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Given an oblique reflection map � and functions ��� ∈ �lim (the space of �K-valued functions that have finite left and
right limits at every point), the directional derivative ������ of � along � , evaluated at �, is defined to be the pointwise
limit, as 	 ↓ 0, of the family of functions �	

� ����

= 	−1����+ 	��− �����. Directional derivatives are shown to exist and

lie in �lim for oblique reflection maps associated with reflection matrices of the so-called Harrison-Reiman class. When �
and � are continuous, the convergence of �	

� ���� to ������ is shown to be uniform on compact subsets of continuity
points of the limit ������, and the derivative ������ is shown to have an autonomous characterization as the unique fixed
point of an associated map. Directional derivatives arise as functional central limit approximations to time-inhomogeneous
queueing networks. In this case � and � correspond, respectively, to the functional strong law of large numbers and functional
central limits of the so-called netput process. In this work it is also shown how the various types of discontinuities of the
derivative ������ are related to the reflection matrix and properties of the function ����. In the queueing network context,
this describes the influence of the topology of the network and the states (of underloading, overloading, or criticality) of the
various queues in the network on the discontinuities of the directional derivative. Directional derivatives have also been found
useful for identifying optimal controls for fluid approximations of time-inhomogoeneous queueing networks and are also of
relevance to the study of differentiability of stochastic flows of obliquely reflected Brownian motions.
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1. Introduction

1.1. Background and motivation. Most real-world queueing systems are time inhomogeneous in the sense
that they evolve according to transition laws that themselves vary with time. However, the majority of queue-
ing research has been devoted to time-homogeneous models, in which the transition laws are assumed to be
independent of time. Although such models may provide reasonable approximations for slowly varying systems,
they completely fail to capture many important phenomena such as surges in demand, sudden node failures and
periodicity. The explicit analysis of even time-homogeneous networks is usually intractable. Instead, one usually
resorts to appropriate asymptotic approximations that capture the essential features of network behavior that are
of interest. A commonly used asymptotic scaling is one in which arrival and service rates are scaled proportion-
ately, but the number of servers at each queue is kept constant. Over the past two decades, much progress has
been made on this kind of approximation for time-homogeneous networks with fairly general arrival, service,
and routing processes that satisfy a so-called heavy-traffic condition. In particular, under an additional initial
assumption on the queues that guarantees that the first-order asymptotic limit (or fluid limit) is trivially zero, it
has been shown that the second-order asymptotic limits associated with various classes of time-homogeneous
queueing networks are reflected Brownian motions (RBMs) or reflected Lévy processes (see, for example, Chen
and Mandelbaum [1], Kushner [13], Kang and Ramanan [11], Ramanan and Reiman [21, 22], Reiman [23],
Whitt [28], and references therein). In contrast, the analysis of time-inhomogeneous networks remains chal-
lenging even in a Markovian setting. In particular, there has been relatively little work done on second-order
approximations to time-inhomogeneous queueing networks with a fixed number of servers. Such networks arise
frequently as models of transportation, telecommunication and computer systems; see Gerla and Kleinrock [8],
Lovegrove et al. [15], and Newell [19].
The single queue with time-varying arrival and service rates has been studied by various authors under

different assumptions (Heyman and Whitt [10], Mandelbaum and Massey [16], Massey [17, 18], Rolski [24, 25]).
The detailed asymptotic analysis carried out in Mandelbaum and Massey [16] is pathwise and uses strong
approximations. It shows that the so-called fluid limit or first-order approximation of a time-dependent Markovian
queue alternates between phases of overloading, critical loading, and underloading and that the second-order
correction to the fluid limit can have discontinuous paths and exhibits different characteristics in each of the three
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different phases of loading. This second-order correction admits an interpretation as the directional derivative
of the one-dimensional reflection map � . It is natural to expect that such an interpretation would continue to
hold in the network setting, in the sense that the corresponding second-order corrections in the asymptotic
approximations to a class of time-inhomogeneous networks would take the form of directional derivatives of
associated multidimensional reflection maps (see §2.1 for a formal discussion of this connection). The main
objectives of this work are to introduce and characterize properties of directional derivatives of the class of so-
called Harrison-Reiman multidimensional reflection maps (which are associated with single-class open queueing
networks) and to illustrate the practical insights that can be obtained from such an analysis.
The representation obtained in Mandelbaum and Massey [16] for the directional derivative of the one-

dimensional reflection map � relied heavily on the following explicit form for � obtained by Skorokhod:

�����t�= ��t�+ ��t� (1)

for càdlàg functions �, where the constraining term � that keeps ���� nonnegative is given by

��t�=max
(
sup

s∈�0� t�
�−��s���0

)

 (2)

There also exists an explicit formula for the Skorokhod map on a bounded interval (Kruk et al. [13]). In
contrast, in the multidimensional setting there is no explicit expression for the oblique reflection map, making
characterization of its directional derivatives considerably more involved. In fact, derivatives of reflection maps
associated with even feedforward tandem networks cannot always be expressed simply as a composition of
directional derivatives of one-dimensional reflection maps (see §3.3.2 for further discussion of this issue). The
network setting also introduces additional complications due to the dependence on network topology and leads
to interesting new questions about when and how effects propagate through the network. Consequently, new
techniques need to be developed to analyze derivatives of multidimensional reflection maps.
Another motivation for studying directional derivatives arises from the fact that, as shown in Cudina and

Ramanan [2], they are useful for the identification of optimal controls for fluid approximations to time-
inhomogeneous networks. Directional derivatives of multidimensional reflection maps are also potentially use-
ful for the study of differentiability of stochastic flows of multidimensional reflected diffusions in nonsmooth
domains (see, for example, Deuschel and Zambotti [3] for the case of normal reflection in �K

+).

1.2. Outline of the paper. The outline of the rest of the paper is as follows. The basic notation used
throughout the paper is first collected in §1.3. In §1.4 the definitions of the multidimensional oblique reflection
map and its directional derivative are introduced. The main results of the paper, Theorems 1.1 and 1.2, are
presented in §1.5. Theorem 1.1 establishes the existence of directional derivatives ������ of Harrison-Reiman
reflection maps and, under additional conditions on � and �, also provides an autonomous characterization of
the derivative. Theorem 1.2 derives necessary conditions for the existence of discontinuities in the directional
derivative when � and � are continuous. In the queueing network context, � and � correspond, respectively, to
the functional strong law of large numbers and functional central limits of the so-called netput process. Indeed,
§2 contains a brief discussion of the connection between approximations to time-inhomogeneous queueing
networks and directional derivatives of multidimensional reflection maps. The examples presented in the section
show that the directional derivative can be explicitly calculated in many cases and also illustrate some interesting
features that arise in the multidimensional or network context. In the study of the optimality of fluid limits of
time-inhomogeneous networks (see, e.g., Cudina and Ramanan [2]), � typically represents the fluid limit of the
netput process that gives rise to the optimal path for a given control problem, whereas � corresponds to an
arbitrary allowable perturbation of the path. On the other hand, in the context of differentiability of stochastic
flows, typically � is a sample path of a diffusion process and � is a vector representing the difference in two
initial conditions. The rest of the paper is essentially devoted to proving the two main results. General properties
of Harrison-Reiman maps are summarized in §3.1, and the existence of the directional derivative is established
in §3.2, with the proof of Theorem 1.1 presented in §3.4. Important ingredients of this proof are the notion
of a generalized one-dimensional derivative (which is introduced in §3.3) and the representation of the one-
dimensional derivative obtained in Theorem 3.2 (whose proof is given in §5.2). The proof also relies on an
auxiliary result, which is established in §5.1. In §4 the discontinuities of the directional derivative are analyzed
when � and � are continuous, culminating in the proof of Theorem 1.2 in §4.3.
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1.3. Basic notation. In this section, for convenience, we compile all the common notation used throughout
the paper. For a�b ∈�, let a∨ b =max�a� b� and a∧ b =min�a� b�. Given a vector x ∈�K , xi or �x�i is used
to denote the ith component of the vector. For a ∈�K , the norm �a� is defined by

�a� 
= max
i=1� � � � �K

�ai�� (3)

where, for ai ∈�, �ai� denotes the absolute value of ai. Given a K×K matrix R, RT denotes its transpose, ��R�
its spectral radius, and Rij represents the entry in the ith row and jth column of R. The matrix I represents
the K × K identity matrix, and �ei� i = 1� � � � �K� is the standard orthonormal basis in �K . Inequalities of
vectors and matrices should be interpreted componentwise. Vectors are always expressed as column vectors. The
K-dimensional orthant is denoted by �K

+:

�K
+


= �x ∈�K� xi ≥ 0 for every i= 1� � � � �K�
 (4)

The notation ↑ (respectively, ↓) is used to denote monotone nondecreasing (respectively, nonincreasing) conver-
gence of a family of real numbers to a limit. We adopt the convention that the infimum and supremum of an
empty set are � and −�, respectively. The notation 0 is used to denote both the number zero as well as the
identically zero function. The use should be clear from the context.
Given a function f on �0��� that takes values in �K , f i denotes the ith coordinate function. For any �K-valued

function f and T <�, 
f 
T denotes the supremum norm: 
f 
T 
= sups∈�0� T � �f �s��, where �·� is the norm defined
above in (3). In addition, the notation f̄ is used to denote the supremum function:

f̄ �t�

= sup

s∈�0� t�
f �s�
 (5)

The analysis in this paper involves the use of many different functions spaces, which are summarized below:

�lim the space of all functions on �0��� taking values in �K that have finite left and right limits for every
t ∈ �0���;

�+
lim the subspace of functions f ∈�lim with f �0� ∈�K

+;
�r the subspace of right-continuous functions in �lim;

�!� r the subspace of functions that are either right continuous or left continuous at every t ∈ �0���;
�usc the subspace of functions in �lim such that each coordinate function f i is upper semicontinuous (i.e.,

f �t�≥ f �t−�∨ f �t+� for every t ∈ �0���);
�c� lim the subspace of piecewise-constant functions in �lim with a finite number of jumps;

�c the subspace of piecewise-constant functions in �r with a finite number of jumps;
�+ the subspace of functions in �+

lim such that each coordinate function is nondecreasing;
�+
0 the subspace of functions f ∈�+ such that f �0�= 0;
� the subspace of continuous functions in �lim;

�� the subspace of functions in �lim that have bounded variation on every bounded interval of �0���.

When the functions take values in � instead of �K , we will emphasize this by writing �lim���, ����, etc.
For f ∈�� , �f �t denotes the total variation norm on �0� t�, with respect to the norm �·� on �K defined in (3).
A function f ∈�lim is said to have a separated discontinuity at a point t ∈ �0��� if for some i = 1� � � � �K,
f i�t� does not lie in the interval created by f i�t−� and f i�t+�: that is, if

f i�t� �∈ �f i�t−�∧ f i�t+�� f i�t−�∨ f i�t+��


For f ∈�lim, let Disc�f � (respectively, LDisc�f �, RDisc�f � and SDisc�f �) denote the set of points of discon-
tinuity (respectively, left discontinuity, right discontinuity and separated discontinuity) of f . Clearly, Disc�f �=
LDisc�f �∪RDisc�f �, and for f ∈�usc, it is easy to see that SDisc�f �= LDisc�f �∩RDisc�f �.
The left and right regularizations of any function g ∈�lim, denoted by gl and gr , respectively, are defined by

gl�s�

= g�s−� and gr�s�


= g�s+�� s ∈ �0���
 (6)

It is easy to see that gl�s−� = gl�s� = g�s−� and gl�s+� = g�s+�, and likewise gr�s+� = gr�s� = g�s+� and
gr�s−�= g�s−�. Thus, gl ∈�l, gr ∈�r and

g ∈�l ⇒ gl = g� and g ∈�r ⇒ gr = g
 (7)
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Lastly, given a real-valued function f , a point t ∈ �0��� is said to be a point of strict left increase if there exists
% > 0 such that f �s� < f �t� for every s ∈ ��t− %�+� t� and of strict right increase if there exists % > 0 such that
f �t� < f �s� for every s ∈ �t� t+ %�. Moreover, f is said to be flat to the left of t, which is represented by the
notation 'f �t−�= 0, if there exists % ∈ �0� t� such that f �s�= f �t� for all s ∈ �t− %� t� and, analogously, f is
said to be flat to the right of t, which is denoted by 'f �t+�= 0, if there exists % > 0 such that f �s�= f �t� for
all s ∈ �t� t+ %�. We will also use the shorthand notations 'f �t−� �= 0 and 'f �t+� �= 0, respectively, to denote
the fact that f is not flat to the left and right of t.

1.4. Definition of the oblique reflection map and its directional derivative. In this section we state the
precise definitions of the oblique reflection map and its directional derivatives. Let R ∈�K×K be a matrix whose
ith column is the vector ri, which represents the constraint direction on the face Fi = �x ∈ �K

+� xi = 0� of the
boundary of the nonnegative orthant �K

+. Roughly speaking, given a trajectory � ∈�lim, the oblique reflection
problem (ORP) associated with the constraint matrix R defines a constrained version ) of � that is restricted to
live in �K

+ by a constraining term that pushes along the direction ri only when ) lies on the face Fi. We will
assume that for every i= 1� � � � �K, Rii = r i

i > 0. This ensures that from any point in the relative interior of the
face Fi, the vector ri points into the orthant �

K
+. This condition is without loss of generality because it is clearly

a necessary condition for the existence of a constrained version ) of � that takes values in �K
+. The rigorous

definition of the ORP is as follows. Recall the definitions of �+
lim and �+

0 given in §1.3.
Definition 1.1 (Oblique Reflection Problem). Given R ∈ �K×K with Rii > 0 for i = 1� � � � �K and

� ∈�+
lim, �)��� ∈�+

lim×�+
0 solve the oblique reflection problem associated with the constraint matrix R for �

if )�0�= ��0�, and if for all t ∈ �0���,
(i) )�t� ∈�K

+;
(ii) )�t�= ��t�+R��t�, where for every i= 1� � � � �K,∫

�0� t�
1�0����)

i�s��d�i�s�= 0
 (8)

The condition )�0�= ��0� is imposed for simplicity; it can be relaxed by allowing a jump in � at 0. Note
that the condition (8) simply states that the constraining term �i can increase at time t only if )i�t�= 0. From
the definition above it is clear that one can, without loss of generality, assume that Rii = 1 for i = 1� � � � �K.
Indeed, we shall assume this normalization throughout the rest of the paper. When a unique solution to the ORP
exists for every � ∈�+

lim, we say the ORP is well defined and refer to the mapping �� �→) as the reflection
map (RM). We also use +� �→ � to denote the mapping that takes � to the corresponding constraining term �.
In this work we focus mainly on oblique reflection problems (ORPs) associated with reflection matrices R that

satisfy the so-called Harrison-Reiman (H-R) condition stated below as Definition 1.2, which was first introduced
by Harrison and Reiman [9]. As shown in Theorem 3.1, ORPs in this class are well defined and in fact have
Lipschitz-continuous RMs (with respect to the uniform topology on path space on both the domain and range).
Definition 1.2 (H-R Condition). A constraint matrix R ∈ �K×K is said to satisfy the H-R condition if

P

= I −R≥ 0 and the spectral radius of the matrix P is less than one.
Remark 1.1. If R satisfies the H-R condition and P


= I − R, then there exists a diagonal matrix A with
strictly positive diagonal elements such that each row sum of the matrix �P 
=A−1PA is strictly less than 1 (see
Lemma 3 of Veinnott [27]).
Remark 1.2. The ORP was introduced by Harrison and Reiman [9] to characterize functional central limits

of single-class open queueing networks (see Figure 3). Single-class open queueing networks with K queues in
which, on average, a fraction qij of the departures from queue i are sent to queue j , and a fraction 1−∑K

j=1 qij

of the departures from queue i exit the network, give rise to ORPs with an �K×K constraint matrix R given by

Rij


=


−qji� j �= i�

1 otherwise.

