On Measuring, Modeling and Analyzing Healthcare Systems in Real-Time

From Small Measurements through Big Data to Analytics

Avi Mandelbaum

IE&M **SEE Laboratory**

Technion, Haifa, Israel

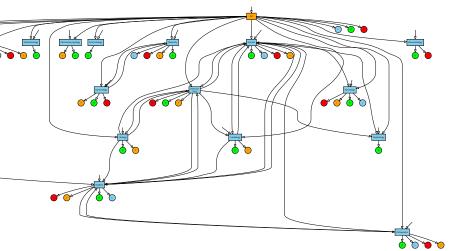
http://ie.technion.ac.il/serveng

T2med Technion, December 2013

Lecture will be downloadable from my Technion website

1

ED-Environment in Israel


Queueing in a "Good" Hospital

Tong-ren Hospital at 6am, Beijing

Hospital Network: Inter-Ward Patient Flow

Patients movement (HomeHospital) January 2005

Research Partners

Students:

Aldor*, Baron Yonit*, Carmeli*, Chen Hong*, Cohen Izik*, Feldman Zohar*, Garnett*, Gurvich*, Khudiakov*, Koren, Maman*, Marmor*, Reich*, Rosenshmidt*, Shaikhet*, Senderovic*, Tseytlin*, Yom-Tov*, Yuviler, Zaied*, Zeltyn*, Zychlinski*, Zohar Eti*, Zviran*, . . .

► Theory:

Armony, Atar, Azriel, Cohen Izik, Gurvich, Feigin, Huang Junfei, Jelenkovic, Kaspi, Massey, Momcilovic, Reiman, Shimkin, Stolyar, Trofimov, Wasserkrug, Whitt, Zeltyn, Zhang Jiheng, Zhang Hanqin ¹, ...

► Empirical/Statistical Analysis:

Brown, Gans, Shen Haipeng, Zhao Linda; Zeltyn; Ritov, Goldberg; Gurvich, Huang Junfei, Liberman; Liu Nan, Ye Han; Armony, Marmor, Tseytlin, Yom-Tov; Gorfine, Ghebali; Feigin, Azriel; Tezcan; Kim Song-Hee, Won Chul Cha; He Shuangchi, Sim Melvyn...

► Industry:

Mizrahi Bank, Fleet Bank, Rambam Hospital, IBM Research, Hapoalim Bank, Pelephone Cellular, Samsung Hospital, ...

► Technion SEE Center / Laboratory:

Feigin; Trofimov, Nadjharov, Gavako, Kutsy; Senderovic; Liberman, Koren, Plonsky; Research Assistants. . . .

In many Western countries, there is a short list of popular "first names," but countless "last names." In China, it is just the reverse. The list of last names is short, and the number of first names is in the billions (from chinapage.com/biography/lastname.html).

Research Goals

- Reality: Service Systems
 e.g. Hospitals, Call Centers, Websites, ...
- Models = ServNets
 Simple models at the service of complex realities
 Q-Nets, F-Nets, D-Nets, Sim-Nets: Operations Research (Math)
 but also P-Nets, C-Nets, . . . , as in BPM, WFM, Process Mining

Research Goals

- Reality: Service Systems
 e.g. Hospitals, Call Centers, Websites, ...
- Models = ServNets
 Simple models at the service of complex realities
 Q-Nets, F-Nets, D-Nets, Sim-Nets: Operations Research (Math)
 but also P-Nets, C-Nets, ..., as in BPM, WFM, Process Mining
- ► Research: Data-based Modeling, Analysis, Optimization

Research Goals

- Reality: Service Systems
 e.g. Hospitals, Call Centers, Websites, ...
- Models = ServNets
 Simple models at the service of complex realities
 Q-Nets, F-Nets, D-Nets, Sim-Nets: Operations Research (Math)
 but also P-Nets, C-Nets, ..., as in BPM, WFM, Process Mining
- ► Research: Data-based Modeling, Analysis, Optimization
- ► Goals: (Reproducible) research & teaching (that impact practice)
- ⇒ Data & analysis of ServNets: accessible, useful
- ⇒ Model creation & validation: automatic, real-time, data-based

Feasible? Why be Optimistic?

