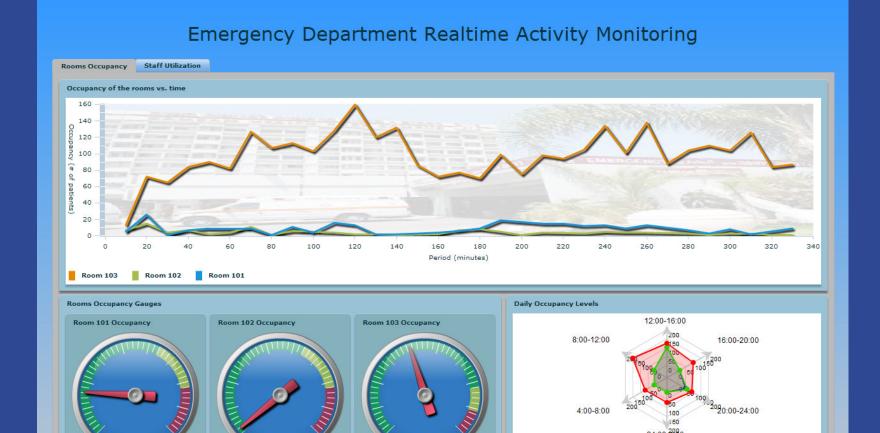


Thank You


The ED Simulator

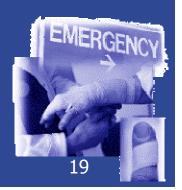
We use the ED Simulator (developed by Dr. Marmor) for generating relevant input data into the system




The Event Processing Network

We use the EPN tool for collecting RFID data

The Dashboard – Predicting ED Load



Promise

a collection of clinical operations research projects

- Several projects related to patient flow at ED, internal wards and from the ED to the wards
- Operational Research, Queuing Theory, Simulation, Complex Event Processing
- Join work with the Technion and Rambam (leading Israeli Hospital) under an IBM Open Collaborative Research program