We now precisely state what we mean by a directional derivative of the multidimensional reflection map.
Examples of other queueing networks that give rise to Skorokhod maps that are Lipschitz continuous can be
found in Dupuis and Ramanan [5, 7] and Ramanan [20].
Definition 1.3 (Directional Derivative). Consider an ORP whose reflection map � is well defined on

�lim. Given paths � ∈�+
lim, � ∈�lim, define

�	
�����


= 1
	
����+ 	��− ������ 	 > 0
 (9)

The derivative of � along � evaluated at � is the pointwise limit of the sequence ��	
������, as 	 ↓ 0.
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1.5. Main results of the paper

1.5.1. Existence of the derivative. Mandelbaum and Massey [16] showed that when � is the one-
dimensional RM, ��� are continuous, and �����0�= ��0�= 0, then the directional derivative has the explicit
form

�������t�= ��t�+ sup
s∈/�t�

�−��s��∨ 0� (10)

where
/�t�


= �s ∈ �0� t�� )�s�= 0 and ��s�= ��t���

with ) = ���� and � defined as in (1) and (2), respectively. In reality, this was shown by Mandelbaum and
Massey [16] under the additional restrictions that ������ has only a finite number of discontinuities in any
compact interval and )�0�= 0. However, as shown in Theorem 3.2 (see also Whitt [29, Theorem 9.3.1]), these
conditions can be relaxed. When � is the fluid limit of the netput process and � is the functional central limit
of the (scaled and centered) netput process associated with a time-varying queue, ������ characterizes the
second-order approximation to the time-varying queue. In this case, )= ���� has an interpretation as the fluid
limit of the queue and � as the corresponding cumulative potential outflow lost (due to idleness of the server)
during the period �0� t�. Thus, in this context, /�t� represents the set of all times s in the interval �0� t� when
the fluid queue was zero, but the server was fully utilized in the interval �s� t�. Observe that when )�0�= 0,
due to the representation for the one-dimensional RM given in (1) and (2), we have �����t�= ��t�+ ��t�=
��t�+−��t� ≥ 0 for every t ∈ �0���. Thus, /�t� can be rewritten as /�t� = /−��t�, where for f ∈ �lim,
we set

/f �t�

= �s ∈ �0� t�� f �s�= f̄ �t��
 (11)

When ��� ∈�lim are not necessarily continuous, the directional derivative of the one-dimensional RM can be
shown to still exist (see Theorem 3.2) but, in addition to sets of the form /f , its explicit representation also
involves sets of the form

/L
f �t�


= �s ∈ �0� t�� f �s−�= f̄ �t��� (12)

�/R
f �t�


= �s ∈ �0� t�� f �s+�= f̄ �t��
 (13)

Now, consider the multidimensional setting when � is the RM associated with an ORP that has an H-R
constraint matrix R ∈ �K×K and �)��� solve the ORP for a given � ∈�lim. When the matrix R is associated
with an open queueing network of K queues, for i = 1� � � � �K, �i represents the cumulative potential outflow
lost from the ith queue during �0� t�, and the set

/i�t�

= �s ∈ �0� t�� )i�s�= 0 and �i�s�= �i�t�� (14)

represents the times s ∈ �0� t� at which the ith fluid queue is zero but the ith server is fully utilized during �s� t�.
As stated below in Theorem 1.1, when � and � are continuous, the directional derivative in the multidimensional
case can be expressed in terms of these sets. The proof of Theorem 1.1 is given in §3.4. Recall from §1.3 that
'f �t+� �= 0 denotes the condition that the function f is not flat to the right of t, and also recall the convention
that inf�=�.
Theorem 1.1 (Existence and Characterization of the Derivative). Let R ∈ �K×K be a reflection

matrix that satisfies the H-R condition stated in Definition 1.2, let P

= I −R, and let � be the associated RM.

Then the following properties hold.
(i) Given ��� ∈ �lim, the directional derivative ������ exists and lies in �lim. In addition, for every

� ∈�lim, the derivative ������ is Lipschitz in � (with respect to the uniform topology on both the domain and
range). Furthermore, the following scaling property is satisfied: for every 1�2 > 0,

�1���2��= 1������
 (15)

(ii) When ��� ∈�, the convergence of �	
����� to ������ is uniform on compact subsets of continuity points

of ������. Moreover, if �)��� solve the ORP for �, then

������= � +R3�1������� (16)
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where 3�1�

= 3�1������ lies in �usc and is the unique solution to the system of equations

3i�t�=




0 if t ∈ �0� til��

sup
s∈/i�t�

�−�i�s�+ �P3�i�s��∨ 0 if t ∈ �til � t
i
u��

sup
s∈/i�t�

�−�i�s�+ �P3�i�s�� if t ∈ �tiu����

(17)

for i= 1� � � � �K, with /i defined as in (14) and

til

= inf�t ≥ 0� )i�t�= 0�� (18)

tiu

= inf�t ≥ 0� �i�t� > 0�
 (19)

Remark 1.3. Note that the complementarity condition (8) ensures that tiu ≥ ti!. Also, the case when ���
are continuous and )�0�= 0, ��t�= 0 for every t ∈ �0��� corresponds to the case when all fluid queues are
initially empty and are subsequently always in heavy traffic or, equivalently, are always critically loaded. In this
case, ti! = 0, tiu =�, /i�t� = �0� t�, t ∈ �0���, for i = 1� � � � �K, and hence 3�1� is the unique solution to the
system of equations

3i�t�= sup
s∈�0� t�

�−�i�s�+ �P3�i�s��∨ 0� i= 1� � � � �K


It then follows from Theorem 3.1 (see also Equations (13)–(15) and Theorem 1 of Harrison and Reiman [9])
that the derivative is simply the reflected or constrained version of �:

������= � +R3�1� = �����

which is consistent with the well-known reflected Brownian motion characterization of heavy-traffic limits of
stationary open single-class queueing networks (see Harrison and Reiman [9], Reiman [23]).

1.5.2. Discontinuities of the derivative ������ for continuous ��� . Theorem 1.1 shows that even when
��� ∈�, convergence of �	

����� to ������ is pointwise and is uniform only on compact subsets of continuity
points of the derivative ������. In order to establish functional central limit theorems for nonstationary queueing
networks, it would be useful to establish convergence with respect to stronger topologies than the pointwise
topology. This requires an understanding of the structure of the discontinuities of ������. The next main result
of the paper, Theorem 1.2, describes the various types of discontinuities exhibited by the derivative. It turns out
that discontinuities in ������ can occur only at points at which there is a change in certain regimes associated
with the solution �)��� to the ORP with input �. These regimes, which are introduced in Definition 1.4 below,
are described in terms of the following set-valued functions. For t ∈ �0���, define

��t�

= �i ∈ �1� � � � �K�� )i�t� > 0��

��t�

= �i ∈ �1� � � � �K�� )i�t�= 0� '�i�t+� �= 0� '�i�t−� �= 0��

��t�

= �1� � � � �K�\���t�∪��t���

	��t�

= �i ∈��t�� ∃% > 0 such that )i�s� > 0 ∀ s ∈ �t− %� t���


��t�

= �i ∈��t�� '�i�t−�= 0� '�i�t+� �= 0�


(20)

When � is the fluid limit of the so-called netput process associated with a queueing network that is modelled by
the ORP, then ��t� represents the set of queues that are overloaded at time t, ��t� is the set of queues that are
underloaded (and therefore idling) at time t, and ��t� is the set of queues that are critical at time t (a critical
queue is one that is empty, but whose server is working at full capacity). Moreover, 
��t� represents the set
of queues that are at the start of underloading and 	��t� the set of queues that are at the end of overloading
at time t. The terminology used in the following definition relies on this interpretation of the various regimes
of �)���.
Definition 1.4 (Regimes of �)���). Given an ORP associated with an H-R reflection matrix, let �)��� be

the solution to the ORP for a given input trajectory � ∈�lim. Then i ∈� is said to be overloaded (respectively,
critical, underloaded, at the start of underloading, at the end of overloading) at time t if and only if i ∈ ��t�
(respectively, i ∈��t�, i ∈��t�, i ∈
��t�, i ∈	��t�).
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Strong approximations for the uniformly accelerated Mt/Mt/1 queue with integrable average instantaneous
arrival and service rates 7� · � and 8� · � were obtained in Mandelbaum and Massey [16]. The second-order term
in the expansion for the queue-length process obtained in Mandelbaum and Massey [16] admits an interpretation
as the directional derivative ������ of the one-dimensional RM � , where � ∈ � is equal to the fluid netput
process given by

��t�=
∫ t

0
7�s�ds−

∫ t

0
8�s�ds� t ∈ �0���
 (21)

In Mandelbaum and Massey [16], the queue )= ���� is said to be overloaded, critical or underloaded depending
on whether the traffic intensity function

9∗�t�

= sup

s∈�0� t�

∫ t

s
7�r�dr∫ t

s
8�r�dr

� t ∈ �0���

is greater than, equal to or less than 1, respectively. By comparing Proposition 7.2 of Mandelbaum and
Massey [16] with Lemma 4.2 of this paper, it can be shown that the regimes introduced above in Definition 1.4
coincide with the definition given in Mandelbaum and Massey [16] for the one-dimensional case when � has
the particular form (21). However, Definition 1.4 allows for more general � ∈� that are not necessarily even
of bounded variation, and it also addresses the multidimensional setting.
Given a one-dimensional RM � , functions � of the form (21), and � ∈�, it was shown in Mandelbaum and

Massey [16] that under the additional assumption that the derivative has only a finite number of discontinuities
in a bounded interval, the one-dimensional derivative ������ is either right or left continuous at every point.
In the multidimensional setting, the situation is considerably more complex, with components of ������ even
admitting points with separated discontinuities (see case (S3) of Theorem 1.2). The following concept of critical
and subcritical chains captures the relevant aspects of the reflection matrix R (or, equivalently, of the topology
of the associated network) that influence the nature of discontinuities of the derivative ������.
Definition 1.5 (Critical and Subcritical Chains). Given an H-R constraint matrix R ∈ �K×K , P


=
I −R, associated RM � and � ∈�, let )


= ����. Then a sequence j0� j1� j2� � � � � jm, with jk ∈ �1� � � � �K� for
k= 0�1� � � � �m, that satisfies Pjk−1jk > 0 for k= 1� � � � �m is said to be a chain. The chain is said to be a cycle
if there exist distinct k1� k2 ∈ �0� � � � �m� such that jk1 = jk2 , the chain is said to precede i if j0 = i and is said to
be empty at t if )jk�t�= 0 for every k= 1� � � � �m. For i= 1� � � � �K and t ∈ �0���, we consider the following
two types of chains.
(i) An empty chain preceding i is said to be critical at time t if it is either cyclic or jm is at the end of

overloading at t.
(ii) An empty chain preceding i is said to be subcritical at time t if it is either cyclic or jm is at the start

of underloading at t.
We now state the second main result of the paper, which specifies necessary conditions for the existence of

left and right discontinuities of ������ when ��� are continuous. The proof of Theorem 1.2 is given in §4.3.
In what follows, t̃ku , k= 1� � � � �K are times that are defined in (71).

Theorem 1.2 (Necessary Conditions for Discontinuities in ������). Given an H-R constraint matrix
R with associated reflection map � and functions ��� ∈ �, the directional derivative ��


= ������ satisfies
the following properties:
(L) If ��i has a left discontinuity at t ∈ �0���, either t ∈ �t̃ku� k= 1� � � � �K� or one of the following condi-

tions must hold at t:
(a) i is at the end of overloading, in which case

��i�t−� < ��i�t�= 0< (22)

(b) i is not underloaded and a critical chain precedes i; if, in addition, i is overloaded, then

��i�t� < �� i�t−�< (23)

(R) If ��i has a right discontinuity at t ∈ �0���, then one of the following conditions must hold at t:
(a) i is at the start of underloading, in which case

��i�t� > �� i�t+�= 0< (24)
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(b) i is not underloaded and a subcritical chain precedes i; if i is also overloaded, then

��i�t� < �� i�t+�< (25)

(LR) If ��i has both a right and left discontinuity at t ∈ �0���, then one of the following conditions must
hold at t:

(a) i is at the end of overloading, and a subcritical chain precedes i, in which case

��i�t−� < ��i�t�= 0< ��i�t+�<

(b) i is at the start of underloading and a critical chain precedes i, in which case

��i�t−� > ��i�t� > �� i�t+�= 0<
(c) i is not underloaded and there exist both critical and subcritical chains preceding i; if, in addition, i

is overloaded, then the discontinuity is a separated discontinuity of the form

��i�t� <min��� i�t−���� i�t+��
 (26)

Finally, if i is underloaded at t ∈ �0���, then ��i�t−�= ��i�t�= ��i�t+�= 0, which implies t is a point of
continuity for �� .

2. Connection with queueing networks. In §2.1 we provide a heuristic description of how directional
derivatives of multidimensional reflection maps arise in the characterization of second-order (or functional central
limit) approximations to nonstationary queueing networks. In §2.2 we present two examples to illustrate how
the topology of a queueing network associated with a reflection map � and the various states of the fluid �)���
associated with a continuous netput process � can influence the nature of discontinuities of the associated
directional derivative ������.