- e.g. Emergency Department models & analysis

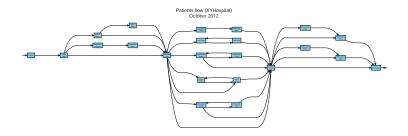
 On-demand, Automatic:
 - ► Real-time: control patient-flow bottlenecks
 - Short-term: on Monday, set Tuesday's staffing levels (or next week's)
 - ▶ **Design**: Physician protocol explore (triage) vs. exploit (discharge)

Technion IE&M research (OR/QS/IE) + **SEELab** technologies:

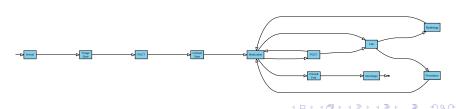
Operational recipes (control, staffing, design) via Math-Nets (Q, F, D)

Feasible? Why be Optimistic?

- e.g. Emergency Department models & analysis


 On-demand, Automatic:
 - ► Real-time: control patient-flow bottlenecks
 - Short-term: on Monday, set Tuesday's staffing levels (or next week's)
 - ▶ **Design**: Physician protocol explore (triage) vs. exploit (discharge)

Technion IE&M research (OR/QS/IE) + **SEELab** technologies:


- Operational recipes (control, staffing, design) via Math-Nets (Q, F, D)
- Virtual realities (validation labs) via SimNets
- Process Mining (Discovery, Conformance) of ServNets (Started w/ A. Gal, A. Senderovic, M. Weidlich)

Recurrent Service Process in the ED

Capture Recurrent nature of service process: Multiple doctor visits

Feasible? Why be Optimistic?

- e.g. Emergency Department models & analysis

 On-demand, Automatic:
 - ► Real-time: control patient-flow bottlenecks
 - Short-term: on Monday, set Tuesday's staffing levels (or next week's)
 - Design: Physician protocol explore (triage) vs. exploit (discharge)

Technion IE&M research (OR/QS/IE) + **SEELab** technologies:

- Operational recipes (control, staffing, design) via Math-Nets (Q, F, D)
- Virtual realities (validation labs) via SimNets
- Process Mining (Discovery, Conformance) of ServNets (Started w/ A. Gal, A. Senderovic, M. Weidlich)

Overcome "curse of simplicity": "my models too simple to be credible"

- Enrich them when desired (research) or needed (practice)
- Scrutinize as in clinical trials: patient = simulation sample-path

Contents (if I had an hour)

- Data-based paradigm (for me and interested colleagues):
 Operations Research, Industrial Engineering, Queueing Science
- 2. Two simple (parsimonious) models
 - Emergency Department: Time-Varying
 - Mass Casualty Event: QNet and FNet (2 hours) performance
 - Normal: QNet, DNet and SimNet (over 1 day) staffing
 - Call Center: Stationary
 - Q-Net and D-Net (piecewise stationary) congestion laws
- 3. Empirical adventures at the Technion IE&M SEELab:

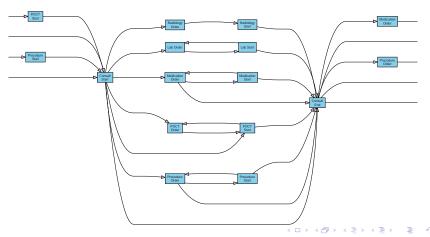
Mining operational building blocks of ServNets

- Primitives
- Structure
- Protocols

ER / ED Environment: Service Network

Acute (Internal, Trauma)

Walking

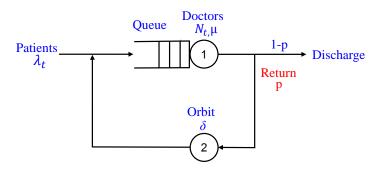

Multi-Trauma

Simple Models at the Service of Complex Realities: FNets

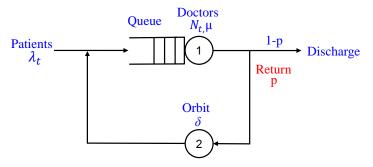
- 1. ED in Normal days (Time-Varying Periodic): Personnel Staffing (offline)
- 2. ED in Mass Casualty Event (Transient): Forecasting, Staffing (online)