2.1. Directional derivatives and functional central limits. Second-order or diffusion approximations of
many classes of queueing networks can be obtained by the following general procedure. Consider a family of
queueing networks defined in terms of their primitives (i.e., the random processes defined on some probability
space �=�� ��� that describe arrivals, services, and routing, as well as the scheduling rules). For each queueing
network in the family, one constructs from the primitives a certain netput process, �X	, where roughly speaking,
the ith component of �X	 represents the cumulative net arrivals minus the potential services at the ith queue
(see, for example, Chen and Mandelbaum [1], Ramanan and Reiman [21, 22], Reiman [23], and Whitt [28] for
precise definitions of netput processes associated with various queueing networks). The evolution of the corre-
sponding queue-length process, �Z	, coincides with the evolution of the netput process �X	 whenever all queues
are nonempty, but in general the queue-length process is a more complicated functional of the netput process:
�Z	 = ���Z	�0�+ �X	�, where the functional � is the multidimensional oblique reflection mapping associated with
the queueing network. In many cases, the family of netput processes ��X	� can be assumed to satisfy a functional
strong law of large numbers (FSLLN) and functional central limit theorem (FCLT). For example, for 	 > 0,
consider the so-called uniformly accelerated version �X	 of �X	, where �X	/	2 is defined to be the Markovian
process whose instantaneous transition rates are equal to the instantaneous transition rates of �X	 scaled by 1/	2.
(The references for Cudina and Ramanan [2], Keller [12], Massey [17, 18], and Newell [19] contain further dis-
cussion on the uniform acceleration scaling applied to queueing networks.) Note that in the time-homogeneous
setting, �X	 can equivalently be defined as

�X	�t�

= 	2 �X	�t/	2�� t ∈ �0���


The FSLLN for the family of netput processes then takes the form

�X	→ �X as 	→ 0�

where the limit is in the sense of � -a.s. convergence with respect to an appropriate topology on path space (e.g.,
uniform convergence on compact sets). Similarly, the FCLT for the netput process takes the form

�X	 ⇒ �X as 	→ 0� (27)
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where the limit is in the sense of weak convergence, and

�X	 
= 1
	
� �X	− �X� (28)

is a rescaled centered version of the netput process that captures the fluctuations around its FSSLN limit.
In order to obtain a corresponding FSLLN and FCLT for the queue-length process, in analogy with �X	, �Z	 is

first defined to be the corresponding uniformly accelerated version of �Z	. Specifically, the homogeneity of the
reflection map � with respect to space and time can be used to show that �Z	 can be represented as

�Z	 = ���Z	�0�+ �X	�
 (29)

Then, under the assumption that �Z	�0�→ �Z�0� as 	→ 0, the FSLLN for the queue-length process is obtained
by establishing the � -a.s. convergence

�Z	 = ���Z	�0�+ �X	�→ �Z 
= ���Z�0�+ �X� as 	→ 0� (30)

where �X is the FSLLN limit of the netput process. The process �Z provides a first-order approximation to the
queueing network and is often referred to as the fluid limit of the queueing network. To capture the fluctuations
of the queue lengths around the fluid limit, one then considers the centered sequence ��Z	� of queue lengths
defined by

�Z	 
= 1
	
��Z	− �Z� for 	 > 0
 (31)

The above display, together with (28), (29), and (30), then yields the relation

�Z	 = 1
	
����Z	�0�+ �X	�− ���Z�0�+ �X��= 1

	
����Z	�0�+ �X+ 	�X	�− ���Z�0�+ �X��


In many cases, using continuity properties of � and the FCLT (27), it is then possible to show that (with respect
to a suitable topology on path space) the limit �Z 
= lim	→0

�Z	 exists and satisfies

�Z= lim
	→0

1
	
����Z�0�+ �X+ 	�X�− ���Z�0�+ �X��= ��X���Z�0�+ �X�� (32)

where ��X�� �X� is the directional derivative of the reflection map � (see Definition 1.3) in the direction �X,
evaluated at �Z�0�+ �X.
In summary, under appropriate conditions, the fluid limit or first-order approximation, �Z, and the functional

central limit or second-order correction �Z to the fluid limit of the queue-length process have the representations

�Z= ���Z�0�+ �X� and �Z= ��X���Z�0�+ �X�� (33)

where �X and �X are the functional strong law and functional central limits, respectively, of the netput process.
As explained in Remark 1.3, for time-homogeneous networks, under so-called heavy-traffic conditions, the
representations for fluid and functional central limits for the queueing network take the simpler, more familiar
form �Z ≡ 0 and �Z = �� �X�. On the other hand, in order to analyze time-inhomogeneous networks or transient
behaviour in time-homogeneous networks (i.e., when �Z�0� �= 0), the fluid limit is in general not trivial, and
so the second-order approximation is no longer equal to the image of �X under the reflection map but instead
involves a certain directional derivative of the oblique reflection map.
This philosophy is likely to be applicable in other settings where the process of interest is not necessarily

given by a reflection map but another Lipschitz-continuous map. In that setting as well, the directional derivative
of the corresponding map is likely to be useful for establishing functional central limits as well as for identifying
optimal controls of time-inhomogeneous fluid limits (an example of the latter can be found in Cudina and
Ramanan [2]).

2.2. Illustrative examples. We provide two examples to illustrate how directional derivatives associated
with two time-inhomogeneous networks can be computed. The first is a two-station tandem queueing network,
which is presented in §2.2.1, and the second is a three-station “join” network, which is given in §2.2.2. In both
examples, Q is the routing matrix of the network, R= I −QT the associated reflection matrix, and P


= I −R.
Moreover, 7i denotes the mean exogenous arrival rate to station i and 8i is the mean potential service rate at
station i. The netput process, �, which represents the cumulative net arrivals minus the cumulative potential
services that the queues would have seen had they been nonempty throughout, is then defined by the equations
�i�t�= ∫ t

0 �7
i�s�+ �P8�s��i−8i�s��ds for t ∈ �0� T � and i= 1� � � � �K.
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1
�1(t )

2�1 �2

Figure 1. A two-station tandem network.

2.2.1. A tandem queueing model. Consider the two-station tandem queueing system illustrated in Figure 1,
which has routing matrix Q and reflection matrix R= I −QT given by

Q

=
[
0 1

0 0

]
and R


=
[
1 0

−1 1

]

 (34)

Because QT ≥ 0 and has spectral radius zero, R satisfies the Harrison-Reiman condition stated in Definition 1.2.
Let � denote the associated reflection map (see Figure 2 for the geometry of the associated ORP).
We consider a model in which there are no exogeneous arrivals to station 2, arrivals to station 1 occur at a

time-dependent mean rate of 71� · � given by

71�t�

=


3 for t ∈ �0�1��

1 for t ∈ �1�3��
(35)

and the mean potential service rates at station 1 and station 2 are constant and given by 81 = 2 and 82 = 1,
respectively. If � is the netput process and �)��� solve the ORP for �, then, as shown in Figure 3, it is easy to
see that �2�t�= t and �2�t�= 0 for t ∈ �0�3� and

�1�t� =
{

t for t ∈ �0�1��

1− �t− 1� for t ∈ �1�3��
)1�t� =




t for t ∈ �0�1��

1− �t− 1� for t ∈ �1�2��

0 for t ∈ �2�3��

�1�t� =
{
0 for t ∈ �0�2��

�t− 2� for t ∈ �2�3��
)2�t� =

{
t for t ∈ �0�2��

2 for t ∈ �2�3�


The above relations also show that t1l = t2l = 0, t1u = 2, t2u =� and, by the representation (14) for /i, we see
that /2�t�= �0� for t ∈ �0��� and

/1�t�

=




�0� for t ∈ �0�2��

�0�2� for t = 2�
�t� for t ∈ �2�3�


0

r2 = (0,1)

r1 = (1,–1)

� (t )

Figure 2. The oblique reflection problem (ORP) associated with a tandem queueing network.
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�1

�1 �1

�2

0

0 0

0 2

2 2

2 31

3 3

31

11

1

1

2

3

2

1

2

Figure 3. The time-varying exogenous arrival rate 71 to and departure rate A1 from the first queue, along with the contents )1 and )2

of the first and second queue in the tandem network.

Now, fix � ∈�. Because � ∈�, by Theorem 1.1 �� = ������= � +R3, where 3 = 3�1� is characterized by
(17), with the sets /i, i= 1�2, as given above. Thus, �� 1�t�= �1�t�+31�t�, where

31�t�=




�−�1�0��∨ 0 for t ∈ �0�2��

�−�1�2��∨ �−�1�0��∨ 0 for t = 2�
−�1�t� for t ∈ �2�3�<

whereas �� 2�t�= �2�t�+32�t�−31�t�= �2�t�+32�0�−31�t�, where

32�0�= �−�2�0�+31�0��∨ 0= �−�2�0�+ �−�1�0��∨ 0�∨ 0

We now refer to the various types of discontinuities mentioned in Theorem 1.2. From the above expressions,
it is clear that at t = 2, �−�1�2�� > �−�1�0�� ∨ 0 is a necessary and sufficient condition for �� 1 to have a
left discontinuity (of type (La)) as well as for �� 2 to have a left discontinuity (of type (Lb)), whereas the
reverse inequality, �−�1�2�� < �−�1�0��∨0, is necessary and sufficient for �� 1 to have a right discontinuity (of
type (Ra)) as well as for �� 2 to have a right discontinuity (of type (Rb)). Observe that the necessary conditions
mentioned in Theorem 1.2 are indeed satisfied because at t = 2, queue 1 is at the end of overloading and at the
start of underloading, whereas queue 2 is overloaded and has critical and subcritical chains preceding it.

2.2.2. A merge or join network. This example serves to illustrate how a separated discontinuity could arise
in the directional derivative. Consider a scenario in which two upstream queues feed into a common buffer (see
Figure 4). The upstream queues experience a surge in the arrival rate for an initial period, and the arrival rate
subsequently subsides to a lower rate. However, just as the surge ends, the server at one of the upstream queues,
queue 2, undergoes a partial failure, resulting in the queue maintaining criticality. It is shown below that in such
a scenario there can be a discontinuity in the derivative of the downstream queue at the time congestion ends in
the upstream queues.
There are no exogeneous arrival rates to queue 3 and the mean exogenous arrival rate 7i to queue i for i= 1�2

is given by

71�t� =
{
1 for t ∈ �0�1��
1
2 for t ∈ �1�2��

and 72�t� =




3
2 for t ∈ �0� 12 ��
1
2 for t ∈ � 12 �1��
1
3 for t ∈ �1�2�


Moreover, we assume that queues 1 and 3 have constant service rates 81�t�=83�t�= 1 for t ∈ �0�2�, whereas
queue 2 has service rate

82�t�=
{
1 for t ∈ �0�1��
1
3 for t ∈ �1�2�


(36)

IN
F
O
R
M
S

ho
ld
s

co
p
yr
ig
h
t
to

th
is

ar
tic
le

an
d

di
st
rib

ut
ed

th
is

co
py

as
a

co
ur
te
sy

to
th
e

au
th
or
(s
).

A
dd

iti
on

al
in
fo
rm

at
io
n,

in
cl
ud

in
g
rig

ht
s
an

d
pe

rm
is
si
on

po
lic
ie
s,

is
av

ai
la
bl
e
at

ht
tp
://
jo
ur
na

ls
.in

fo
rm

s.
or
g/
.



Mandelbaum and Ramanan: Directional Derivatives of Oblique Reflection Maps
538 Mathematics of Operations Research 35(3), pp. 527–558, © 2010 INFORMS

�2(t )

�2(t )

�1(t )

�1

�3

Q1(t )

Q2(t )

Q3(t )

�2(t )

�2(t )

�1(t )

�1

�3

Q1(t )

Q2(t )

Q3(t )

�2(t )

�2(t )

�1(t )

�1

�3

Q1(t )

Q2(t )

Q3(t )

t < 1

t > 1

t = 1

Figure 4. A queueing network with a merge and time-varying arrival and service rates giving rise to a separated discontinuity in the
directional derivative at t = 1.
Note. The wavy, solid, and dashed lines represent, respectively, overloading, criticality, and underloading.

Because the departures from queues 1 and 2 feed into queue 3 (see Figure 4), the routing matrix Q and reflection
matrix R= I −QT are given by

Q=

0 0 0
0 0 0
1 1 0


 and R= I −QT =


 1 0 −1
0 1 −1
0 0 1


 


It is trivial to verify that QT is an H-R matrix. Let � denote the associated reflection map, � the netput process,
and let )= ����. Then it follows from the definitions that

�1�t� =
{
0 for t ∈ �0�1��

− 1
2 �t− 1� for t ∈ �1�2��

�1�t� =
{
0 for t ∈ �0�1��
1
2 �t− 1� for t ∈ �1�2��

and )1, �2, and �3 are identically zero on �0�2�. Moreover, )2 = �2 and )3 = �3 are given by

)2�t� =




1
2 t for t ∈ �0�1/2��
1
4 − 1

2 �t− 1/2� for t ∈ �1/2�1��

0 for t ∈ �1�2��

)3�t� =
{
t for t ∈ �0�1��

1− 1
6 �t− 1� for t ∈ �1�2�


Figure 5 provides an illustration of the fluid limit ) of the three queues.
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0

0

0 1 2

1.0

1

0.5

0.25

1

5/6

2.0

�1

�2

�3

2

Figure 5. The fluid limit of the nonstationary merge queueing network.
Note. The colors grey, light grey, and dark grey represent, respectively, overloading, criticality, and underloading.

The above calculations also readily show that /3�t�= �0� for t ∈ �0�2�,

/1�t� =



�0� t� for t ∈ �0�1��

�t� for t ∈ �1�2��
and /2�t� =




�0� for t ∈ �0�1��

�0�∪ �1� t� for t ∈ �1�2�


Note that at t = 1, queue 3 is overloaded, and because queue 2 is at the end of overloading and queue 1 is at
the start of underloading at t = 1, the chain 2�3 is a critical chain, and 2�1 is a subcritical chain preceding 3.
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Thus, the necessary condition for a separated discontinuity stated in (LRc) of Theorem 1.2 is satisfied. Below,
explicit calculations are provided to show that the separated discontinuity can indeed occur in this example.
By Theorem 1.1(ii) for � ∈�, the explicit form of �� = ������ is given by

�� 1�t�= �1�t�+ sup
s∈/1�t�

�−�1�s��� �� 2�t�= �2�t�+ sup
s∈/2�t�

�−�2�s���

and �� 3�t�= �3�t�−31�t�−32�t�+33�t�, with 33�t�= sups∈/3�t��−�3�s�+ �P3�3�s��. Thus, we have

�� 3�t� = �3�t�− sup
s∈/2�t�

�−�2�s��− sup
s∈/1�t�

�−�1�s��

+ sup
s∈/3�t�

[
−�3�s�+ sup

r∈/2�s�

�−�2�r��+ sup
r∈/1�s�

�−�1�r��
]



From the above expressions it is straightforward to deduce that

�� 3�1�−�� 3�1−�= ��2�1�−�2�0��∧ 0 and �� 3�1�−�� 3�1+�=−�1�1�− sup
s∈�0�1�

�−�1�s��


Therefore, if �2�1� < �2�0� and sups∈�0�1��−�1�s�� >−�1�1�, then

�� 3�1�−�� 3�1−�= �2�1�−�2�0� < 0 and �� 3�1�−�� 3�1+�=−�1− sup
s∈�0�1�

�−�1�s�� < 0�

which implies �� 3 is neither right nor left continuous at t = 1. In fact, it has a separated discontinuity at that
point because �� 3�1� < �� 3�1−�∧�� 3�1+�, as anticipated by condition (LRc) of Theorem 1.2. In the context
of functional central limit theorems, � will be a Brownian motion, and so you expect the conditions on � to be
satisfied with positive probability.
It is worthwhile to note that a separated discontinuity can arise only in the multidimensional setting, not in

the one-dimensional setting. This has important ramifications for the mode of convergence of �	
� ��� to ������

when ��� are continuous. Specifically, as remarked earlier, it was shown in Mandelbaum and Massey [16] that
for the one-dimensional map, �	

� ��� converges to ������ in the M1 topology (see Whitt [28] for a definition of
this topology). When ��� are continuous, �	

� ��� is also continuous for every 	 > 0. Because �l� r , the space of
functions that are either left or right continuous at every point is complete under theM1 topology (cf. Whitt [28]),
and continuous functions clearly lie in �l� r , whereas functions with separated discontinuities do not lie in �l� r ,
this example demonstrates that one cannot in general expect M1 convergence in the multidimensional setting.

3. Existence and characterization of the directional derivative. This section is devoted to the proof of
Theorem 1.1. Relevant properties of H-R ORPs with inputs � ∈ �lim are first described in §3.1, and then
existence of the associated directional derivative is established in §3.2. In §3.3 the notion of a generalized
one-dimensional derivative is introduced and characterized, and the proof of Theorem 1.1 is presented in §3.4.

3.1. Properties of the oblique reflection map. The ORP associated with an H-R matrix R ∈ �K×K was
introduced in §1.4. Here, we first establish a minor generalization of a well-known result of Harrison and Reiman
[9] to show that RMs � associated with H-R reflection matrices are well defined on �lim. Recall the notation
f̄ �t�= sups∈�0� t� f �s�.

Theorem 3.1 (Solutions to H-R ORPs). Let R ∈ �K×K be an H-R constraint matrix and let P

=

I − R. Given � ∈�+
lim, there exists a unique solution �)��� to the ORP associated with R for �. Moreover,

IN
F
O
R
M
S

ho
ld
s

co
p
yr
ig
h
t
to

th
is

ar
tic
le

an
d

di
st
rib

ut
ed

th
is

co
py

as
a

co
ur
te
sy

to
th
e

au
th
or
(s
).

A
dd

iti
on

al
in
fo
rm

at
io
n,

in
cl
ud

in
g
rig

ht
s
an

d
pe

rm
is
si
on

po
lic
ie
s,

is
av

ai
la
bl
e
at

ht
tp
://
jo
ur
na

ls
.in

fo
rm

s.
or
g/
.



Mandelbaum and Ramanan: Directional Derivatives of Oblique Reflection Maps
Mathematics of Operations Research 35(3), pp. 527–558, © 2010 INFORMS 541

�=+��� is the unique fixed point of the map F ��� ·�� �0→�0 given by

F i������t�

= �−�i+ �P��i�t��∨ 0� i= 1� � � � �K
 (37)

In other words, for i= 1� � � � �K, �i satisfies

�i�t�= �−�i+ �P��i�t��∨ 0
 (38)

Furthermore, the maps � and + are Lipschitz continuous with respect to the uniform topology on �lim, i.e.,
there exists L= L�R� <� such that for every �1��2 ∈�lim and N <�,


���1�− ���2�
N ≤ L
�1−�2
N and 
+��1�−+��2�
N ≤ L
�1−�2
N 
 (39)

Lastly, if � ∈� (respectively, �c), then )�� ∈� (respectively, �c).

Proof. Because � ∈�+
lim, we have −�i�0�≤ 0 for every i, and hence F ������0�= 0. In addition, F �����

is clearly increasing, and so F ����� ∈�0. Because �lim is complete with respect to the sup norm, the argument
used in Harrison and Reiman [9] also shows that F ��� ·� is a contraction mapping that maps �0 into �0 and
thus has a unique fixed point. The proof of the fact that � is a fixed point of F ��� ·� if and only if �=+��� also
follows from a straightforward generalization (from � to �+

lim) of the corresponding argument used in Harrison
and Reiman [9] and is thus omitted. Lipschitz continuity of the maps � and + can be deduced from the explicit
representation (37) for F i and the fact that the matrix P is similar to a matrix whose row sums are strictly less
than 1 (see Lemma 3.3 for similar arguments or Theorem 2.2 of Dupuis and Ramanan [6] for an alternative
proof of Lipschitz continuity when � ∈�r ). The last assertion of the lemma (which considers � ∈�) holds due
to the fact that � and �r are closed subspaces of �lim (with respect to the topology of uniform convergence).
The case when � ∈�c is easily verified directly (see, for example, the argument in Dupuis and Ishii [4]).

3.2. Existence of the directional derivative. In order to show the existence of the derivative or, equivalently,
to show the existence of a pointwise limit of the sequence �	

� ��� ∈ �lim as 	 ↓ 0, it turns out to be more
convenient to work with a closely related family of processes �3	������	>0. This family is introduced in §3.2.1
and is shown to have a pointwise limit 3����� in §3.2.2. In §3.2.3 the limit 3�����, and the derivative ������
are shown to lie in �lim and satisfy certain continuity and scaling properties.

3.2.1. A related family �3	�	>0 of functions. Given an ORP with H-R constraint matrix R, let

3	�����

= 	−1�+��+ 	��−+����� 	 > 0� (40)

where + is the mapping introduced after Definition 1.1. Using the fact that ����= � +R+��� for � ∈�lim,
along with definition (9) of the sequence ��	

������, one obtains the relation

�	
�����= � +R3	������ 	 > 0
 (41)

Thus, in order to establish existence of the derivative, it clearly suffices to show that 3	����� has a pointwise
limit as 	 ↓ 0.
Now, fix ��� ∈�lim. For conciseness, let �


=+��� and for 	 > 0, let �	


=+�� + 	�� and 3	


= 3	�����.
From (38), it follows that

�i = �−�i+ �P��i�∨ 0 and �i
	 = �−�i− 	�i+ �P�	�

i�∨ 0

For i= 1� � � � �K, define

Ci 
= �i− �P��i� (42)

and rewrite �i and �i
	 in terms of Ci as follows:

�i = �−Ci�∨ 0� �i
	 = �−Ci− 	�i+ �P��	− ���i�∨ 0


Together with (40), this shows that for i= 1� � � � �K,
3i

	 = 3i
	�����= 	−1��i

	− �i�=−	−1Ci−�i+ �P3	�
i ∨ 0−−	−1Ci ∨ 0
 (43)
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3.2.2. Pointwise convergence of �3	�	>0 for H-R ORPs. In this section, some basic properties of the fam-
ilies �3	�	>0 and ��	

������	>0 are established. The existence of a pointwise limit is shown to be a consequence
of the uniform boundedness of the sequence �3	�t��	>0 proved in Lemma 3.1 and the monotonicity property
established in Lemma 3.3.

Lemma 3.1 (Uniform Boundedness). Let �	
����� and 3	����� be defined as in (9) and (40), respectively,

and let L <� be the constant that satisfies (39). Then for any C����1��2 ∈�lim and T <�, the following
inequalities hold:

sup
	>0

∥∥�	
�1
����−�	

�2
����

∥∥
T
≤ L
�1−�2
T � sup

	>0

�	

�����
T ≤ L
�
T � (44)

sup
	>0

∥∥3	����1�−3	����2�
∥∥

T
≤ L
�1−�2
T � sup

	>0

3	�����
T ≤ L
�
T 
 (45)

Proof. The first and third inequalities follow directly from the Lipschitz continuity of the RM stated in (39)
and the definitions of �	

����� and 3	 given in (9) and (40), respectively. The second and fourth bounds follow
simply by choosing �1 = � and �2 = 0 in the first and third bounds, respectively, and noting that �	

0 ���� =
3	���0�= 0.
The proof of monotonicity will make repeated use of the following elementary inequality, whose simple proof

is included for completeness.

Lemma 3.2. Any two real-valued functions f and g that are defined on �0��� satisfy, for every T <�,

f̄ �T �∨ 0− ḡ�T �∨ 0≤ f − g�T �∨ 0≤ �f − g�T ��
 (46)

Proof. If f̄ ≤ 0, then the left-hand side of (46) is nonpositive, and so the first inequality in (46) holds
trivially. On the other hand, if f̄ > 0, let tn ∈ �0� T � be such that f̄ ≤ f �tn�+ 1/n. Then we have

f̄ ∨ 0− ḡ ∨ 0≤ f �tn�− ḡ ∨ 0+ 1
n
≤ f �tn�− g�tn�+

1
n
≤ f − g ∨ 0+ 1

n



Because n is arbitrary, this shows that the first inequality in (46) holds. The second inequality in (46) is trivially
satisfied.

Lemma 3.3 (Monotonicity). Given ��� ∈ �lim, let 3	


= 3	����� be defined by (40). Then for i =
1� � � � �K, 3i

	 is monotonically nonincreasing as 	 ↓ 0, so that

0< 	1 ≤ 	2 implies 3i
	1
�s�−3i

	2
�s�≤ 0� s ∈ �0���
 (47)

Moreover, for every t ≥ 0, the limit 3�t�

= 3������t�= lim	↓0 3	�t� exists.

Proof. Let 0 < 	1 ≤ 	2 and fix i ∈ �1� � � � �K� and s ∈ �0���. Using the representation (43) for 3i
	 and

making repeated use of the inequality (46), we obtain for t ∈ �0� s�,

3i
	1
�t�−3i

	2
�t� = −	−11 Ci−�i+ �P3	1

�i�t�∨ 0−−	−11 Ci�t�∨ 0
−−	−12 Ci−�i+ �P3	2

�i�t�∨ 0+−	−12 Ci�t�∨ 0
= −	−11 Ci−�i+ �P3	1

�i�t�∨ 0−−	−12 Ci−�i+ �P3	2
�i�t�∨ 0

− �	−11 − 	−12 ��−Ci�t�∨ 0�
≤ −�	−11 − 	−12 �Ci+ �P3	1

�i− �P3	2
�i�t�∨ 0−−�	−11 − 	−12 �Ci�t�∨ 0

≤ �P3	1
�i− �P3	2

�i�t�∨ 0�
where we have used the fact that �	−11 − 	−12 � > 0 in the penultimate line. By Remark 1.1, there exists
a diagonal matrix A with Aii > 0 for i = 1� � � � �K, and % > 0 such that the matrix �P 
= A−1PA satisfies
maxi=1� � � � �K

∑K
j=1 �Pij ≤ 1−%. Define �3 
=A−13. Then, �P is nonnegative (because P is nonnegative), P3 =A �P �3,

and by the inequality derived above, we obtain for every t ∈ �0� s�,

�3i
	1
�t�− �3i

	2
�t�= 1

Aii

�3i
	1
�t�−3i

	2
�t�� ≤ 1

Aii

�A �P �3	1
�i− �A �P �3	2

�i�s�∨ 0

= � �P �3	1
�i− � �P �3	2

�i�s�∨ 0

IN
F
O
R
M
S

ho
ld
s

co
p
yr
ig
h
t
to

th
is

ar
tic
le

an
d

di
st
rib

ut
ed

th
is

co
py

as
a

co
ur
te
sy

to
th
e

au
th
or
(s
).

A
dd

iti
on

al
in
fo
rm

at
io
n,

in
cl
ud

in
g
rig

ht
s
an

d
pe

rm
is
si
on

po
lic
ie
s,

is
av

ai
la
bl
e
at

ht
tp
://
jo
ur
na

ls
.in

fo
rm

s.
or
g/
.



Mandelbaum and Ramanan: Directional Derivatives of Oblique Reflection Maps
Mathematics of Operations Research 35(3), pp. 527–558, © 2010 INFORMS 543

≤
( K∑

j=1
�Pij

)
max

k=1� � � � �K
�3k
	1
− �3k

	2
�s�∨ 0

≤ �1− %� max
k=1� � � � �K

�3k
	1
− �3k

	2
�s�∨ 0


Taking the supremum of the left-hand side of the above inequality over t ∈ �0� s� and then the maximum over
i= 1� � � � �K yields the relation

max
k=1� � � � �K

�3k
	1
− �3k

	2
�s�≤ �1− %� max

k=1� � � � �K
�3k
	1
− �3k

	2
�s�∨ 0�

which implies maxk=1� � � � �K �3k
	1
− �3k

	2
�s�≤ 0. Because 3i =Aii �3i and Aii > 0, this implies (47).

Now the uniform boundedness of the sequence �3	� proved in Lemma 3.1 shows that for each s ∈ �0���,
there exists a subsequence (which could depend on s) of �3	�s�� that converges to a limit. The monotonicity
property shows that this limit, which we denote by 3�s�, is independent of the subsequence. Thus, 3 is the
real-valued function that equals the pointwise limit of the sequence of functions �3	�, as 	 ↓ 0.

3.2.3. Properties of the pointwise limit. In this section we first show that the limit 3 of Lemma 3.3 lies
in �lim. Note that this is not a priori obvious even if � and � are assumed to be continuous (which would in turn
imply that the functions 3	 = 3	������	 > 0 are continuous) because the limit of a monotone nonincreasing
sequence of real-valued continuous functions �fn� need not in general lie in �lim. For instance, define fn�t�


=
sin�1/t� if t ∈ �1/�2nE + E/2���� and fn�t�


= 1 otherwise, n ∈ 
, and let f �t�

= sin�1/t� if t ∈ �0��� and

f �0�

= 1. As n→�, the sequence �fn�n∈
 converges pointwise monotonically down to f , but f does not lie

in �lim because it has no right limit at 0. However, the 3	 possess special properties by virtue of the fact they
are defined via ORPs, which allow us to show that 3 must lie in �lim. The case when � ∈ �� is proved
in Lemma 3.5, which makes use of some general properties of functions that are summarised in Lemma 3.4
and whose proof is relegated to §5.1. The case of general � ∈�lim is dealt with subsequently, in the proof of
Theorem 1.1(i) below. Recall that �f �T denotes the total variation of the function f on the interval �0� T �.

Lemma 3.4. Any two real-valued functions f and g that are defined on �0��� satisfy

�f̄ ∨ 0− ḡ ∨ 0�T ≤ �f − g�T 
 (48)

Moreover, consider a sequence of functions �fn� ⊂ �lim that converges pointwise to a function f . If
supn �fn�T <� for every T <�, then f ∈�lim.

Lemma 3.5 (Uniformly BV). Given an H-R reflection matrix R and associated RM � , � ∈�lim, and � ∈
�V , let 3	


= 3	����� be defined by (40). Then for every T ∈ �0���,

sup
	>0
�3	�T <�
 (49)

Moreover, 3

= 3�����, the pointwise limit of 3	����� as 	 ↓ 0, lies in �lim.

Proof. Fix T <�, let P = I −R and fix 	 > 0. By the representation (43) for 3i
	, the inequality (48), with

f =−	−1Ci−�i+ �P3	�
i and g =−	−1Ci, the triangle inequality, and the fact that P is nonnegative, we obtain

�3i
	�T = �−	−1Ci−�i+ �P3	�

i ∨ 0−−	−1Ci ∨ 0�T ≤ �−�i+ �P3	�
i�T ≤ ��i�T +

K∑
j=1

Pij �3j
	�T 


By Remark 1.1 there exists a diagonal matrix A (with Aii > 0� and % > 0 such that the matrix �P 
= A−1PA
satisfies maxi=1� � � � �K

∑K
j=1 �Pij ≤ 1−%. Multiplying both sides of the last display by Aii and substituting for P in

terms of �P (note that Ajj
�Pij =AiiPij ), we obtain the inequality

Aii�3i
	�T ≤Aii��i�T +

K∑
j=1
�PijAjj �3j

	�T �

which implies that
max

i=1� � � � �K
Aii�3i

	�T ≤ max
i=1� � � � �K

Aii��i�T + �1− %� max
i=1� � � � �K

Aii�3i
	�T 
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On rearrangement, this yields

max
i=1� � � � �K

Aii�3i
	�T ≤

maxi=1� � � � �K Aii��i�T
%

�

from which we conclude that

sup
	>0
�3	�T ≤K sup

	>0
max

i=1� � � � �K
�3i

	�T ≤
Kmaxi=1� � � � �K Aii

%mini=1� � � � �K Aii

���T <��

where the last inequality follows because of the assumption that � ∈�V . This proves (49).
Now, 3 is also the pointwise limit of any subsequence �3	n

�n∈
 and, clearly, supn∈
 �3	n
�T < � for every

T <�. Lemma 3.4 then allows us to conclude that 3 ∈�lim.
We now establish the first property of Theorem 1.1. The remaining properties are established in §3.4.2.
Proof of Theorem 1.1(i). For any ��� ∈�lim, Lemma 3.3 establishes the existence of the pointwise limit

3�����. Next, we show that 3����� lies in �lim. Because �c� lim is dense in �lim with respect to the topology
of uniform convergence on compact sets (see, for example, Whitt [28]), and clearly, �c� lim ⊂�V , there exists
a sequence ��n�n∈
 ⊂�V such that � is the limit (in this topology) of �n, as n→�. Because �n ∈�V , each
3����n� lies in �lim by Lemma 3.5. On the other hand, Lemma 3.1 shows that 3����n� ∈�lim converges, as
n→�, to 3����� in the uniform topology on every bounded interval. Because �lim is complete with respect to
this topology, we deduce that 3


= 3����� ∈�lim
 The relation (41) then shows that the pointwise limit ������
of �	

����� exists and is equal to � +R3. Thus, in particular, ������ ∈�lim.
For any fixed � ∈�lim, the Lipschitz continuity of the map � #→ ������ is a direct consequence of (44).