Emergency Department in XYHospital, October 2012

RFID-Based Data in Mass Casualty Event (Drill)


Chemical MCE, Rambam Hospital (May 2010, 11:00-13:00)

Fluid Model:

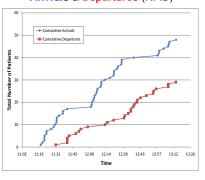

- ▶ Predictable Variability ⇒ Time-Varying
- ► Stochastic Individualism averaged-out ⇒ Deterministic

The Basic Service-Network Model: Erlang-R

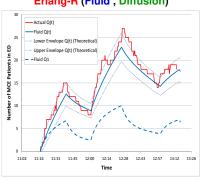
w/ G. Yom-Tov

Fluid Model ↔ (Time-Varying) Erlang-R System

Functional Strong Law of Large Numbers, for a 2-station QNet. BUT


FNet = ODE: derived directly (no QNet), spreadsheet "solution"

$$egin{aligned} rac{d}{dt}q_t^1 &= \lambda_t - \mu \cdot \left(q_t^1 \wedge N_t
ight) + \delta \cdot q_t^2 \ rac{d}{dt}q_t^2 &= p \cdot \mu \cdot \left(q_t^1 \wedge N_t
ight) - \delta \cdot q_t^2 \end{aligned}$$


Erlang-R Value: FNet vs. Data

Chemical MCE Drill (Israel, May 2010, 11:00-13:00)

Arrivals & Departures (RFID)

Erlang-R (Fluid, Diffusion)

- Recurrent/Repeated services in Chemical MCE: injection every 15/30/60 min
- Fluid = ODE
- Diffusion (confidence band), via F. Central Limit Theorem: Usefully narrow

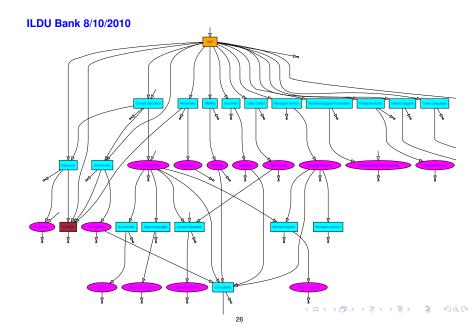
A Data-Based Framework, or "Erlang-R in the ED"

System = e.g. Emergency Department

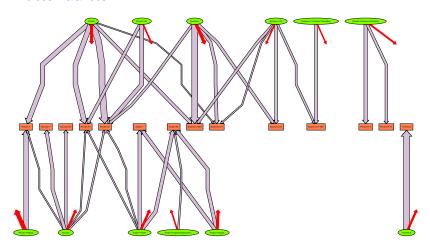
- ➤ **QNet** = Erlang-R (time-varying 2-station Jackson; w/ Yom-Tov)
- FNets = 2-dim dynamical system (Massey & Whitt)
- ▶ DNets = 2-dim Markovian Service Net (w/ Massey and Reiman)
- SimNet = Customized ED-Simulator (Marmor & Sinreich)

Call-Center Environment: Service Network

= "Fruit-flies of Hospitals": fast, low-stake, no IRB, ... yet highly relevant: LWBS, flow control, staffing, data, ...


Operational Focus

Operational Measures:


- Surrogates for overall performance: Financial, Psychological; Clinical
- Easiest to quantify, measure, track online, react upon

Customer Flow in Call Centers

Impatient Customers - Isolate or Aggregate

ILTelecom 9/3/2008

Pause for a Commercial:

Pause for a Commercial: The Technion **SEELab**

Hal and Inge Marcus (2007)

Technion SEE = Service Enterprise Engineering

SEELab: Environment for graphical EDA in real-time

- Detailed operational histories (customers, servers), e.g.
 - 1. * Bank Anonymous: 1 year, 350K calls by 15 agents in 2000, which paved the way to:
 - 2. *U.S. Bank : 2.5 years, 220M calls, 40M by 1000 agents
 - 3. Israeli Cellular: 2.5 years, 110M calls, 25M calls by 750 agents
 - 4. Israeli Bank: from January 2010, daily-deposit at a SEESafe
 - 5. Service Engineering internet site: click-stream data (2 years)