Lastly, because ������ = � + R3�����, in order to establish (15) it suffices to show that for 1�2 > 0,
3�2��1�� = 13�����. From (38) it is clear that for 2 > 0, +�2�� = 2+���. Fix 	 > 0. By (40) we then
see that

3	�2��1��= 	−1�+�2�+ 	1��−+�2���= 2	−1
[
+

(
�+ 	

1

2
�

)
−+���

]



Setting 	̃= 	1/2, we can rewrite the above equation as

3	�2��1��= 1	̃−1�+��+ 	̃��−+����= 13	̃�����


Taking limits as 	→ 0, and noting that then 	̃→ 0, we obtain the desired relation 3�2��1��= 13�����.

3.3. The generalized one-dimensional derivative.

3.3.1. A representation for the multidimensional derivative. In the last section we showed that given
��� ∈�lim, the directional derivative has the form ������= �+R3, where 3


= 3����� ∈�lim is the pointwise
limit of the monotonically nonincreasing sequence �3	������. From the expression (43) for 3i

	


= 3i
	�����, it

is clear that for every t ∈ �0���,

3i�t� = lim
	↓0

�−	−1Ci−�i+ �P3	�
i�t�∨ 0−−	−1Ci�t�∨ 0�

= lim
	↓0

�F i�	−1C+� −P3	�0��t�− F i�	−1C�0��t��
 (50)

Because P is nonnegative, it follows that P3 is the pointwise limit of the monotonically nonincreasing sequence
�P3	�. Thus, 3

i has a representation as a one-dimensional pointwise limit of the form

lim
	↓0

�	−1f + g	 ∨ 0− 	−1f ∨ 0�� (51)

where f

=−Ci and g	


=−�i + �P3	�
i lie in �lim��� and g	 monotonically converges pointwise down to the

function g =−�i + �P3�i in �lim���. If, instead, g	 ≡ g were independent of 	, then (51) would reduce to a
limit of the form

lim
	↓0

�	−1f + g ∨ 0− 	−1f ∨ 0�
 (52)

Under the assumption that f � g ∈ ���� and the limit has a finite number of discontinuities on any compact
interval, the limit in (52) was shown in Mandelbaum and Massey [16] to be equal to maxs∈/f �t�

g�s�, where
/f is as defined in (11). This representation was later generalized to the case f � g ∈ �r ��� in Whitt [29,
Theorem 9.3.1]. It may be natural to conjecture that the limit in (51) is equal to the limit maxs∈/f �t�

g�s� of (52),
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but where g ∈�lim��� is now the pointwise limit of the sequence �g	�	>0. If that were true, then the limit in (51)
could be identified simply by generalizing the results in Mandelbaum and Massey [16] and Whitt [29] to the
case when f � g ∈�lim���. However, it turns out that the topology of pointwise convergence g	 ↓ g is too weak
for such a conjecture to hold in general (see Remark 3.1(3) below for examples when the two limits fail to
coincide). Thus, a more careful analysis is required in order to determine the correct limit in (51). This is carried
out in §3.3.2. Fortunately, it turns out that the conjecture is true for the important case when f ∈ ���� and
g	 ∈���� for all 	 > 0, and in this case the one-dimensional limit takes a rather nice form (see Theorem 3.2).
In the multidimensional case, when P �= 0, (50) leads to a finite system of coupled equations that implicitly
describe 3. The additional justification required to establish that this system of equations uniquely determines
3 is provided in §3.4.

3.3.2. The form of the generalized one-dimensional derivative. In order to describe the limit in (51), we
need to first introduce some definitions. For f � g� g1� g2 ∈�lim���, define

H�f � g� g1� g2��t�

=




0 for t ∈�!�f ��

S�f � g� g1� g2��t�∨ 0 for t ∈�m�f ��

S�f � g� g1� g2��t� for t ∈�u�f ��

(53)

where

�! =�!�f �

= �t ∈ �0���� f̄ �t� < 0�� (54)

�m =�m�f �

= �t ∈ �0���� f̄ �t�= 0�� (55)

�u =�u�f �

= �t ∈ �0���� f̄ �t� > 0�� (56)

and
S�f � g� g1� g2��t�


= sup
s∈/L

f �t�

�g1�s��∨ sup
s∈/f �t�

�g�s��∨ sup
s∈/̃R

f �t�

�g2�s��� (57)

with /f , /
L
f , and �/R

f defined as in (11), (12), and (13), respectively. Moreover, let

S1�f � g�

= S�f � g� g� g� and H1�f � g�


=H�f � g� g� g� (58)

and, likewise, let
S2�f � g�


= S�f � g� gl� gr � and H2�f � g�

=H�f � g� gl� gr �� (59)

where gl and gr are the left and right regularizations of g, as defined in (6). It is easy to see that for f ∈�lim���
and t ∈ �0���, /L

f �t�∪/f �t�∪ �/R
f �t� �= �, and hence S�f � g� g1� g2�, S1�f � g�, and S2�f � g� are always finite.

The following theorem provides a useful characterization of the generalized one-dimensional derivative.

Theorem 3.2 (Generalization of the One-Dimensional Derivative). Consider a sequence �g	� ⊆
�lim��� such that sup	>0 
g	
N <� for every N ∈ �0��� and for every s ∈ �0���,

	1 ≤ 	2 ⇒ g	1
�s�≤ g	2

�s�


Moreover, let g� g∗� l� g∗� r ∈�lim��� be such that g	 ↓ g ∈�lim���, g	� l ↓ g∗� l and g	� r ↓ g∗� r pointwise as 	 ↓ 0,
where g	� l and g	� r are, respectively, the left and right regularizations of g	. For f ∈�lim���, if

�3	


= 	−1f + g	 ∨ 0− 	−1f ∨ 0� (60)

then �3	→ �3 ∈�lim��� pointwise as 	 ↓ 0, where the generalized derivative takes the form

�3 
=H�f � g� g∗� l� g∗� r �� (61)

and H is given by (53). Moreover, if �g	�	>0 ⊂����, then the generalized derivative takes the simpler form

�3 =H1�f � g�� (62)
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and if in addition f ∈����, then �3 =H1�f � g�=H2�f � g� and

S1�f � g�= S2�f � g�= sup
s∈/f �t�

�g�s��
 (63)

Lastly, if f ∈�lim��� and g	→ g in the uniform topology, then

�3 =H2�f � g�
 (64)

The proof of Theorem 3.2 is relegated to §5.2.2. Here, we make some observations on the theorem.
Remark 3.1 (The Generalized One-Dimensional Derivative). (i) For f � g ∈�lim, the limit in (52) is

equal to the function H2�f � g� defined in (59). Indeed, when g	 = g is independent of 	, then clearly g∗� l = gl

and g∗� r = gr (see Lemma 5.3(ii)), and by (59) we have H�f � g� g∗� l� g∗� r �= H�f � g� gl� gr �= H2�f � g�
 If, in
addition, f � g ∈����, then /L

f �t�∪/f �t�∪/R
f �t�=/f �t� and g�s−�= g�s�= g�s+�, so that

S2�f � g��t�= sup
s∈/f �t�

�g�s��
 (65)

Thus, Theorem 3.2 contains as a special case the results in Mandelbaum and Massey [16, Lemma 5.2] and Whitt
[29, Theorem 9.3.1].
(ii) The notation �/R

f rather than /R
f is used in the definitions of S, S1, and S2 in order to emphasize that

t �∈ �/R
f �t�, in contrast with the sets /L

f �t� and /f �t�, which could contain t. In the definition for S2�f � g� in
Whitt [29, Theorem 9.3.1], however, the set �/R

f is replaced by the set

/R
f �t�


= �s ∈ �0� t�� f �s+�= f̄ �t��� (66)

which could contain t. This gives the correct expression when g ∈�r ���, which is the setting considered in
Whitt [29]. However, the following example shows that when g ∈�lim���, S2 must be defined with �/R

f rather
than with /R

f , even when f ∈����.
Example 1. Let f �s�


= s1�0�1��s�+ 1�1�2��s� for s ∈ �0�2�, and for every 	 > 0, let g	�s�= g�s�

= 1�1�2� for

s ∈ �0�2�. Then f is continuous and g is left continuous and has finite right limits. Moreover, from the definition
of f it follows that /L

f �1�=/f �1�= �1� and �/R
f �1�=�, whereas /R

f �1�= �1�. By the definitions of S and
S2 given in (57) and (59), respectively, we then have S2�f � g��1�= g�1−�∨ g�1�= 0, whereas for the modified
case (i.e., with �/R

f replaced by /R
f in the definition of S2) we see that S2�f � g��1�= g�1−�∨ g�1�∨ g�1+�= 1.

However, by direct verification it is easy to see in this simple example that

lim
	↓0

�	−1f + g	�1�− 	−1f �1��= lim
	↓0

� ¯	−1f + g�1�− 	−1f �1��= g�1�= 0


(iii) When f and g	, 	 > 0, are continuous and g	 ↓ g as 	 ↓ 0, it follows from Theorem 3.2 (specifically,
(62) and (63)) that �3 = H1�f � g� = H2�f � g�. Because the limit in (51) is given by �3 and, by Remark 3.1(i)
above, H2�f � g� is the limit in (52), the two limits in (51) and (52) coincide in this special case. However,
the following two examples demonstrate that these two limits need not be equal for general f � g� g	 ∈�lim. In
particular, Example 2 illustrates why the family of functions �g	�	>0 needs to be continuous, whereas Example
3 shows why f must be continuous for the two limits to coincide.

Example 2. Let f �s�

= s and g�s�


= 1 for s ∈ �0�2�. Also, for 	 > 0, let

g	�t�

=




1 for t ∈ �0�1− 	��

2 for t ∈ �1− 	�1��

1 for t ∈ �1�2�


Then, clearly, f , g ∈ ���� and each g	 lies in �r ���. Moreover, g	 ↓ g pointwise, /L
f �1� = /f �1� = �1�,

�/R
f �1� = � and g∗� l�1� = 2, where the last equality holds because for every 	 > 0, g!�	�1� = g	�1−� = 2.

Because �u�f �= �0�2�, Theorem 3.2 shows that at t = 1, the limit in (51), is equal to S�f � g� g∗� l� g∗� r ��1�=
g∗� l�1� ∨ g�1� = 2. On the other hand, by Remark 3.1(i), the limit in (52) at t = 1 equals H2�f � g��1� =
S2�f � g��1�= S�f � g� g!� gr ��1�= g�1−�∨ g�1�= 1 �= 2.
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Example 3. Define f �s�

= s1�0�1�, g�s�


= 1�1�2��s� for s ∈ �0�2� and, for 	 > 0, let

g	�s�

=




0 for s ∈ �0�1− 	��

s− �1− 	�

	
for s ∈ �1− 	�1��

1 for s ∈ �1�2�


Then, clearly, each g	 lies in ���� and as 	 ↓ 0, g	 converges pointwise monotonically down to the function
g ∈�lim���. Moreover, f ∈�lim���, /L

f �1�= �1�, and /f �1�= �/R�1�=�. By Remark 3.1(i) above and the
fact that �u�f �= �0�2�, the limit in (52) at t = 1 is given by H2�f � g��1�= S2�f � g��1�= g�1−�= 0. On the
other hand, because each g	 is continuous, by (62) of Theorem 3.2, the limit in (51) is equal to H1�f � g��1�=
S1�f � g��1�= g�1�= 1 �= 0.

3.4. The multidimensional derivative. The main result of this section is the proof of Theorem 1.1, which
is given in §3.4.2. First, in §3.4.1, we use the results of §§3.2 and 3.3 to obtain an autonomous characterization
of 3����� when either ��� ∈� or when � ∈�c and � ∈�lim.

3.4.1. An autonomous characterization. Fix ��� ∈�lim and, as usual, let 3	 and C be defined, respectively,
via (40) and (42). Also, for i= 1� � � � �K, let �i

l and �i
r be the left and right regularizations of �i, let 3∗� l and

3∗� r be the limits of the left and right regularized sequences �3	� l� and �3	� r �, respectively, and let 3 be the
pointwise limit of �3	� (which exists by Lemma 3.3). In addition, let the functions H and Hj , j = 1�2, be
defined as in §3.3.2. Combining the characterization (50) of 3i as a generalized one-dimensional derivative with
Theorem 3.2, it follows that for i= 1� � � � �K,

3i�����=H�−Ci�−�i+ �P3�i�−�i
l + �P3∗� l�i�−�i

r + �P3∗� r �i�
 (67)

In general 3∗� l and 3∗� r are not uniquely determined by the limit 3����� but depend on the structure of the
family �3	������. As a result, (67) does not automatically lead to an autonomous characterization of 3�����.
However, we now show that under additional assumptions on � and �, 3∗� l, and 3∗� r are uniquely determined
by 3�����. Specifically, consider the case when ��� ∈�. Then, by Theorem 3.1, �� �	 ∈� and consequently
−C and 3	 ∈�. Likewise, if � ∈�c and � ∈�lim, Theorem 3.1 shows that C ∈�c. Therefore, it follows from
Theorem 3.2 that 3


= 3����� satisfies

3i =Hj�−Ci�−�i+ �P3�i�� i= 1� � � � �K� (68)

with j = 1 when ��� ∈ � and j = 2 when � ∈�c and � ∈�lim. In both cases, the system of equations (67)
reduces to an autonomous set of equations.

Lemma 3.6. Given an H-R matrix R, P

= I −R, and ��� ∈�lim, for j = 1�2, the system of equations (68)

has a unique solution 3�j�


= 3�j������ ∈ �lim. Moreover, for j = 1�2, given any 30� j ∈ �lim, if the sequence
�3n� j� is defined recursively by

3n+1� j

=Hj�−Ci�−�i+ �P3n� j �

i��

then for every N <�, 
3�j�−3n� j
N → 0 as n ↑�.

Proof. Fix ��� ∈ �lim, and N <�, let C be defined via (42) and recall from Lemma 3.1 that 3�����
is uniformly bounded on �0�N � in �lim (with respect to the sup norm). For j = 1�2� consider the mapping
Ij� �lim #→�lim defined, for 3 ∈�lim, by

�Ij�3��i

=Hj�−Ci� �i+ �P3�i�� i= 1� � � � �K


For j = 1�2 (and fixed C��), from the definition of Hj it is clear that Ij maps bounded sets of �lim to bounded
sets of �lim. We shall show below that each Ij is a contraction mapping on �lim. Because �lim endowed with
the sup norm metric is a complete metric space, the existence of a unique fixed point for Ij and convergence of
iterations of the map Ij from any starting point to this unique fixed point then follows from standard theorems
Smart [26, Theorems 5.2.1 and 5.2.3].
To establish the contraction property, we first consider the case when the maximum row sum of the matrix

P is equal to 1 − % < 1. The general case can then be handled in the usual way using diagonal similarity
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transforms (as in, for example, the proof of Lemma 3.5). Let 31� 32 ∈�lim. Then the definition of H1, along
with Lemma 3.2, shows that


�I1�31��
i− �I1�32��

i
N = max
i=1� � � � �K


Hi
1�−Ci�−�i+ �P31�

i�−Hi
1�−Ci�−�i+ �P32�

i�
N
≤ max

i=1� � � � �K

�P31�

i− �P32�
i
N

≤ max
i=1� � � � �K

K∑
k=1

Pik
3k
1 −3k

2
N

≤ �1− %� max
k=1� � � � �K


3k
1 −3k

2
N �

which proves the contraction property because 1− % < 1. The proof for I2 follows analogously and is thus
omitted.
The next lemma, which establishes a useful equivalence, will make use of the following consequence of the

definition (42) of C, the fact that P = I −R, and Theorem 3.1: for t ∈ �0���,

)i�t�= �i�t�+ �R��i�t�= �i�t�− �P��i�t�+ �i�t�= Ci�t�+−Ci�t�∨ 0
 (69)

Lemma 3.7. The set of equations in (68) with j = 1 coincides with the set of equations in (17). In particular,
for every t such that −Ci�t�≥ 0, /i�t�=/−Ci �t�.

Proof. The equivalence is easily deduced from the following observations. Note that (69) implies that
−Ci�t� < 0 if and only if inf s∈�0� t� )i�s� > 0 (which also implies �i�t� = 0); −Ci�t� = 0 if and only if
inf s∈�0� t� )i�s� = 0 and �i�t� = 0; and −Ci�t� > 0 if and only if �i�t� > 0. Now, inf s∈�0� t� )i�s� > 0 for all
s ∈ �0� ti!� and )i�ti!� = 0 where for the last equality, we used the fact that if � lies in �r (respectively, �),
then )���C also lie in �r (respectively, �). Hence, �!�−Ci�= �0� ti!�. A similar reasoning shows that �tiu���⊆
�u�−Ci�⊆ �tiu��� and tiu ∈�u�−Ci� if and only if �i�tiu� > 0, which can take place only if �i is not left contin-
uous at tiu. In particular, this shows �u�−Ci�= �tiu��� if � is continuous. Lastly, from (69) it also follows that
/i�t�=/−Ci �t� for all t such that −Ci�t�≥ 0 or, equivalently, for all t ∈�u�−Ci�∪�m�−Ci�.

3.4.2. Proof of Theorem 1.1. Property (i) of Theorem 1.1 was proved at the end of §3.2.3, where it was
also shown that for ��� ∈�lim, ������= � +R3. Now, suppose ��� ∈�. From Theorem 3.2 (see also the
discussion at the beginning of §3.4.1) and Lemma 3.6 it follows that 3�����= 3�1� where 3�1� is the unique
solution in �lim to the corresponding system of equations (68). However, by Lemma 3.7, these equations are
equivalent to the equations in (68) with j = 1. Moreover, by Lemma 3.3 3�1� is the decreasing limit of continuous
functions 3	. This immediately implies that the convergence is uniform on compact subsets of continuity points
of the limit, and that 3�1� is upper semicontinuous (see, e.g., Mandelbaum and Massey [16]). This completes the
proof of the theorem.

4. Discontinuities of the derivative for continuous ��� ∈�. Throughout this section we fix an ORP with
an H-R constraint matrix R ∈ �K×K and ��� ∈� and, as usual, let Ci be defined as in (42). For conciseness,
we denote the corresponding unique solution 3�1� to the set of Equations (17) simply by 3. The main result
of this section is the proof of Theorem 1.2, which is presented in §4.3. First, in §4.1 we derive necessary and
sufficient conditions for the existence of discontinuities in 3i in terms of properties of the set /−Ci . In §4.2,
we provide equivalences between properties of the set /−Ci and certain sets introduced in Definition 1.4, which
allow a more physically intuitive description of when discontinuities may occur.

4.1. Classification of the discontinuities of 3�1�. Theorem 4.1 provides necessary and sufficient conditions
for the existence of discontinuities in 3i in terms of properties of the set functions /−Ci � · �. We first introduce
some additional notation. For i= 1� � � � �K, define

�i 
= �s ∈ �til � t
i
u� �−�i�s�+ �P3�i�s� > 0 and − Ci�s�= 0�� (70)

and let
t̃iu


= inf�t� t ∈�i�∧ tiu
 (71)

Note that due to the convention that inf���=�, if �i =�, then t̃iu = tiu. In Lemma 4.1, we first establish some
properties of 3i that will be used to prove Theorem 4.1.
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Lemma 4.1. For i= 1� � � � �K, the following properties hold.
(i) 3i�t�= 0 for t ∈ �0� t̃iu�

(ii) If �i =�, then 3i�t̃iu�= 3i�tiu�= 0. On the other hand, if �i �= �, then

3i�t̃iu�=−�i�t̃iu�+ �P3�i�t̃iu�≥ 0
 (72)

Moreover, t̃iu ∈ LDisc�3i� implies t̃iu ∈/−Ci �t̃iu� and (72) holds with a strict inequality.
(iii) For t ∈ �t̃iu���,

3i�t�= sup
s∈/−Ci �t�

�−�i�s�+ �P3�i�s��
 (73)

(iv) For t ∈ �t̃iu���, if �t� �=/−Ci �t�, then t is a point of left increase for 3i and

3i�t−�= sup
s∈/−Ci �t�\�t�

�−�i�s�+ �P3�i�s��� (74)

whereas if �t�=/−Ci �t�, then

3i�t−�=−�i�t�+ �P3�i�t−�≤−�i�t�+ �P3�i�t�= 3i�t�
 (75)

(v) For t ∈ �0���, t ∈Disc�3i� implies t ∈/−Ci �t� and

3i�t�= �−�i�t�+ �P3�i�t��∨3i�t−�
 (76)

(vi) For t ∈ �t̃iu���, if /−Ci �r�∩ �0� t�=� for some r > t, then

3i�t+�= 3i�t�� (77)

whereas if
/−Ci �s�⊆ �t� s� for all s > t� (78)

then
3i�t+�=−�i�t�+ �P3�i�t+�
 (79)

Proof. Fix i ∈ �1� � � � �K�. For t ∈ �ti!� t
i
u�, the equality /i�t�=/−Ci �t� established in Lemma 3.7 and the

fact that −C�t�= 0 show that −Ci�s�= 0 for s ∈/i�t�. Property (i) and the first assertion of property (ii) of
the lemma then follow directly from the characterization (17) for 3i. Now suppose �i �= �. Then, t̃iu < tiu and
there must exist a sequence �sn�n∈
 ⊂ �t̃iu� t

i
u� such that sn ↓ t̃iu, as n→�, and for every n ∈
, −Ci�sn�= 0 and

−�i�sn�+ �P3�i�sn�� > 0. Because sn ≤ tiu, this implies −Ci�sn�= 0. and hence sn ∈/−Ci �sn�. By (17), it then
follows that

3i�sn�= sup
s∈/−Ci �sn�

�−�i�s�+ �P3�i�s��∨ 0≥ �−�i�sn�+ �P3�i�sn�� > 0


Taking limits as n→� in the last expression, we obtain

3i�t̃iu+�≥−�i�t̃iu�+ �P3�i�t̃iu+�≥ 0
 (80)

Now −�i�s�+ �P3�i�s�≤ 0 for s < t̃iu and, due to the continuity of C, Ci�t̃iu�= 0, t̃iu ∈/−Ci �t̃iu�. Together with
(80) and the upper semicontinuity of 3, this implies that

0≤ 3i�t̃iu+�≤ 3i�t̃iu�= sup
s∈/−Ci �t̃

i
u�

�−�i�s�+ �P3�i�s��∨ 0= �−�i�t̃iu�+ �P3�i�t̃iu��∨ 0= �−�i�t̃iu�+ �P3�i�t̃iu���

where the nonnegativity of the last term follows from the last inequality in (80) and the upper semicontinuity
of P3. This establishes (72). Now, suppose t̃iu ∈ LDisc�3i�. Then it must be that �i �= �, and so the above
argument also establishes the last statement of property (ii).
For property (iii), it suffices to consider t ∈ �t̃iu� t

i
u� because the representations (73) and (17) coincide for

t ∈ �tiu��� by Lemma 3.7. Because −Ci�t� = 0 for t ∈ �t̃iu� t
i
u�, /−Ci � · �, and therefore 3i is monotonically

nondecreasing on that interval. When combined with the representation (17) for 3i and the fact that 3i�t̃iu�≥ 0
by property (ii), this yields the representation (73).
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For the fourth property, fix t > t̃iu and suppose �t� �=/−Ci �t�. Because /−Ci �t�∩ �0� t� is nonempty, this implies
that there exists s < t such that −Ci�s�=−Ci�t�. Therefore, for every r ∈ �s� t�, /−Ci �r�=/−Ci �t�∩ �0� r�. As
a consequence,

3i�t−�= lim
r↑t

lim
s∈/−Ci �r�

�−�i�s�+ �P3�i�s�� = lim
r↑t

sup
s∈/−Ci �t�∩�0� r�

�−�i�s�+ �P3�i�s��

= sup
s∈/−Ci �t�∩�0� t�

�−�i�s�+ �P3�i�s���

which proves (74). Now, consider the case when �t�=/−Ci �t�. Let sn be an increasing sequence such that sn ↑ t,
and let un ∈ �0� sn� satisfy

un =min�u ∈ �0� sn�� −Ci�u�=−Ci�sn��


We claim that then un ↑ t. Indeed, because un is uniformly bounded, there exists a subsequence (which we
denote again by un) that converges to a limit u∗ ∈ �0� t�. Because Ci is continuous, clearly −Ci�sn�→−Ci�t�,
and hence −Ci�un�→−Ci�t�, as n→�. Therefore, u∗ ∈ /−Ci �t�. Due to the assumption /−Ci �t� = �t�, we
conclude that u∗ = t. Also, observe that

3i�sn�= max
s∈/−Ci �sn�

�−�i�s�+ �P3�i�s��= max
s∈/−Ci �sn�∩�un�sn�

�−�i�s�+ �P3�i�s��


Take limits as n ↑� on both sides of the above equality and use the fact that un ↑ t to obtain

3i�t−�=−�i�t�+ �P3�i�t−�≤−�i�t�+ �P3�i�t�= 3i�t��

where the inequality is a consequence of the upper semicontinuity of �P3�i and, due to (73), the last equality is
a trivial consequence of the fact that �t�=/−Ci �t�. This proves (75).
Due to properties (i) and (ii) and the fact that t̃iu ∈/−Ci �t̃iu�, to establish property (v), the relation (76) needs to

be verified only for t ∈ �t̃iu���. First, we establish the contrapositive of the first statement. Suppose t �∈/−Ci �t�.
Then, because C ∈ �, there must exist % > 0 such that for s ∈ �t − %� t + %�, −Ci�s� <−Ci�t�, and /−Ci �s�=
/−Ci �t�, which in turn means that 3i�s�= 3i�t�, thus showing that 3i is continuous at t. Hence, t ∈ Disc�3i�
only if t ∈/−Ci �t�. Along with the relations (73)–(75), this yields (76), and thus property (v) follows.
To establish property (vi), first fix t ∈ �0���, and note that given a family of nonempty sets Au�u > t� with

the property that Au ⊆ �t� u�,

lim
u↓t

sup
s∈Au

�−�i�s�+ �P3�i�s��=−�i�t�+ �P3�i�t+�
 (81)

Suppose /−Ci �r�∩ �0� t� �= � for some r > t. In this case, −Ci�r�=−Ci�t�. Hence, for all u ∈ �t� r�, /−Ci �u�∩
�0� t�=/−Ci �t�, and /−Ci �u�∩ �t� u�=/−Ci �r�∩ �t� u�. The representation (73) for 3i then shows that for every
u ∈ �t� r�,

3i�u�= sup
s∈/−Ci �t�

�−�i�s�+ �P3�i�s��∨ sup
s∈/−Ci �r�∩�t�u�

�−�i�s�+ �P3�i�s��= 3i�t�∨ sup
s∈/−Ci �r�∩�t� u�

�−�i�s�+ �P3�i�s��


Taking limits as u ↓ t and invoking (81) and using the upper semicontinuity of 3i, we have 3i�t�≥ 3i�t+�≥
3i�t�, which implies 3i�t+�= 3i�t�. On the other hand, if (78) holds, then (79) is a direct consequence of (73)
and (81) and the proof of the lemma is complete.
We now state and prove the main result of the section.

Theorem 4.1 (Discontinuities of 3�1�). Let ��

= ������= � + �R3�i. Then, for i= 1� � � � �K, 3i�t�= 0

for t ∈ �0� t̃iu�, and the following three properties hold for every t ∈ �tiu���.
(i) t ∈ LDisc�3i� if and only if t ∈/−Ci �t� and one of the following conditions hold.
L1. t = t̃iu and 0<−��t̃iu�+ �P3�i�t̃iu�. In this case, ��i�t̃iu�= 0.
L2. t > t̃iu, /−Ci �t� �= �t� and the following equality is satisfied:

sup
s∈/−Ci �t�\�t�

�−�i�s�+ �P3�i�s�� <−�i�t�+ �P3�i�t�
 (82)

In this case, ��i�t�= 0. Moreover, if t is not isolated in /−Ci �t�, then t ∈ LDisc��P3�i� and ��i�t−�≥ ��i�t�.
L3. t > t̃iu, �t�=/−Ci �t� and t ∈ LDisc��P3�i�. In this case, ��i�t−�= ��i�t�= 0.
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(ii) t ∈ RDisc�3i� if and only if t ∈/−Ci �t�, /−Ci �s�⊂ �t� s� for all s > t and one of the following conditions
is satisfied:

R1. /−Ci �t� �= �t�, �P3�i is right continuous at t, and

sup
s∈/−Ci �t�\�t�

�−�i�s�+ �P3�i�s�� >−�i�t�+ �P3�i�t�
 (83)

In this case, 3i is left continuous at t and ��i�t� > �� i�t+�= 0.
R2. /−Ci �t� �= �t� and t ∈ RDisc��P3�i�. In this case, ��i�t�≥ ��i�t+�= 0.
R3. �t�=/−Ci �t� and t ∈ RDisc��P3�i�. In this case, ��i�t�= ��i�t+�= 0.

(iii) t ∈ LDisc�3i�∩ RDisc�3i�= SDisc�3i� if and only if t ∈/−Ci �t�, /−Ci �s�⊂ �t� s� for all s > t and one
of the following conditions holds:

S1. t ∈ RDisc��P3�i�, and either t = t̃iu, or �t� �= /−Ci �t� and (82) holds. In the latter case, ��i�t� =
��i�t+�= 0.