Technion SEE = Service Enterprise Engineering

SEELab: Environment for graphical EDA in real-time

- Detailed operational histories (customers, servers), e.g.
 - 1. * Bank Anonymous: 1 year, 350K calls by 15 agents in 2000, which paved the way to:
 - 2. *U.S. Bank : 2.5 years, 220M calls, 40M by 1000 agents
 - 3. Israeli Cellular: 2.5 years, 110M calls, 25M calls by 750 agents
 - 4. Israeli Bank: from January 2010, daily-deposit at a SEESafe
 - 5. Service Engineering internet site: click-stream data (2 years)
 - 6. *Home (Rambam) Hospital: 4 years, 1000 beds, inter-ward flow
 - 7. Emergency Department (ED) patient flow:
 - ▶ 5 EDs in Israel: 1-2 years, late David Sinreich, ED arrivals & LOS
 - ► ED in Seoul: 2 months, K. Song-Hee & W. Cha, pilot
 - ► ED in XY: 2 years, pilot
 - 8. Hospital RTLS (Real-Time Location System), pilot:
 - 250K events/day: 1000 patients, 350 staff (1500 tagged entities)
 - Infrastructure: 900 readers (sensors), many floors

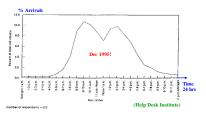
Technion SEE = Service Enterprise Engineering

SEELab: Environment for graphical EDA in real-time

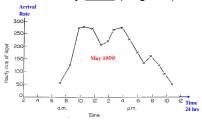
- Detailed operational histories (customers, servers), e.g.
 - 1. * Bank Anonymous: 1 year, 350K calls by 15 agents in 2000, which paved the way to:
 - 2. *U.S. Bank : 2.5 years, 220M calls, 40M by 1000 agents
 - 3. Israeli Cellular: 2.5 years, 110M calls, 25M calls by 750 agents
 - 4. Israeli Bank: from January 2010, daily-deposit at a SEESafe
 - 5. Service Engineering internet site: click-stream data (2 years)
 - 6. *Home (Rambam) Hospital: 4 years, 1000 beds, inter-ward flow
 - 7. **Emergency Department** (ED) patient flow:
 - ▶ 5 EDs in Israel: 1-2 years, late David Sinreich, ED arrivals & LOS
 - ► ED in Seoul: 2 months, K. Song-Hee & W. Cha, pilot
 - ► ED in XY: 2 years, pilot
 - 8. Hospital RTLS (Real-Time Location System), pilot:
 - 250K events/day: 1000 patients, 350 staff (1500 tagged entities)
 - Infrastructure: 900 readers (sensors), many floors
- * Open & Free for research and teaching

Empirical Adventures at the SEELab

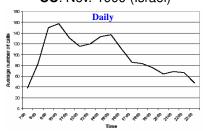
SEELab History suggests possible guidelines for ServNet Mining:


- 1. Primitives: arrivals, services, (im)patience
- 2. Structure: static process-maps
- 3. Protocols: Load Balancing, Dynamic Priority, Information

EDA ⇒ open questions, new directions, uncharted territories

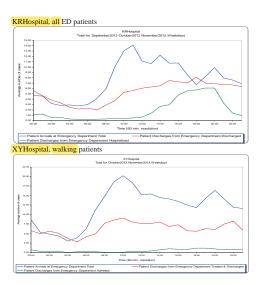

Primitives: Arrival (Rates) to Service

Why 2 Daily Peaks?


CC: Dec. **1995**, (USA, 700 Helpdesks)

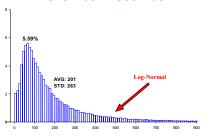
CC: May <u>1959</u> (England)

CC: Nov. 1999 (Israel)



ED: Jan.-July 2007 (Israel)

Arrival (Discharge) Rates in Korea and

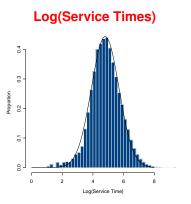


Primitives: Services (Durations)

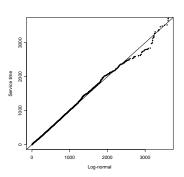
Histogram of Service-Duration in an Israeli Call Center, 1999

Why LogNormal?