S2. �t�=/−Ci �t� and t ∈ LDisc��P3�i�∩RDisc��P3�i�. In this case, ��i�t−�= ��i�t�= ��i�t+�= 0.
Proof. In the proof below, we will make repeated use of the fact that ��i�t�= �i�t�+ �R3�i�t�= �i�t�−

�P3�i�t�+ 3i�t� proved in Theorem 1.1(ii), without explicit reference. The fact that 3i�t� = 0 for t ∈ �0� t̃iu�
follows from property (i) of Lemma 4.1, and this also implies that 3i�t̃iu−�= 0. By the definition of t̃iu, −C�t̃iu�=
0 or, equivalently, t̃iu ∈/−Ci �t̃iu�. By property (ii) of Lemma 4.1, 3

i�t̃iu� > 0 = 3i�t̃iu−� if and only if 3i�t̃iu�=
−��t̃iu�+ �P3�i�t̃iu� > 0, which proves assertion L1 of the theorem.
Now, fix t ∈ �t̃iu���. Then Lemma 4.1(v) shows that if t ∈ LDisc�3i�, then t ∈/−Ci �t� and 3i�t�= �i�t�+

�P3�i�t�= 0, so that in this case ��i�t�= 0. We consider two exhaustive subcases, namely, when t ∈/−Ci �t� �=
�t� and �t�=/−Ci �t�. In the first case, the fact that (82) holds if and only if t ∈ LDisc�3i� follows from (74)
and (76). If t is not isolated in /−Ci �t�, then there must exist a sequence �sn�n∈
 ⊆/−Ci �t� with sn ↑ t, and by
(74) we have

3i�t−�= sup
s∈/−Ci �t�\�t�

�−�i�s�+ �P3�i�s��≥ lim
n→�−�i�sn�+ �P3�i�sn�=−�i�t�+ �P3�i�t−�


Thus, we have shown that ��i�t−�≥ 0= ��i�t�. On the other hand, recalling that 3i is upper semicontinuous
and t ∈ LDisc�3i�, we also have

−�i�t�+ �P3�i�t�= 3i�t� > 3i�t−�≥−�i�t�+ �P3�i�t−��

which implies t ∈ LDisc��P3�i�. Now, consider the second case when �t�=/−Ci �t�. Then (75) shows that t ∈
LDisc�3i� if and only if �P3�i is discontinuous at t, as stated in L3. This completes the proof of Theorem 4.1(i).
Next, consider the right discontinuities of 3i. Clearly, RDisc�3i� ⊂ �t̃iu���. Properties (v) and (vi) of

Lemma 4.1 show that t ∈/−Ci �t� and /−Ci �s�⊂ �t� s� for all s > t are necessary conditions for t ∈ RDisc�3i�,
and, moreover, that then 3i�t+� = −�i�t�+ �P3�i�t+�, so that ��i�t+� = 0. Furthermore, due to the upper
semicontinuity of �P3�i, it follows that

3i�t�= �−�i�t�+ �P3�i�t��∨ sup
s∈/−Ci �t�\�t�

�−�i�s�+ �P3�i�s�� ≥ −�i�t�+ �P3�i�t�

≥ �i�t�+ �P3�i�t+�= 3i�t+�
 (84)

Now, suppose that �P3�i is right continuous. Then 3i�t+�=−�i�t�+ �P3�i�t�, and so t ∈RDisc�3i� if and only
if /−Ci �t� �= �t� and (83) holds. A simple rearrangement of terms also shows that in this case ��i�t� > 0 and,
because the conditions (82) and (83) are mutually exclusive, it follows that 3i is left continuous at t. On the other
hand, if t ∈ RDisc��P3�i�, then the second inequality in (84) is strict, and so we always have t ∈ RDisc�3i�.
Moreover, if 3i�t� = −�i�t�+ �P3�i�t� (as would be the case if �t� = /−Ci �t�), then ��i�t� = ��i�t+� = 0
(as stated in R3), and otherwise ��i�t� > ��i�t+�= 0 (from which R2 follows).
Finally, we analyze the separated discontinuities of 3i. Note that because 3i ∈�usc, it follows that SDisc�3

i�=
LDisc�3i�∩RDisc�3i�. From properties (i) and (ii) of this theorem, which were proved above, it is clear that,
because the condition R1 is incompatible with both L1–L3, the only ways in which a separated discontinuity
can occur is if (a) R2 and either L1 or L2 are satisfied or (b) L3 and R3 hold, from which property (iii) of the
theorem follows immediately.
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Table 1. Equivalent descriptions of the regimes of �)���.

Physical description Definition in terms of �)��� Equivalent condition in terms of /−Ci

Overloaded )i�t� > 0 t �∈/−Ci �t�

Underloaded )i�t�= 0 �t�=/−Ci �t� and
'�i�t−� �= 0, '�i�t+� �= 0 /−Ci �s�⊂ �t� s� ∀ s > t

Critical )i�t�= 0 and either t ∈/−Ci �t� and either /−Ci �t� �= �t� or
'�i�t−�= 0 or '�i�t+�= 0 ∃s > t such that /−Ci �s�∩ �0� t� �= �

End of )i�t�= 0 and ∃% > 0 such that t ∈/−Ci �t�, /−Ci �t� �= �t�,
overloading )i�s� > 0 for s ∈ �t− %� t� t is isolated in /−Ci �t�

Start of )i�t�= 0 t ∈/−Ci �t��/−Ci �t� �= �t�

underloading '�i�t−�= 0 and '�i�t+� �= 0 /−Ci �s�⊂ �t� s� ∀ s > t

4.2. Alternative description of the regimes of �)���. In Definition 1.4, the regimes of �)��� were
described in terms of properties of the solution �)��� to the ORP for an input �. On the other hand, as shown
in Theorem 4.1, the analysis of the discontinuities of 3 lead naturally to conditions involving the sets /−Ci �t�
defined in §3.3.2. The following lemma provides a link between these two sets of conditions.

Lemma 4.2. For i ∈ �1� � � � �K�, let /−Ci �t� be as defined by (14) and let til be defined by (18). Then for
t ∈ �til ���, the equivalences in Table 1 are satisfied.

Proof. The lemma follows essentially from the property proved in Lemma 3.7 that for t ≥ til , /i�t� =
/−Ci �t�, where /i is as defined in (11). The first equivalence (for the overloaded state) is then an immediate
consequence of the fact that t ∈ /i�t� if and only if )i�t� = 0. We now show that �t� = /−Ci �t� if and only
if )i�t�= 0 and '�i�t−� �= 0. Indeed, �t�=/−Ci �t� implies −Ci�t�=−Ci�t� and Ci�s� <−Ci�t� for all s < t.
In turn, this holds if and only if �i�s�=−Ci�s� <−Ci�t�= �i�t� for every s < t. Because �i is nondecreasing,
this is equivalent to the condition that �i is not flat to the left of t. By a similar reasoning, it is easy to see that
'�i�t+� �= 0 if and only if /−Ci �s�⊂ �t� s� for all s > t. Combining the above equivalences, all the results of
Table 1 can be obtained in a straightforward manner. The few remaining details are left to the reader.

4.3. Discontinuities of the derivative. We now combine the results of Theorem 4.1 and Lemma 4.2 to iden-
tify necessary conditions for discontinuities in �� to occur. We first establish a simple corollary of Theorem 4.1
and then present the proof of Theorem 1.2.

Lemma 4.3. For i= 1� � � � �K and t ≥ 0, we have the following two properties.
(i) �P3�i is left continuous at t if the following condition is satisfied: t % �t̃ku� k= 1� � � � �K� and

there is no critical chain preceding i at time t< (85)

(ii) �P3�i is right continuous at t if the following condition is satisfied:

there is no subcritical chain preceding i at time t. (86)

Proof. Fix t ∈ �0��� and i ∈ �1� � � � �K� and suppose (85) holds. Define 	 to be the class of empty chains
i= j0, j1� � � � � jm preceding i at time t, and let

�	 
= �ij1� � � � � jm ∈	� t ∈ LDisc�3jm��


We will argue by contradiction to show that in fact �	 =�. Because (85) is satisfied, by Definition 1.5(i) of a
critical chain it is clear that there are no cyclic chains in 	. Thus, the maximum length of any chain in 	 is
bounded by K. Suppose �	 �= �� and let m ∈ �1� � � � �K− 1� be the largest integer such that there exists a chain
i� j1� � � � � jm ∈ �	. Consider the set � 
= �k� Pjmk > 0� and B̃


= �k ∈�� )k�t� > 0�. By Lemma 4.2, if k ∈ B̃, then
t �∈)−Ck �t�, and so Theorem 4.1(i) shows that t �∈ LDisc�3k�. On the other hand, if k ∈ B\B̃, then i� j1� � � � � jm� jk
is an empty chain and the maximality of m allows us to conclude once again that t �∈ LDisc�3jk �. Together, this
implies that �P3�jm =∑

k∈B Pjmk3
k is left continuous at t. Because t % �t̃ku� k= 1� � � � �K�, by Theorem 4.1(i) it

is possible for t ∈ LDisc�3jm� only if t is isolated in /−Cjm
�t� �= �t�. However, by Lemma 4.2 this corresponds

to jm being at the end of overloading, which in turn implies that i� j1� � � � � jm is a critical chain, which is not
possible due to (85). Thus, it must be that �	 = �. Now, for all k with Pik > 0, either )k�t� = 0, in which
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case jk is an empty chain and �	 =� implies t �∈ LDisc�3k�; or )k�t� > 0, which is equivalent to t �∈/−Ck �t�
by Lemma 4.2. In the latter case, Theorem 4.1(i) shows that t �∈ LDisc�3k�. Together, this leads to the desired
conclusion that �P3�i =∑

k�Pik>0
Pik3

k is left continuous at t.
The proof of the second assertion is similar. Define �	 in an analogous fashion, but with LDisc replaced by

RDisc. Arguing as above, but this time using property (ii) instead of property (i) of Theorem 4.1, it is possible to
conclude that if i� j1� � � � � jm is a maximal chain in �	, then �P3�jm is right continuous at t. By Theorem 4.1(ii),
this can only occur if t ∈/−Cjm �t� and /Cjm �s�⊂ �t� s� for all s > t (note that here we do not need to assume
that t % �t̃ku� k ∈ 1� � � � �K�). By Lemma 4.2 this corresponds to jm being the start of underloading and thus
contradicts (86). This shows that �	 = � in this case as well, and the rest of the proof proceeds exactly as
before.
Proof of Theorem 1.2 Fix t ∈ �0���, and for simplicity, denote 3�1� simply by 3. By (16), ��i = �i +

�R3�i = �i + 3i − �P3�i. Therefore, t ∈ LDisc��� i� only if either t ∈ LDisc��P3�i� or t ∈ LDisc�3i�. Suppose
t �∈ �t̃ku� k= 1� � � � �K� and t ∈ LDisc��P3�i�. By Lemma 4.3(i), there must exist a critical chain preceding i and,
moreover, by L3 of Theorem 4.1(i) for t ∈ LDisc��� i�, one cannot have /−Ci �t� = �t�. In particular, due to
Lemma 4.2, this implies that i cannot be underloaded. This corresponds to condition (Lb). If, in addition, i is
overloaded, this means t �∈/−Ci �t� by Lemma 4.2, and Theorem 4.1(i) then dictates that 3i is left continuous
at t. The inequality in (23) is then a direct result of the upper semicontinuity of �P3�i. Next, suppose that
t �∈ LDisc��P3�i� (this holds, for example, if there is no critical chain that precedes i), but t ∈ LDisc�3i�.
Invoking Theorem 4.1(i) once again (this time condition L2), it follows that t ∈ LDisc��� i� only if t is isolated
in /−Ci �t� �= �t�, and in this case (22) holds. By Lemma 4.2, the latter condition corresponds to the end
of overloading, and this establishes condition (La). This completes the proof of necessary conditions for left
discontinuities.
The corresponding proof for right discontinuities is analogous. If i is underloaded at time t, then Theo-

rem 4.1(ii) shows that t �∈ RDisc��� i�. Thus, suppose that i is not underloaded at time t. If t ∈ RDisc��P3�i�,
then by Lemma 4.3(ii), there must exist a subcritical chain preceding i. This corresponds to condition R(b). If,
in addition, i is overloaded, then t �∈/−Ci �t� and so Theorem 4.1(ii) implies that t �∈ RDisc�3i�. The inequal-
ity (25) then follows from the upper semicontinuity of �P3�i. On the other hand, if t �∈ RDisc��P3�i�, then for
t ∈ RDisc��� i� it must be that t ∈ RDisc�3i�. By Theorem 4.1(ii), this can only occur if condition R1 holds,
which implies t ∈/−Ci �t� �= t and /−Ci �s�⊂ �t� s� for all s > t. As shown in Lemma 4.2, this is equivalent to
the statement that i is at the start of underloading. This scenario is addressed in condition R(a).
Now, for a left and right discontinuity to hold simultaneously, we can either have scenario L(a) and R(b)

holding at the same time, which corresponds to LR(a), or conditions L(b) and R(a) being satisfied, which corre-
sponds to LR(b) or conditions L(b) and R(b) holding, which corresponds to LR(c). The remaining combination,
L(a) and R(a) is excluded because, comparing conditions L2 and R1 of Theorem 4.1, it is clear that it is not
possible to have both a left and right discontinuity at the end of overloading and start of underloading. This
completes the proof of the theorem.

5. Proofs of auxiliary results. We now provide the proof of Lemma 3.4 in §5.1 and the characterization
of the generalized one-dimensional derivative (i.e., the proof of Theorem 3.2) in §5.2.2.

5.1. Proof of Lemma 3.4. We start with the proof of (48). Note that f̄ ∨ 0− ḡ ∨ 0 is the difference of two
monotonic functions and thus lies in �� . Therefore, for every n ∈ 
, there exists a partition En


= �0= tn1 <
tn2 < · · ·< tnkn

= T � of �0� T � such that

�f̄ ∨ 0− ḡ ∨ 0�T ≤
kn∑
i=1

1n
i +

1
n
�

where
1n

i


= �f̄ �tni �∨ 0− ḡ�tni �∨ 0− f̄ �tni−1�∨ 0+ ḡ�tni−1�∨ 0�

For any function h on �0� T �, let h�i��s�


= h�tni−1+ s�− h̄�tni−1� for s ∈ �0� T − tni−1�, and note that

h̄�tni �= h̄�tni−1�+ sup
s∈�0� tni −tni−1�

�h�i��s��∨ 0
 (87)

We can apply (87) with h= f̄ ∨ 0 and h= ḡ ∨ 0, to rewrite 1n
i in the form

1n
i =

∣∣∣∣ sup
s∈�0� tni −tni−1�

f �i��s�∨ 0− sup
s∈�0� tni −tni−1�

g�i��s�∨ 0
∣∣∣∣≤

∣∣∣∣ sup
s∈�0� tni −tni−1�

�f �i��s�− g�i��s��∨ 0
∣∣∣∣�
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where the inequality is obtained by first replacing f � g and the interval �0� T � in (46) by f �i�� g�i� and the interval
�0� tni − tni−1�, respectively, and then taking absolute values on both sides. Substituting h= �f − g�∨ 0 in (87),
we can reexpress the right-hand side of the last display to obtain

1n
i ≤ �f − g�tni �∨ 0− f − g�tni−1�∨ 0�


Thus, we have

�f̄ ∨ 0− ḡ ∨ 0�T −
1
n
≤

kn∑
i=1

1n
i ≤

kn∑
i=1
�f − g�tni �∨ 0− f − g�tni−1�∨ 0� ≤ �f − g�T 


Sending n→�, one obtains (48).
Next, let f be the pointwise limit of a sequence of functions �fn�n∈
 in �lim. To complete the proof of the

lemma, it suffices to establish the contrapositive that if f �∈�lim, then there exists T <� such that supn �fn�T =
�. If f �∈�lim, then there must either exist t ∈ �0��� such that f has no finite left limit at t or there must exist
t ∈ �0��� such that f has no finite right limit at t. We only consider the case when f does not have a finite left
limit at a certain t ∈ �0��� because the other case follows by a similar argument. In this case, by the Cauchy
condition there must exist % > 0 and sequences �si�i∈
 and �s′i�i∈
 such that si ↑ t, s′i ↑ t, and for every i ∈
,

�f �si�− f �s′i�� ≥ 4%
 (88)

Furthermore, we can assume without loss of generality that s1 < s′1 < s2 < s′2 < · · · . Because fn→ f pointwise,
given any m ∈
 there exists N <� such that for all n≥N , �fn�s�− f �s��< % for all s ∈ �si� s

′
i � i= 1� � � � �m�.