November-December

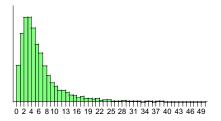


▶ November-December: LogNormal durations (common) ?



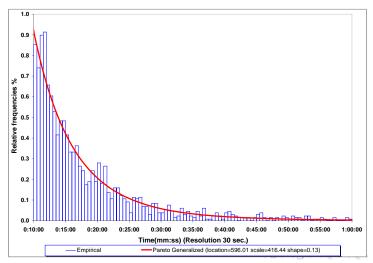
Durations: Phone Calls (2 Surprises)

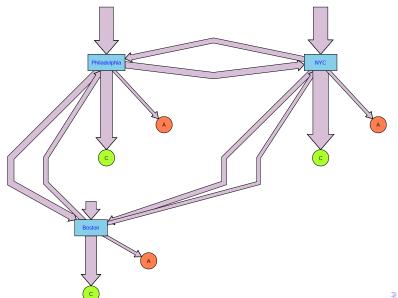
Israeli Call Center, Nov-Dec, 1999


LogNormal QQPlot

- ▶ **Practically Important**: (mean, std)(log) characterization
- ► Theoretically Intriguing: Why LogNormal ? Naturally multiplicative but, in fact, also Infinitely-Divisible (Generalized Gamma-Convolutions)

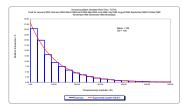
Primitives, ...: Length-of-Stay in a Hospital Ward


Israeli Hospital, IW LOS, in Days:

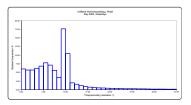

Primitives: (Im)Patience

Israeli Bank: Uncensored 13,000 Customers, 24/11/2008

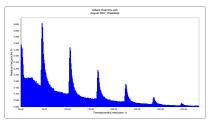
Patience ≥ 10*min*: Why Pareto Tail?


Protocol Mining: Snapshots of Connectivity

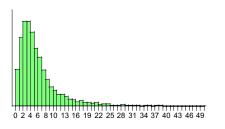
Protocols: Waiting Time in a Call Center


Exponential in Heavy-Traffic (min.)

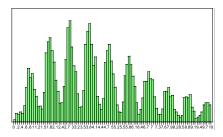
Small Israeli Bank


Routing via Thresholds (sec.)

Large U.S. Bank

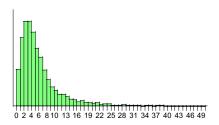

Scheduling Priorities (sec.) [compare Hospital LOS (hours)]

Medium Israeli Bank



Protocols: LOS in Hospitals - Beyond LogNormal

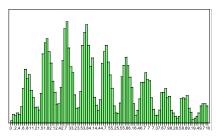
Israeli Hospital, in Days: LN

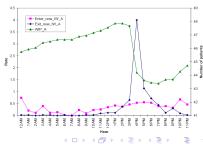


In Hours: 2 Time Scales, Mixture

Protocols: LOS in Hospitals - Beyond LogNormal

Israeli Hospital, in Days: LN

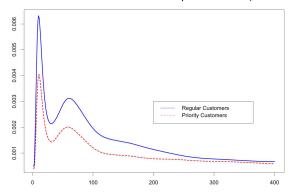



Explanation: Patients released around **3pm** (2-3 in Singapore, 2-4 in UNC Hospital)

Why Bother?

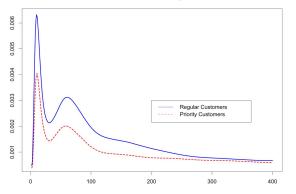
- ► Hourly Scale: Staffing,...
- ▶ Daily: Flow / Bed Control,...

In Hours: 2 Time Scales, Mixture



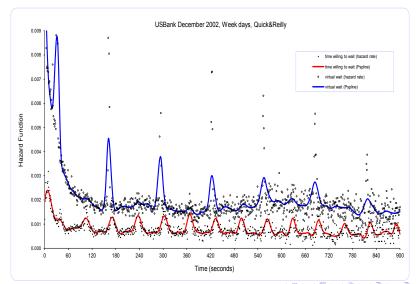
Protocols: (Im)Patience while Waiting (Psychology)

Palm: (1943–53): Irritation \propto Hazard Rate


Regular over VIP Customers: VIP more patient here (Israeli Bank)

Protocols: (Im)Patience while Waiting (Psychology)

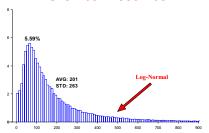
Palm: (1943–53): Irritation ∝ Hazard Rate


Regular over VIP Customers: VIP more patient here (Israeli Bank)

- ▶ Why Peaks of abandonment? Announcement epochs
 - Control abandonment w/ info: encourage, discourage
 - ► Technical Challenges, w/ J. Huang, J. Zhang, H. Zhang
- Statistical challenges: Un-Censoring, Smoothing

Protocols + PsychologyPatient Customers, Announcements, Priority Upgrades

Primitives: Services (Durations)


Histogram of Service-Duration in an Israeli Call Center, 1999

Why short services? Why LogNormal?

January-October

AVG: 185 STD: 238

November-December

- ▶ January-October: 6.8% Short-Services (≤ 10 seconds) ?
- November-December: LogNormal durations (common) ?

Operational Data challenges: get, incomplete, corrupt; integrate with full path of care (e.g. from onset of symptoms)

- Operational Data challenges: get, incomplete, corrupt; integrate with full path of care (e.g. from onset of symptoms)
 - ⇒ Must go beyond the prevalent paradigm (in OR/IE/OM):
 - A single researcher (with a PhD student) obtaining a small data set for a single research project
 - ⇒ Unprofessional, no learning across generations, no sharing among researchers, irreproducible research
- Ultimately, Research Labs will become necessary (hence must be funded!): offering universal access to data, ServNets

- Operational Data challenges: get, incomplete, corrupt; integrate with full path of care (e.g. from onset of symptoms)
 - ⇒ Must go beyond the prevalent paradigm (in OR/IE/OM):
 - A single researcher (with a PhD student) obtaining a small data set for a single research project
 - ⇒ Unprofessional, no learning across generations, no sharing among researchers, irreproducible research
- Ultimately, Research Labs will become necessary (hence must be funded!): offering universal access to data, ServNets
- Data-based Research: Tradition in Physics, Chemistry, Biology;
 Psychology, Transportation (Science), (Behavioral) Economics
- With available data, also natural, needed and valuable in Service Science / Engineering/Management

- Operational Data challenges: get, incomplete, corrupt; integrate with full path of care (e.g. from onset of symptoms)
 - ⇒ Must go beyond the prevalent paradigm (in OR/IE/OM):
 - A single researcher (with a PhD student) obtaining a small data set for a single research project
 - ⇒ Unprofessional, no learning across generations, no sharing among researchers, irreproducible research
- Ultimately, Research Labs will become necessary (hence must be funded!): offering universal access to data, ServNets
- Data-based Research: Tradition in Physics, Chemistry, Biology;
 Psychology, Transportation (Science), (Behavioral) Economics
- With available data, also natural, needed and valuable in Service Science / Engineering / Management

Home at Technion, IE&M, SEELab

Data-Based Creation of ServNets: some Technicalities

- ServNets = QNets, SimNets, FNets, DNets
- ▶ **Graph Layout**: Adapted from but significantly extends Graphviz (AT&T, 90's); eg. *edge-width*, which must be restricted to *poly-lines*, since there are "no parallel Bezier (Cubic) curves $(B_n(p) = E_p F[B(n, p)], 0 \le p \le 1)$
- Algorithm: Dot Layout (but with cycles), based on Sugiyama, Tagawa, Toda ('81): "Visual Understanding of Hierarchical System Structures"
- Draws data directly from SEELab data-bases:
 - Relational DBs (Large! eg. USBank Full Binary = 37GB, Summary Tables = 7GB)
 - Structure: Sequence of events/states, which (due to size) partitioned (yet integrated) into days (eg. call centers) or months (eg. hospitals)
 - Differs from industry DBs (in call centers, hospitals, websites)

eg. RFID-Based Data: Mass Casualty Event (MCE)

Drill: Chemical MCE, Rambam Hospital, May 2010

Focus on **severely wounded** casualties (\approx 40 in drill)