Combining this inequality with (88), we conclude that �fn�si�− fn�s
′
i��> % for every i= 1� � � � �m and n≥ N ,

and hence that

�fn�t ≥
m∑

i=1
�fn�si�− fn�s

′
i�� ≥m%


Taking first the limit superior in n of the left-hand side, and then letting m go to infinity, we conclude that
lim supn �fn�t =� and hence supn �fn�t =�. This proves the contrapositive, and hence the lemma.

5.2. Proof of the representation for the one-dimensional derivative. We now establish the representation
for the generalized one-dimensional derivative stated in §3.3.2. We will start with three preliminary lemmas in
§5.2.1 and present the proof in §5.2.2.

5.2.1. Preliminary lemmas. The first two results summarize some elementary properties of functions and
the third result identifies conditions under which the functions g∗� ! and g∗� r of Theorem 3.2 can be completed
determined by g, and do not rely on the family of functions �g	�	>0.

Lemma 5.1. Consider a family of left (respectively, right) continuous functions �g	�	>0 that converges point-
wise monotonically down to a function g ∈�lim as 	 ↓ 0. If s is a point of left (respectively, right) continuity
for g, then given any real numbers �s	�	>0 such that s	 ↑ s (respectively, s	 ↓ s) as 	→ 0, it follows that

lim
	↓0

g	�s	�= g�s�


Proof. Fix s ∈ �0���. Given any % > 0, by the pointwise convergence of �g	�	>0, there exists L0 > 0 such
that for all L ∈ �0� L0�, �gL�s� − g�s�� < %/2
 Likewise, given any L > 0, because either gL is left continu-
ous and s	 ↑ s, or gL is right continuous and s	 ↓ s, there exists 	0�L� < L such that for all 	 ∈ �0� 	0�L��,
�gL�s	�− gL�s��< %/2. Together, the last two inequalities show that given any % > 0, there exists L0 > 0 such
that for all L < L0 and 	 < 	0�L�, �gL�s	�− g�s��< %
 Because g	 converges pointwise monotonically down to
g, this implies that

g�s	�≤ g	�s	�≤ gL�s	�≤ g�s�+ %


Taking limits as 	 ↓ 0 and using the left continuity of g and the fact that s	 ↑ s (or the right continuity of g and
the fact that s	 ↓ s), one concludes that

g�s�≤ lim inf
	↓0

g	�s	�≤ lim sup
	↓0

g	�s	�≤ g�s�+ %


The statement of the lemma follows on sending % ↓ 0.
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Lemma 5.2. Suppose f ∈�lim and the family of functions �g	� 	 > 0�⊆�lim is uniformly bounded, i.e.,

LN


= sup
	>0

g	
N <� for every N ∈ �0���
 (89)

Then the following properties hold for any t ∈ �0���.
(i) There exists 	0 > 0 such that for all 	 ∈ �0� 	0�

f̄ �t� < 0 ⇒ 	−1f + g	�t� < 0 (90)

and, likewise,
f̄ �t� > 0 ⇒ 	−1f + g	�t� > 0< (91)

(ii) For any % ∈ �0�Lt� and s ∈ �0� t�, if

	−1f + g	�t�≤ 	−1f �s�+ g	�s�+ % (92)

for some 	 ∈ �0� %/6Lt�, then
f̄ �t�≤ f �s�+ %
 (93)

Proof. Fix t ∈ �0���, let L

= Lt , and choose 	0 = �f̄ �t��/2L. If f̄ �t� < 0, then for 	 ∈ �0� 	0�

	−1f + g	 ≤ 	−1f̄ �t�+ ḡ	�t�=−	−1�f̄ �t�� + ḡ	�t�≤−2L+L < 0�

which establishes (90). A similar argument establishes (91).
Suppose there exists 	 < %/6Lt and s ∈ �0� t� such that (92) is satisfied. We now argue by contradiction to

show that then (93) must hold. Indeed, if f �s� < f̄ �t�− %, then choose s̃ ∈ �0� t� such that f �s̃� > f̄ �t�− %/2

The last two inequalities together show that f �s̃� > f �s�+%/2, which, along with (92), the fact that % < Lt and
	 < %/6Lt , implies that

	−1f �s̃�+ g	�s̃�− 	−1f + g	�t� ≥ 	−1f �s̃�+ g	�s̃�− �	−1f �s�+ g	�s��− %

≥ 	−1�f �s̃�− f �s��− 2Lt − %

>
	−1%
2
− 3Lt > 0�

which contradicts the definition of the supremum because s̃ ∈ �0� t�. Thus, (93) must hold.
The next lemma lists various conditions under which g∗� l and g∗� r of Theorem 3.2 do not depend on the entire

sequence �g	�	>0 but can be determined just from g.

Lemma 5.3. Let �g	�	>0, g� g∗� !, and g∗� r be the functions described in Theorem 3.2. Then the following
properties hold:

(i) g∗� l ≥ gl and g∗� r ≥ gr ;
(ii) If g	 = g is independent of 	, then g∗� l = gl and g∗� r = gr ;
(iii) If �g	�⊂�, then g∗� l = g∗� r = g;
(iv) If g	 converges to g in the uniform topology, i.e., for every N <� lim	↓0 
g	 − g
N = 0, then g∗� l = gl

and g∗� r = gr .
Here, as usual, gl and gr are, respectively, the left and right regularisations of g.

Proof. Fix t ∈ �0���. For every 	 > 0, choose t	 ∈ �t−	� t� such that �g	�t	�− g	�t−��< 	. Then t	 ↑ t as
	 ↓ 0 and the monotonicity of the sequence of functions g	 ensures that g�t	�≤ g	�t	� < g	�t−�+	= g	�!�t�+	,
where g	�! is the left regularisation of g	. Taking limits as 	 ↓ 0, it follows that gl�t� = g�t−� ≤ g∗l �t�. An
analogous argument yields the inequality gr ≤ g∗r , thus establishing the first property. The second property is
a trivial consequence of the definitions and due to the assumed monotonicity of the sequence �g	�. If g	 is
right continuous for every 	 > 0, there exists a family of numbers s	 ∈ �s���, 	 > 0, such that s	 ↓ s as 	 ↓ 0
and �g	�s	� − g	� r �s	�� = �g	�s	� − g	�s+�� ≤ 	
 Because g	�s	�→ g�s� as 	 ↓ 0 by Lemma 5.1, this shows
that g∗�r �s�= lim	↓0 g	�s+�= g�s�. The case when all the g	 are left continuous is exactly analogous, and so
property 3 follows.
To prove the fourth property, fix s ∈ �0���, and for 	 ∈ �0�1�, choose s	 ∈ �s�2s� such that

�g	�s	�− g	�s+�� ≤ 	 and s	 ↓ s as 	 ↓ 0. The uniform convergence of g	 to g on the interval �0�2s� implies that
given any % > 0, there exists 	0 > 0 such that for all 	 ∈ �0� 	0� and n ∈
, g�s	�−%≤ g	�s	�≤ g�t	�+%
 This,
in turn, implies that g�s	�−%−	≤ g	�s+�≤ g�s	�+%+	
 Taking limits, first as 	 ↓ 0, to obtain the inequality

gr�s�− %= g�s+�− %≤ g∗� r �s�≤ g�s+�+ %= gr�s�+ %�

and then sending % ↓ 0, we conclude that gr�s� = g∗� r �s�. Because s is arbtirary, gr = g∗� r , and an exactly
analogous argument shows that gl = g∗� l.
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5.2.2. Proof of Theorem 3.2. We are now ready to prove the characterization of the generalized one-
dimensional derivative stated in Theorem 3.2.
First, note that the family of functions �g	�	>0 has a pointwise limit g as 	 ↓ 0 because for each s ∈ �0���,

�g	�s��	>0 is uniformly bounded and monotonically nonincreasing. By the same token, because the left and right
regularized sequences �g	� l�	>0 and �g	� r �	>0 inherit the uniform boundedness and monotonicity properties of
�g	�	>0, the corresponding limits g∗� l and g∗� r are also well defined.
Fix t ∈ �u�f � or, in other words, fix t such that f̄ �t� > 0. By assumption, L


= sup	>0 
g	
t is finite and so,
by relation (91) of Lemma 5.2, there exists 	0 > 0 such that 	−1f + g	�t� > 0 for all 	 ∈ �0� 	0�. Hence, for
all 	 ∈ �0� 	0�, we have �3	�t�= 	−1f + g	�t�− 	−1f �t�. Now, for each 	 ∈ �0� 	0 ∧ 1/8�, choose s	 ∈ �0� t� to
satisfy

�	−1f + g	��s	�≥ 	−1f + g	�t�− 8L	
 (94)

Applying Lemma 5.2(ii), with %= 8L	 ∈ �0�L� and s = s	, and using the definition of the supremum, it follows
that f̄ �t�− 8L	≤ f �s	�≤ f̄ �t�. Taking limits as 	 ↓ 0, this yields the equality

lim
	↓0

f �s	�= f̄ �t�
 (95)

Moreover, by (94) we clearly also have

�3	�t�= 	−1f + g	�t�− 	−1f �t�≤ g	�s	�+ 8L	+ 	−1�f �s	�− f̄ �t��≤ g	�s	�+ 8L	�

and therefore
lim sup

	↓0
�3	�t�≤ lim sup

	↓0
g	�s	�
 (96)

We now show that
lim sup

	↓0
g	�s	�≤ �3�t�
 (97)

Let �	n�n∈
 be a sequence with 	n ↓ 0 as n→� such that

lim
n↑�

g	n
�s	n

�= lim sup
	↓0

g	�s	�
 (98)

Because �s	n
�n∈
 ⊂ �0� t� is uniformly bounded, it can be assumed without loss of generality (by choosing a sub-

sequence if necessary) that there exists s0 ∈ �0� t� such that limn→� s	n
= s0. By choosing a further subsequence

if necessary, it can be assumed that either (i) s	n
= s0 for all n sufficiently large, or (i) does not hold and either

s	n
↑ s0 or s	n

↓ s0 as n→�. If (i) holds, then (95) implies f �s0�= f̄ �t�, so that s0 ∈/f �t�. In that case,

lim sup
	↓0

g	�s	�= lim
n↑�

g	n
�s0�= g�s0�≤ sup

s∈/f �t�

g�s�≤ �3�t��

and (97) holds. On the other hand, suppose that (i) above does not hold, but instead s	n
↑ s0 as n ↑ �. Then

f �s0−�= f̄ �t� by (95), and hence s0 ∈/L
f �t�. Fix % > 0 and given 	m > 0, choose N�m�≥m such that for all

n≥N�m�, g	m
�s	n

�≤ g	m
�s0−�+%
 The fact that �g	n

�n∈
 is a monotone nonincreasing sequence as n ↑� then
shows that for all n≥N�m�, g	n

�s	n
�≤ g	m

�s0−�+ %
 Taking limits, first as n ↑�, and then as m ↑�, yields
lim
n↑�

g	n
�s	n

�≤ lim
m↑�

g	m
�s0−�+ %= lim

m↑�
g	m� l�s0�+ %= g∗� l�s0�+ %


Sending % ↓ 0 in the above display, using (98) and the fact that s0 ∈/L
f �t�, it follows that

lim sup
	↓0

g	�s	�= lim
n↑�

g	n
�s	n

�≤ g∗� l�s0�≤ sup
s∈/L

f �t�

g∗� l�s�≤ �3�t�


Lastly, if (i) does not hold but s	n
↓ s0 as n ↑�, it must be that s0 �= t (since s	n

∈ �0� t�) and, due to (95), that
f �s0+�= f̄ �t�. Thus s0 ∈ �/R

f �t�, and arguments similar to those given above yield the relation

lim sup
	↓0

g	�s	�≤ lim
	↓0

g	�s0+�= lim
	↓0

g	� r �s0�= g∗� r �s0�≤ sup
s∈ �/R

f �t�

g∗� r �s�≤ �3�t�


This establishes (97) which, when combined with (96), shows that

lim sup
	↓0

�3	�t�≤ �3�t�
 (99)
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To establish the reverse inequality, with lim sup replaced by lim inf, first note that for any r ∈/f �t�,

�3	�t�= 	−1f + g	�t�− 	−1f̄ �t�≥ 	−1f �r�+ g	�r�− 	−1f̄ �t�= g	�r�


First take limits as 	 ↓ 0 and then take the supremum over r ∈/f �t� to obtain

lim inf
	↓0

�3	�t�≥ sup
r∈/f �t�

�g�r��
 (100)

Next, if /L
f �t� �= �, let r ∈/L

f �t� and for each 	 > 0 choose r	 ∈ �r − 	� r� such that

	−1�f �r	�− f̄ �t�� >−	

2
and �g	�r	�− g	�r−��< 	

2



Then

�3	�t�≥ 	−1f �r	�+ g	�r	�− 	−1f̄ �t� > g	�r−�− 	


Take limits as 	 ↓ 0 and then take the supremum over r ∈/L
f �t� to arrive at the inequality

lim inf
	↓0

�3	�t�≥ sup
r∈/L

f �t�

�g∗� l�r��


Analogous arguments can be used to show that

lim inf
	↓0

�3	�t�≥ sup
r∈ �/R

f �t�

�g∗� r �r��


The last two displays, when combined with (100), yield the relation

lim inf
	↓0

�3	�t�≥ sup
r∈/L

f �t�

�g∗� l�r��∨ sup
r∈/f �t�

�g�r��∨ sup
r∈ �/R

f �t�

�g∗� r �r��= �3�t�


Together with (99), this shows that lim	↓0 �3	�t�= �3�t� for t ∈�u�f �.
Note that the arguments above showed, in fact, that for any t ∈ �0���,

lim
	↓0

�	−1f + g	�t�− 	−1f �t��=
(
sup

s∈/L
f �t�

�g∗� l�s��∨ sup
s∈/f �t�

�g�s��∨ sup
s∈ �/R

f �t�

�g∗� r �s��
)

 (101)

If t ∈ �m�f �, then f̄ �t�= 0. Therefore, for such t, �3	�t�= 	−1f + g	�t�∨ 0= �	−1f + g	�t�− 	−1�f ��t��∨ 0.
Taking the maximum of both sides of (101) with zero and noting that in this case �3�t� is defined to be the
maximum of the right-hand side of (101) with zero yields the conclusion that lim	↓0 �3	�t�= �3�t�. On the other
hand, if t ∈ �!�f �, then f̄ �t� < 0. Because the family �g	� is uniformly bounded on �0� t�, relation (92) of
Lemma 5.2 implies that for all 	 sufficiently small, 	−1f + g�t� < 0
 Hence, for all sufficiently small 	 > 0,
�3	�t�= 0. Because, by definition, �3�t�= 0 for t ∈ �!�f �, once again lim	↓0 �3	�t�= �3�t�. This completes the
proof of (61) in Theorem 3.2.
When �g	�⊂�, g∗� l = g∗� r = g by Lemma 5.3(iii), and so H�f � g� g∗� l� g∗� r �=H�f � g� g� g�=H1�f � g� and

the identity (62) follows. If, in addition, f is continuous and so /L
f �t�∪ �/R

f �t�⊆/f �t� and thus (63) holds. The
last statement follows directly from Lemma 5.3(iv) and the definition of H2.
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