Note: 20 observers support real-time control (helps validation)

Data Cleaning: MCE with RFID Support

Data-base				Company report		comment
Asset id	order	Entry date	Exit date	Entry date	Exit date	
4	1	1:14:07 PM		1:14:00 PM		
6	1	12:02:02 PM	12:33:10 PM	12:02:00 PM	12:33:00 PM	
8	1	11:37:15 AM	12:40:17 PM	11:37:00 AM		exit is missing
10	1	12:23:32 PM	12:38:23 PM	12:23:00 PM		
12	1	12:12:47 PM	12:35:33 PM		12:35:00 PM	entry is missing
15	1	1:07:15 PM		1:07:00 PM		
16	1	11:18:19 AM	11:31:04 AM	11:18:00 AM	11:31:00 AM	
17	1	1:03:31 PM		1:03:00 PM		
18	1	1:07:54 PM		1:07:00 PM		
19	1	12:01:58 PM		12:01:00 PM		
20	1	11:37:21 AM	12:57:02 PM	11:37:00 AM	12:57:00 PM	
21	1	12:01:16 PM	12:37:16 PM	12:01:00 PM		
22	1	12:04:31 PM	12:20:40 PM			first customer is missing
22	2	12:27:37 PM		12:27:00 PM		Ü
25	1	12:27:35 PM	1:07:28 PM	12:27:00 PM	1:07:00 PM	
27	1	12:06:53 PM		12:06:00 PM		
28	1	11:21:34 AM	11:41:06 AM	11:41:00 AM	11:53:00 AM	exit time instead of entry time
29	1	12:21:06 PM	12:54:29 PM	12:21:00 PM	12:54:00 PM	
31	1	11:40:54 AM	12:30:16 PM	11:40:00 AM	12:30:00 PM	
31	2	12:37:57 PM	12:54:51 PM	12:37:00 PM	12:54:00 PM	
32	1	11:27:11 AM	12:15:17 PM	11:27:00 AM	12:15:00 PM	
33	1	12:05:50 PM	12:13:12 PM	12:05:00 PM	12:15:00 PM	wrong exit time
35	1	11:31:48 AM	11:40:50 AM	11:31:00 AM	11:40:00 AM	
36	1	12:06:23 PM	12:29:30 PM	12:06:00 PM	12:29:00 PM	
37	1	11:31:50 AM	11:48:18 AM	11:31:00 AM	11:48:00 AM	
37	2	12:50:21 PM		12:59:00 PM		

- Imagine "Cleaning" 60,000+ customers per day (call centers) !
- "Psychology" of Data Trust and Transfer (e.g. 2 years till transfer)

Event-Logs in a Call Center (Bank Anonymous)

A Data Sample (Excel worksheet) vru_entry vru_exit outcome ser_start ser_exit server Δ Δ0101 44749 27644400 PS 990901 11:45:33 11:45:39 11-45-39 11-46-58 AGENT 11:46:57 11:51:00 DORIT AA0101 44750 14:49:06 14:53:00 AGENT 14:52:59 14:54:29 12887816 990905 14:49:00 14:49:06 44967 58660291 990905 14-58-42 14-58-48 14:58:48 15:02:31 223 AGENT 15:02:31 15:04:10 ROTH 990905 15:10:17 15:10:26 15:10:26 15:13:19 AA0101 44968 0 NW 9 HANG 00:00:00 00:00:00 0 NO SERVER AA0101 44969 63193346 990905 15:22:07 15:22:13 15:22:13 15:23:21 AGENT 15:23:20 15:25:25 STEREN AA0101 44970 990905 15:31:33 15:31:47 AGENT 15:31:45 15:34:16 STEREN 44971 990905 15:37:29 15:37:34 15:37:34 15:38:20 AGENT 15:38:18 15:40:56 A A 0 1 0 1 64185333 990905 15:44:32 15:44:37 15-44-37 15-47-57 200 AGENT 15:47:56 15:49:02 TOVA 44973 3.06E+08 990905 15:53:05 15:53:11 15:53:11 15:56:39 AGENT 15:56:38 15:56:47 MORIAH AA0101 44974 NE 990905 15:59:34 15:59:40 15:59:40 16:02:33 173 AGENT 16:02:33 16:26:04 1411 A A 0 1 0 1 44975 55920755 990905 16:07:46 16:07:51 16:07:51 16:08:01 HANG 00:00:00 00:00:00 NO SERVER AA0101 44976 990905 16:11:38 16:11:48 16:11:48 16:11:50 HANG 00:00:00 00:00:00 NO SERVER AA0101 44977 33689787 990905 16:14:27 16:14:33 6 16:14:33 16:14:54 HANG 00:00:00 00:00:00 23817067 990905 16:19:11 16:19:17 16:19:17 16:19:39 AGENT 16:19:38 16:21:57 A A0101 44978 6 AA0101 44764 0 990901 15:03:26 15:03:36 10 00:00:00 00:00:00 AGENT 15:03:35 15:06:36 181 ZOHARI 44765 25219700 990901 15:14:46 15:14:51 15:14:51 15:15:10 AGENT 15:15:09 15:17:00 5 SHARON 15:25:48 15:26:00 AGENT 15:25:59 15:28:15 136 ANAT 44767 58859752 15:34:57 15:35:03 15:35:03 15:35:14 AGENT 15:35:13 15:35:15 MORIAH AA0101 990901 AA0101 44768 990901 15:46:30 15:46:39 00:00:00 00:00:00 AGENT 15:46:38 15:51:51 ANAT AA0101 44769 78191137 990901 15:56:03 15:56:09 15:56:09 15:56:28 AGENT 15:56:28 15:59:02 MORIAH A A0101 44770 990901 16:14:31 16:14:46 00-00-00 00-00-00 AGENT 16:14:44 16:16:02 RENSION AGENT 16:39:11 16:43:35 AA0101 44771 0 0 990901 16:38:59 16:39:12 00:00:00 00:00:00 VICKY AA0101 44772 990901 16:51:40 16:51:50 10 00:00:00 00:00:00 AGENT 16:51:49 16:53:52 990901 17:02:19 17:02:28 AGENT 17:02:28 17:07:42 44773 00:00:00 00:00:00 VICKY AA0101 44774 32387482 990901 17:18:18 17:18:24 17:18:24 17:19:01 AGENT 17:19:00 17:19:35 VICKY 6

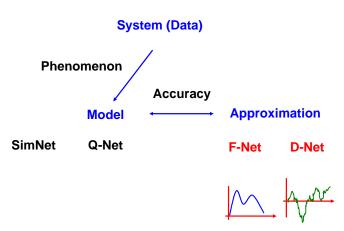
Unsynchronized transition times, consistently

990901 17:38:53 17:39:05

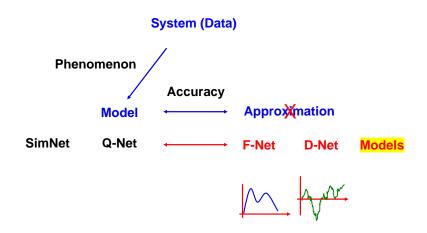
AA0101 44775

AGENT 17:39:04 17:40:43

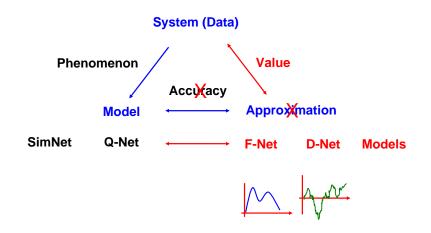
Prevalent (Asymptotic) Approximations

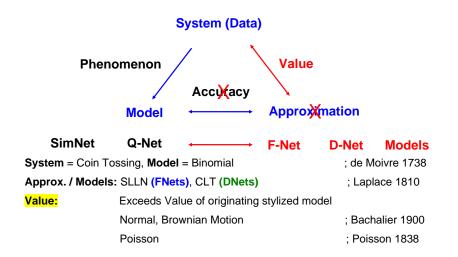

System (Data)

Phenomenon


Model

SimNet Q-Net


Prevalent (Asymptotic) Approximations


Data-Based Prevalent (Asymptotic) Approximations Models

Data-Based Prevalent (Asymptotic) Approximations Models

Data-Based Prevalent (Asymptotic) Approximations Models

